

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA-TO-ENERGY STOCHASTIC DYNAMICS

Anonymous authors

Paper under double-blind review

## ABSTRACT

The Schrödinger bridge problem is concerned with finding a stochastic dynamical system bridging two marginal distributions that minimises a certain transportation cost. This problem, which represents a generalisation of optimal transport to the stochastic case, has received attention due to its connections to diffusion models and flow matching, as well as its applications in the natural sciences. However, all existing algorithms allow to infer such dynamics only for cases where samples from both distributions are available. In this paper, we propose the first general method for modelling Schrödinger bridges when one (or both) distributions are given by their unnormalised densities, with no access to data samples. Our algorithm relies on a generalisation of the iterative proportional fitting (IPF) procedure to the data-free case, inspired by recent developments in off-policy reinforcement learning for training of diffusion samplers. We demonstrate the efficacy of the proposed *data-to-energy IPF* on synthetic problems, finding that it can successfully learn transports between multimodal distributions. As a secondary consequence of our reinforcement learning formulation, which assumes a fixed time discretisation scheme for the dynamics, we find that existing data-to-data Schrödinger bridge algorithms can be substantially improved by learning the diffusion coefficient of the dynamics. Finally, we apply the newly developed algorithm to the problem of sampling posterior distributions in latent spaces of generative models, thus creating a data-free image-to-image translation method.

## 1 INTRODUCTION

Two modern approaches to generative modelling that have paved the way for scalable and efficient generation of high-fidelity images (Dhariwal & Nichol, 2021; Rombach et al., 2021), videos (Polyak et al., 2024), audio (Chen et al., 2021a; Kong et al., 2021) and text (Nie et al., 2025; Sahoo et al., 2025) are diffusion models and flow matching. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) assume a noising stochastic process that transforms data into a tractable noise distribution and use score-based techniques to learn its reverse process, which transforms noise into data. Flow matching (Liu et al., 2023; Albergo et al., 2023; Lipman et al., 2023; Tong et al., 2024a) learns time-dependent deterministic dynamics that give a transportation map between two arbitrary distributions. Both approaches can be seen as special cases of the more general problem of learning stochastic dynamics between two arbitrary distributions.

The problem of inferring an optimal stochastic bridge between two distributions is called the Schrödinger bridge (SB) problem, which was initially proposed in Schrödinger (1931; 1932) and has recently been studied using various machine learning techniques (Huang et al., 2021; Vargas et al., 2021; Chen et al., 2021b; Stromme, 2023; Shi et al., 2023; Tong et al., 2024b). One computational approach to the Schrödinger bridge problem is the iterative proportional fitting (IPF) algorithm (Fortet, 1940; Vargas et al., 2021; De Bortoli et al., 2021), which maintains a pair of processes in forward and reverse time and iteratively updates them by solving half-bridge problems (see §2). Upon convergence, the two processes become time reversals of each other and solve the SB problem. Notably, the typical training of diffusion models – with a fixed noising process that transforms a data distribution into a Gaussian by construction – is a degenerate case of IPF that converges in a single step. However, existing variants of IPF work only in a setting where samples from both marginal distributions are available and thus cannot be used to model bridges when one (or both) of the marginal distributions is given as an unnormalised density, without access to data samples.

We propose to extend the IPF algorithm to the case where one or both marginal distributions are given by unnormalised densities or energy functions:  $p(x) = e^{-\mathcal{E}(x)}/Z$ ,  $Z = \int e^{-\mathcal{E}(x)} dx$ , where  $\mathcal{E}$  can be queried, but  $Z$  is unknown. Our proposed *data-to-