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ABSTRACT

Questions that require counting a variety of objects in images remain a major
challenge in visual question answering (VQA). The most common approaches
to VQA involve either classifying answers based on fixed length representations
of both the image and question or summing fractional counts estimated from each
section of the image. In contrast, we treat counting as a sequential decision process
and force our model to make discrete choices of what to count. Specifically, the
model sequentially selects from detected objects and learns interactions between
objects that influence subsequent selections. A distinction of our approach is its
intuitive and interpretable output, as discrete counts are automatically grounded in
the image. Furthermore, our method outperforms the state of the art architecture
for VQA on multiple metrics that evaluate counting.

1 INTRODUCTION

Visual question answering (VQA) is an important benchmark to test for context-specific reasoning
over complex images. While the field has seen substantial progress, counting-based questions have
seen the least improvement (Chattopadhyay et al., 2017). Intuitively, counting should involve finding
the number of distinct scene elements or objects that meet some criteria, see Fig. 1 for an example.
In contrast, the predominant approach to VQA involves representing the visual input with the final
feature map of a convolutional neural network (CNN), attending to regions based on an encoding of
the question, and classifying the answer from the attention-weighted image features (Xu & Saenko,
2015; Yang et al., 2015; Xiong et al., 2016; Lu et al., 2016b; Fukui et al., 2016; Kim et al., 2017).
Our intuition about counting seems at odds with the effects of attention, where a weighted average
obscures any notion of distinct elements. As such, we are motivated to re-think the typical approach
to counting in VQA and propose a method that embraces the discrete nature of the task.

Our approach is partly inspired by recent work that represents images as a set of distinct objects, as
identified by object detection (Anderson et al., 2017), and making use of the relationships between
these objects (Teney et al., 2016). We experiment with counting systems that build off of the vision
module used for these two works, which represents each image as a set of detected objects. For
training and evaluation, we create a new dataset, HowMany-QA. It is taken from the counting-
specific union of VQA 2.0 (Goyal et al., 2017) and Visual Genome QA (Krishna et al., 2016).

We introduce the Interpretable Reinforcement Learning Counter (IRLC), which treats counting as a
sequential decision process. We treat learning to count as learning to enumerate the relevant objects
in the scene. As a result, IRLC not only returns a count but also the objects supporting its answer.
This output is produced through an iterative method. Each step of this sequence has two stages:
First, an object is selected to be added to the count. Second, the model adjusts the priority given to
unselected objects based on their configuration with the selected objects (Fig. 1). We supervise only
the final count and train the decision process using reinforcement learning (RL).

Additional experiments highlight the importance of the iterative approach when using this manner of
weak supervision. Furthermore, we train the current state of the art model for VQA on HowMany-
QA and find that IRLC achieves a higher accuracy and lower count error. Lastly, we compare the
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Figure 1: IRLC takes as input a counting question and image. Detected objects are added to the
returned count through a sequential decision process. The above example illustrates actual model
behavior after training.

grounded counts of our model to the attentional focus of the state of the art baseline to demonstrate
the interpretability gained through our approach.

2 RELATED WORK

Visual representations for counting. As a standalone problem, counting from images has received
some attention but typically within specific problem domains. Segui et al. (2015) explore training
a CNN to count directly from synthetic data. Counts can also be estimated by learning to produce
density maps for some category of interest (typically people), as in Lempitsky & Zisserman (2010);
Oñoro-Rubio & López-Sastre (2016); Zhang et al. (2015). Density estimation simplifies the more
challenging approach of counting by instance-by-instance detection (Ren & Zemel, 2017). Methods
to detect objects and their bounding boxes have advanced considerably (Girshick et al., 2015; Gir-
shick, 2015; Ren et al., 2015b; Dai et al., 2016; Lin et al., 2017) but tuning redundancy reduction
steps in order to count is unreliable (Chattopadhyay et al., 2017). Here, we overcome this limitation
by allowing flexible, question specific interactions during counting.

Alternative approaches attempt to model subitizing, which describes the human ability to quickly
and accurately gauge numerosity when at most a few objects are present. Zhang et al. (2017) demon-
strates that CNNs may be trained towards a similar ability when estimating the number of salient
objects in a scene. This approach was extended to counting 80 classes of objects simultaneously in
Chattopadhyay et al. (2017). Their model is trained to estimate counts within each subdivision of
the full image, where local counts are typically within the subitizing range.

The above studies apply counting to a fixed set of object categories. In contrast, we are interested in
counting during visual question answering, where the criteria for counting change from question to
question and can be arbitrarily complex. This places our work in a different setting than those that
count from the image alone. For example, Chattopadhyay et al. (2017) apply their trained models to
a subset of VQA questions, but their analysis was limited to the specific subset of examples where
the question and answer labels agreed with the object detection labels they use for training. Here,
we overcome this limitation by learning to count directly from question/answer pairs.

Visual question answering. The potential of deep learning to fuse visual and linguistic reasoning
has been recognized for some time (Socher et al., 2014; Lu et al., 2016a). Visual question answer-
ing poses the challenge of retrieving question-specific information from an associated image, often
requiring complex scene understanding and flexible reasoning. In recent years, a number of datasets
have been introduced for studying this problem (Malinowski & Fritz, 2014; Ren et al., 2015a; Zhu
et al., 2015; Agrawal et al., 2015; Goyal et al., 2017; Krishna et al., 2016). The majority of recent
progress has been aimed at the so-named “VQA” datasets (Agrawal et al., 2015; Goyal et al., 2017),
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where counting questions represent roughly 11% of the data. Though our focus is on counting
questions specifically, prior work on VQA is highly relevant.

An early baseline for VQA represents the question and image at a coarse granularity, respectively
using a “bag of words” embedding along with spatially-pooled CNN outputs to classify the answer
(Zhou et al., 2015). In Ren et al. (2015a), a similar fixed-length image representation is fused with
the question embeddings as input to a recurrent neural network (RNN), from which the answer is
classified.

Attention. More recent variants have chosen to represent the image at a finer granularity by omit-
ting the spatial pooling of the CNN feature map and instead use attention to focus relevant image
regions before producing an answer (Xu & Saenko, 2015; Yang et al., 2015; Xiong et al., 2016; Lu
et al., 2016b; Fukui et al., 2016; Kim et al., 2017). These works use the spatially-tiled feature vectors
output by a CNN to represent the image; others follow the intuition that a more meaningful repre-
sentation may come from parsing the feature map according to the locations of objects in the scene
(Shih et al., 2015; Ilievski et al., 2016). Notably, using object detection was a key design choice for
the winning submission for the VQA 2017 challenge (Anderson et al., 2017; Teney et al., 2017).
Work directed at VQA with synthetic images (which sidesteps the challenges created by computer
vision) has further demonstrated the utility that relationships may provide as an additional form of
image annotation (Teney et al., 2016).

Interpretable VQA. The use of “scene graphs” in real-image VQA would have the desirable prop-
erty that intermediate model variables would be grounded in concepts explicitly, a step towards
making neural reasoning more transparent. A conceptual parallel to this is found in Neural Module
Networks (Andreas et al., 2016a;b; Hu et al., 2017), which gain interpretability by grounding the
reasoning process itself in defined concepts. The general concept of interpretable VQA has been the
subject of recent interest. Park et al. (2016) extends the task itself to include generating explana-
tions for produced answers. Chandrasekaran et al. (2017) take a different approach, asking how well
humans can learn patterns in answers and failures of a trained VQA model. While humans indeed
identify some patterns, they do not gain any apparent insight from knowing intermediate states of
the model (such as its attentional focus). In light of this, we are motivated by the goal of developing
more transparent AI.

We address this at the level of counting in VQA. We show that, despite the challenge presented by
this particular task, an intuitive approach gains in both performance and interpretability over state of
the art.

3 DATASETS

Within the field of VQA, the majority of progress has been aimed at the VQA dataset (Agrawal
et al., 2015) and, more recently, VQA 2.0 (Goyal et al., 2017), which expands the total number of
questions in the dataset and attempts to reduce bias by balancing answers to repeated questions.
VQA 2.0 consists of 1.1M questions pertaining to the 205K images from COCO (Lin et al., 2014).
The examples are divided according to the official COCO splits.

In addition to VQA 2.0, we incorporate the Visual Genome (VG) dataset (Krishna et al., 2016).
Visual Genome consists of 108K images, roughly half of which are part of COCO. VG includes its
own visual question answering dataset. We include examples from that dataset when they pertain to
an image in the VQA 2.0 training set.

3.1 HOWMANY-QA

In order to evaluate counting specifically, we define a subset of the QA pairs, which we refer to as
HowMany-QA. Our inclusion criteria were designed to filter QA pairs where the question asks for
a count, as opposed to simply an answer in the form of a number (Fig 2). For the first condition, we
require that the question contains one of the following phrases: “how many”, “number of”, “amount
of”, or “count of”. We also reject a question if it contains the phrase “number of the”, since this
phrase frequently refers to a printed number rather than a count (i.e. “what is the number of the
bus?”). Lastly, we require that the ground-truth answer is a number between 0 to 20 (inclusive). The
original VQA 2.0 train set includes roughly 444K QA pairs, of which 57,606 are labeled as having
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Figure 2: Examples of question-answer pairs that are excluded from HowMany-QA. This selection
exemplifies the common types of “number” questions that do not require counting and therefore
distract from our objective: (from left to right) time, general number-based answers, ballparking, and
reading numbers from images. Importantly, the standard VQA evaluation metrics do not distinguish
these from counting questions; instead, performance is reported for “number” questions as a whole.

a “number” answer. Focusing on counting questions results in a still very large dataset with 47,542
pairs, showing the importance of this subtask.

Split QA Pairs Images

Train 83,642 31,932
from VQA 2.0 47,542 31,932
from VG 36,100 0

Dev. 17,714 13,119

Test 5,000 2,483

Table 1: Size breakdown of HowMany-QA. Nei-
ther development or test included VG data.

Due to our filter and focus on counting ques-
tions, we cannot make use of the official test
data since its annotations are not available.
Hence, we divide the validation data into sep-
arate development and test sets. More specifi-
cally, we apply the above criteria to the official
validation data and select 5,000 of the resulting
QA pairs to serve as the test data. The remain-
ing 17,714 QA pairs are used as the develop-
ment set.

As mentioned above, the HowMany-QA train-
ing data is augmented with available QA pairs
from Visual Genome, which are selected using the same criteria. A breakdown of the size and com-
position of HowMany-QA is provided in Table 1. All models compared in this work are trained and
evaluated on HowMany-QA. To facilitate future comparison to our work, we have made the training,
development, and test question IDs available for download.

4 MODEL

In this work, we focus specifically on counting in the setting of visual question answering (where
the criteria for counting changes on a question-by-question basis). In addition, we are interested
in model interpretability. We explore this notion by experimenting with models that are capable of
producing question-guided counts which are visually grounded in object proposals.

Rather than substantially modifying existing counting approaches – such as Chattopadhyay et al.
(2017) – we compare three models whose architectures naturally fit within our experimental scope.
These models each produce a count from the outputs of an object detection module and use identical
strategies to encode the question and compare it to the detected objects. The models differ only in
terms of how these components are used to produce a count (Fig. 3a).

4.1 OBJECT DETECTION

Our approach is inspired by the strategy of Anderson et al. (2017) and Teney et al. (2017). Their
model, which represents current state of the art in VQA, infers objects as the input to the question-
answering system. This inference is performed using the Faster R-CNN architecture (Ren et al.,
2015b). The Faster R-CNN proposes a set of regions corresponding to objects in the image. It
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Figure 3: (a) Each model includes three basic modules: vision (blue), language (green), and count-
ing (red). Text in the shaded regions describes which aspects of these modules are shared across
models. (b) (left) The language model embeds the question and compares it to each object using a
scoring function, which is jointly trained with caption grounding; (right) IRLC counting module.

encodes the image as a set of bounding boxes {b1, ..., bN}, bi ∈ R4 and complementary set of object
encodings {v1, ..., vN}, vi ∈ R2048, corresponding to the locations and feature representations of
each of the N detected objects, respectively (blue box in Fig. 3a).

Rather than train our own vision module from scratch, we make use of the publicly available object
proposals learned in Anderson et al. (2017). These provide rich, object-centric representations for
each image in our dataset. These representations are fixed when learning to count and are shared
across each of the QA models we experiment with.

4.2 LANGUAGE

Each architecture encodes the question and compares it to each detected object via a scoring func-
tion. We define q as the final hidden state of an LSTM (Hochreiter & Schmidhuber, 1997) after
processing the question and compute a score vector for each object (Fig. 3, green boxes):

ht = LSTM
(
xt, ht−1

)
q = hT (1)

si = fS ([q, vi]) (2)

Here, xt denotes the word embedding of the question token at position t and si ∈ Rn denotes the
score vector encoding the relevance of object i to the question. Following Anderson et al. (2017),
we implement the scoring function fS : Rm → Rn as a layer of Gated Tanh Units (GTU) (van den
Oord et al., 2016). [, ] denotes vector concatenation.

We experiment with jointly training the scoring function to perform caption grounding, which we
supervise using region captions from Visual Genome. Region captions provide linguistic descrip-
tions of localized regions within the image, and the goal of caption grounding is to identify which
object a given caption describes (details provided in Section B.1 of the Appendix). Caption ground-
ing uses a strategy identical to that for question answering (Eqs. 1 and 2): an LSTM is used to
encode each caption and the scoring function fS is used to encode its relevance to each detected
object. The weights of the scoring function are tied for counting and caption grounding (Fig. 3b).
We include results from experiments where caption grounding is ignored.

4.3 COUNTING

Interpretable RL Counter (IRLC). For our proposed model, we aim to learn how to count by
learning what to count. We assume that each counting question implicitly refers to a subset of the
objects within a scene that meet some variable criteria. In this sense, the goal of our model is to
enumerate that subset of objects.
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Figure 4: Grounded counts produced by IRLC. Counts are formed from selections of detected
objects. Each image displays the objects that IRLC chose to count.

To implement this as a sequential decision process, we need to represent the probability of selecting
a given action and how each action affects subsequent choices. To that end, we project the object
scores s ∈ RNxn to a vector of logits κ ∈ RN , representing how likely each object is to be counted,
where N is the number of detected objects:

κ = Ws+ b (3)

And we compute a matrix of interaction terms ρ ∈ RNxN that are used to update the logits κ. The
value ρij represents how selecting object i will change κj . We calculate this interaction from a
compressed representation of the question (Wq), the dot product of the normalized object vectors
(v̂Ti v̂j), the object coordinates (bi and bj), and basic overlap statistics (IoUij , Oij , and Oji):

ρij = fρ
([
Wq, v̂Ti v̂j , bi, bj , IoUij ,Oij ,Oji

])
(4)

where fρ : x ∈ Rm ⇒ R is a 2-layer MLP with ReLU activations.

For each step t of the counting sequence we greedily select the action with the highest value (inter-
preted as either selecting the next object to count or terminating), and update κ accordingly:

at = argmaxi
[
κt, ζ

]
(5)

κt+1 = κt + ρ(at, ·) (6)

where ζ is a learnable scalar representing the logit value of the terminal action, and κ0 is the result
of Equation 3 (Fig. 3b, red box). The action at is expressed as the index of the selected object.
ρ(at, ·) denotes the row of ρ indexed by at. Each object is only allowed to be counted once. We
define the count C as the timestep when the terminal action was selected t : at = N + 1.

This approach bears some similarity to Non-Maximal Suppression (NMS), a staple technique in
object detection to suppress redundant proposals. However, our approach is far less rigid and allows
the question to determine how similar and/or overlapping objects interact.

Training IRLC. Because the process of generating a count requires making discrete decisions,
training requires that we use techniques from Reinforcement Learning. Given our formulation, a
natural choice is to apply REINFORCE (Williams, 1992). To do so, we calculate a distribution
over action probabilities pt from κt and generate a count by iteratively sampling actions from the
distribution:

pt = softmax
([
κt, ζ

])
at ∼ pt (7)

κt+1 = κt + ρ(at, ·) (8)

We calculate the reward using Self-Critical Sequence training (Rennie et al., 2017; Anderson et al.,
2017; Paulus et al., 2017), a variation of policy gradient. We define E = |C −CGT| to be the count
error and define the reward as R = Egreedy −E, where Egreedy is the baseline count error obtained
by greedy action selection (which is also how the count is measured at test time). From this, we
define our (unnormalized) counting loss as

L̃C = −R
∑
t

log pt
(
at
)

(9)
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Additionally, we include two auxiliary objectives to aid learning. For each sampled sequence, we
measure the total negative policy entropy H across the observed time steps. We also measure the
average interaction strength at each time step and collect the total

P̃H = −
∑
t

H
(
pt
)

P̃I =
∑

i∈{a0...at}

1

N

∑
j

L1 (ρij) (10)

where L1 is the Huber loss from Eq 12. Including the entropy objective is a common strategy
when using policy gradient (Williams & Peng, 1991; Minh et al., 2016; Luo et al., 2017) and is
used to improve exploration. The interaction penalty is motivated by the a priori expectation that
interactions should be sparse. During training, we minimize a weighted sum of the three losses,
normalized by the number of decision steps. As before, we provide training and implementation
details in the Appendix (Sec. B.2).

SoftCount. As a baseline approach, we train a model to count directly from the outputs s of the
scoring function. For each object, we project its score vector si to a scalar value and apply a sigmoid
nonlinearity, denoted as σ, to assign the object a count value between 0 and 1. The total count is the
sum of these fractional, object-specific count values. We train this model by minimizing the Huber
loss associated with the absolute difference e between the predicted count C and the ground truth
count CGT:

C =
∑
i

σ (Wsi) (11)

L1 =

{
0.5e2 if e ≤ 1

e− 0.5 otherwise
e = |C − CGT| (12)

For evaluation, we round the estimated count C to the nearest integer and limit the output to the
maximum ground truth count (in this case, 20).

Attention Baseline (UpDown). As a second baseline, we re-implement the QA architecture intro-
duced in Anderson et al. (2017), which the authors refer to as UpDown – see also Teney et al. (2017)
for additional details. We focus on this architecture for three main reasons. First, it represents the
current state of the art for VQA 2.0. Second, it was designed to use the visual representations we
employ. And, third, it exemplifies the common two-stage approach of (1) deploying question-based
attention over image regions (here, detected objects) to get a fixed-length visual representation

α = softmax (Ws) ; v̂ =
∑

αivi (13)

and then (2) classifying the answer based on this average and the question encoding

v′ = fV (v̂) ; q′ = fQ (q) (14)

p = softmax
(
fC (v′ ⊗ q′)

)
(15)

where s ∈ RNxn denotes the matrix of score vectors for each of theN detected objects and α ∈ RN
denotes the attention weights. Here, each function f is implemented as a GTU layer and ⊗ denotes
element-wise multiplication. For training, we use a cross entropy loss, with the target given by the
ground-truth count. At test time, we use the most probable count given by p.

5 RESULTS

5.1 COUNTING PERFORMANCE

We use two metrics for evaluation. For consistency with past work, we report the standard VQA test
metric of accuracy. Since accuracy does not measure the degree of error we also report root-mean-
squared-error (RMSE), which captures the typical deviation between the estimated and ground-truth
count and emphasizes extreme errors. Details are provided in the Appendix (Sec. D).

To better understand the performance of the above models, we also report the performance of two
non-visual baselines. The first baseline (Guess1) shows the performance when the estimated count
is always 1 (the most common answer in the training set). The second baseline (LSTM) learns to
predict the count directly from a linear projection of the question embedding q (Eq. 1).
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Figure 5: Model performance on the HowMany-QA development set, grouped according to the
frequency with which the counting subject appeared in the training data.

Model Accuracy RMSE

Guess1 33.8 3.74
LSTM 36.8 3.47

SoftCount 50.2 (49.2) 2.37 (2.45)
UpDown 52.7 (51.5) 2.64 (2.69)

IRLC 57.7 (56.1) 2.37 (2.45)

Table 2: HowMany-QA test set perfor-
mance. Values in parentheses apply to mod-
els trained without caption grounding.

IRLC achieves the highest overall accuracy and
(with SoftCount) the lowest overall RMSE on the
test set (Table 2). Interestingly, SoftCount clearly
lags in accuracy but is competitive in RMSE, ar-
guing that accuracy and RMSE are not redundant.
We observe this to result from the fact that IRLC
is less prone to small errors and very slightly more
prone to large errors (which disproportionately im-
pact RMSE). However, whereas UpDown improves
in accuracy at the cost of RMSE, IRLC is sub-
stantially more accurate without sacrificing overall
RMSE.

To gain more insight into the performance of these models, we calculate these metrics within the
development set after separating the data according to how common the subject of the count is
during training1. We break up the questions into 5 roughly equal-sized bins representing increasingly
uncommon subjects. We include a 6th bin for subjects never seen during training. The accuracy and
RMSE across the development set are reported for each of these bins in Figure 5.

Organizing the data this way reveals two main trends. First, all models perform better when asked to
count subjects that were common during training. Second, the performance improvements offered
by IRLC over UpDown persist over all groupings of the development data.

5.2 GROUNDING QUALITY

We introduce a novel analysis to quantify how well counted objects match the subject of the question.
To perform this analysis, we form generic questions that refer to the object categories in the COCO
object detection dataset. We take the object proposals counted in response to a given question
and compare them to the ground truth COCO labels to determine how relevant the counted object
proposals are. Our metric takes on a value of 1 when the counted objects perfectly map onto the
category to which the question refers. Values around 0 indicate that the counted objects were not
relevant to the question. Section D of the Appendix details how the grounding quality metric is
calculated.

We perform this analysis for each of the 80 COCO categories using the images in the HowMany-QA
development set. Figure 6 compares the grounding quality of SoftCount and IRLC, where each point
represents the average grounding quality for a particular COCO category. As with the previous two
metrics, grounding quality is highest for COCO categories that are more common during training.
We observe that IRLC consistently grounds its counts in objects that are more relevant to the question
than does SoftCount. A paired t-test shows that this trend is statistically significant (p < 10−15).

1We infer the subject using a simple dependency-parsing heuristic. Specifically, we extract the root word of the
first noun-chunk.
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Figure 6: (Left) Average grounding quality for each of the COCO object categories, as measured
for SoftCount and IRLC. Each point represents a COCO category and is colored according to how
common the category was during training (as in Figure 5). (Right) Histogram showing the difference
in grounding quality between IRLC and SoftCount.

Figure 7: Examples of failure cases with common and rare subjects (“people” and “ties,” respec-
tively). Each example shows the output of IRLC, where boxes correspond to counted objects, and
the output of UpDown, where boxes are shaded according to their attention weights.

5.3 QUALITATIVE ANALYSIS

The design of IRLC is inspired by the ideal of interpretable VQA (Chandrasekaran et al., 2017).
One hallmark of interpretability is the ability to predict failure modes. We argue that this is made
more approachable by requiring IRLC to identify the objects in the scene that it chooses to count.

Figure 7 illustrates two failure cases that exemplify observed trends in IRLC. In particular, IRLC
has little trouble counting people (they are the most common subject) but encounters difficulty with
referring phrases (in this case, “sitting on the bench”). When asked to count ties (a rare subject),
IRLC includes a sleeve in the output, demonstrating the tendency to misidentify objects with few
training examples. These failures are obvious by virtue of the grounded counts, which point out
exactly which objects IRLC counted. In comparison, the attention focus of UpDown (representing
the closest analogy to a grounded output) does not identify any pattern. From the attention weights,
it is unclear which scene elements form the basis of the returned count.

Indeed, the two models may share similar deficits. We observe that, in many cases, they produce
similar counts. However, we stress that without IRLC and the chance to observe such similarities
such deficits of the UpDown model would be difficult to identify.

The Appendix includes further visualizations and comparisons of model output, including examples
of how IRLC uses the iterative decision process to produce discrete, grounded counts (Sec. A).
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6 CONCLUSION

We present an interpretable approach to counting in visual question answering, based on learning to
enumerate objects in a scene. By using RL, we are able to train our model to make binary decisions
about whether a detected object contributes to the final count. We experiment with two additional
baselines and control for variations due to visual representations and for the mechanism of visual-
linguistic comparison. Our approach achieves state of the art for each of the evaluation metrics. In
addition, our model identifies the objects that contribute to each count. These groundings provide
traction for identifying the aspects of the task that the model has failed to learn and thereby improve
not only performance but also interpretability.
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A EXAMPLES

Figure 8: Example outputs produced by each model. For SoftCount, objects are shaded according
to the fractional count of each (0=transparent; 1=opaque). For UpDown, we similarly shade the
objects but use the attention focus to determine opacity. For IRLC, we plot only the boxes from
objects that were selected as part of the count.

13



Published as a conference paper at ICLR 2018

Figure 9: Sequential counting of IRLC. At each timestep, we illustrate the unchosen boxes in pink,
and shade each box according to κt (corresponding to the probability that the box would be selected
at that time step; see main text). We also show the already-selected boxes in blue. For each of the
questions, the counting sequence terminates at t = 3, meaning that the returned count C is 3. For
each of these questions, that is the correct answer. The example on the far right is a ‘correct failure,’
a case where the correct answer is returned but the counted objects are not related to the question.
These kinds of subtle failures are revealed with the grounded counts.
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B TRAINING AND IMPLEMENTATION DETAILS

B.1 CAPTION GROUNDING

We experiment with jointly training counting and caption grounding. The goal of caption grounding
is, given a set of objects and a caption, to identify the object that the caption describes. Identical
to the first stages of answering the counting question, we use an LSTM to encode the caption and
compare it to each of the objects using the scoring function:

ht = LSTM
(
xt, ht−1

)
(16)

si = fS
([
hT , vi

])
(17)

where h ∈ R1024, xti ∈ R300 is the embedding for the token at timestep t of the caption, T is the
caption length, and fS : Rm → Rn is the scoring function (Sec. 4.3). The embedding of object i is
denoted by vi and the relevance of this object to the caption is encoded by the score vector si.

We project each such score vector to a scalar logit αi and apply a softmax nonlinearity to estimate
p ∈ RN , where N is the number of object proposals and pi denotes the probability that the caption
describes object proposal i:

αi = Wsi + b (18)
p = softmax (α) . (19)

During training, we randomly select four of the images in the batch of examples to use for caption
grounding (rather than the full 32 images that make up a batch). To create training data from the
region captions in Visual Genome, we assign each caption to one of the detected object proposals.
To do so, we compute the intersection over union between the ground truth region that the caption
describes and the coordinates of each object proposal. We assign the object proposal with the largest
IoU to the caption. If the maximum IoU for the given caption is less than 0.5, we ignore it during
training. We compute the grounding probability p for each caption to which we can successfully
assign a detection and train using the cross entropy loss averaged over the captions. We weight the
loss associated with caption grounding by 0.1 relative to the counting loss.

B.2 COUNTING MODELS

Each of the considered counting models makes use of the same basic architecture for encoding the
question and comparing it with each of the detected objects. For each model, we initialized the
word embeddings from GloVe (Pennington et al., 2014) and encoded the question with an LSTM
of hidden size 1024. The only differences in the model-specific implementations of the language
module was the hidden size of the scoring function fS . We determined these specifics from the
optimal settings observed during initial experiments. We use a hidden size of 512 for SoftCount and
UpDown and a hidden size of 2048 for IRLC. We observed that the former two models were more
prone to overfitting, whereas IRLC benefited from the increased capacity.

When training on counting, we optimize using Adam (Kingma & Ba, 2014). For SoftCount and
UpDown, we use a learning rate of 3x10−4 and decay the learning rate by 0.8 when the training
accuracy plateaus. For IRLC, we use a learning rate of 5x10−4 and decay the learning rate by
0.99999 every iteration. For all models, we regularize using dropout and apply early stopping based
on the development set accuracy (see below).

When training IRLC, we apply the sampling procedure 5 times per question and average the losses.
We weight the entropy penalty PH and interaction penalty PI (Eq. 10) both by 0.005 relative to the
counting loss. These penalty weights yield the best development set accuracy within the hyperpa-
rameter search we performed (Fig. 10).

C ADDITIONAL ANALYSES AND EXPERIMENTS

IRLC auxiliary loss. We performed a grid search to determine the optimal setting for the weights
of the auxiliary losses for training IRLC. From our observations, the entropy penalty is important to
balance the exploration of the model during training. In addition, the interaction penalty prevents
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Figure 10: Results of a hyperparameter sweep over the penalty weights. The accuracy over the
development set is reported for each weight setting.
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Figure 11: HowMany-QA test set performance for models trained with the full HowMany-QA
training data (blue) and trained without the additional data from Visual Genome (green).

degenerate counting strategies. The results of the grid search suggest that these auxiliary losses
improve performance but become unhelpful if given too much weight (Fig. 10). In any case, IRLC
outperforms the baseline models across the range of settings explored.

Data augmentation with Visual Genome. Here, we compare performance on the HowMany-
QA test set for models trained with and without additional data from Visual Genome QA. In all
cases, performance benefits from the additional training data (Fig. 11). On average, excluding
Visual Genome from the training data decreases accuracy by 2.7% and increases RMSE by 0.12.
Interestingly, the performance of IRLC is most robust to the loss of training data.

Ordinality of UpDown output. Whereas the training objectives for SoftCount and IRLC intrinsi-
cally reflect the ordinal nature of counts, the same is not true for UpDown. For example, the loss
experienced by SoftCount and IRLC reflect the degree of error between the estimated count and the
ground truth target; however, UpDown is trained only to place high probability mass on the ground
truth value (missing by 1 or by 10 are treated as equally incorrect). We examine the patterns in the
output count probabilities from UpDown to ask whether the model learns an ordinal representation
despite its non-ordinal training objective. Figure 12 illustrates these trends. When the estimated
count is less than 5, the second-most probable count is very frequently adjacent to the most probable
count. When the estimated count is larger than 5, the probability distribution is less smooth, such
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Figure 12: (Left) Average count probability (Eq. 15) from UpDown, grouped according to the
estimated count. (Right) Cumulative distribution of the absolute difference between the top two
predicted counts, shown for when the most likely count was less than 5 (blue) and when it was
greater than or equal to 5 (green). The probability distributions are much less smooth when the
estimated count is large.

that the second-most probable count is often considerably different than the most probable count.
This result suggests that UpDown learns ordinality for lower count values (where training data is
abundant) but fails to generalize this concept to larger counts (where training data is more sparse).

D EVALUATION METRICS

Accuracy. The VQA dataset includes annotations from ten human reviewers per question. The
accuracy of a given answer a depends on how many of the provided answers it agrees with. It is
scored as correct if at least 3 humans answers agree:

Acc (a) = min

[
#humans that said a

3
, 1

]
. (20)

Each answer’s accuracy is averaged over each 10-choose-9 set of human answers. As described in
the main text, we only consider examples where the consensus answer was in the range of 0-20.
We use all ten labels to calculate accuracy, regardless of whether individual labels deviate from
this range. Thee accuracy values we report are taken from the average accuracy over some set of
examples.

RMSE. This metric simply quantifies the typical deviation between the model count and the ground-
truth. Across a set of N , we calculate this metric as

RMSE =

√
1

N

∑
i

(Ĉi − Ci)2, (21)

where Ĉi and Ci are the predicted and ground truth counts, respectively, for question i. RMSE is a
measurement of error, so lower is better.

Grounding Quality. We introduce a new evaluation method for quantifying how relevant the objects
counted by a model are to the type of object it was asked to count. This evaluation metric takes
advantage of the ground truth labels included in the COCO dataset. These labels annotate each
object instance of 80 different categories for each of the images in the development set. We make
use of GloVe embeddings to compute semantic similarity. We use GloVe (x) ∈ R300 to denote the
(L2 normalized) GloVe embedding of category x.

For each image m, the analysis is carried out in two stages.

First, we assign one of the COCO categories (or background) to each of the object proposals used
for counting. For each object proposal, we find the object in the COCO labels with the largest IoU.
If the IoU is above 0.5, we assign the object proposal to the category of the COCO object, otherwise
we assign the object proposal to the background. Below, we use kmi to denote the category assigned
to object proposal i for image m.
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Second, for each of the COCO categories present in image m, we use the category q (i.e. q = “car”)
to build a question (i.e. “How many cars are there?”). For SoftCount and IRLC, the count returned
in response to this question is the sum of each object proposal’s inferred count value:

C(m,q) =

Nm∑
i

w
(m,q)
i , (22)

where Nm is the number of object proposals in image m and w(m,q)
i is the count value given to

proposal i. We use the count values to compute a weighted sum of the semantic similarity between
the assigned object proposal categories k and the question category q:

s(m,q) =

Nm∑
i

w
(m,q)
i

(
GloVe (kmi )

T GloVe (q)
)
, (23)

where semantic similarity is estimated from the dot product between the embeddings of the assigned
category and the question category. If kmi corresponds to the background category, we replace its
embedding with a vector of zeros.

The final metric is computed for each COCO category by accumulating the results over all images
that contain a label for that category and normalizing by the net count to get an average:

s(q) =
Σms

(m,q)

ΣmC(m,q)
. (24)

The interpretation of this metric is straightforward: on average, how relevant are the counted objects
to the subject of the question.
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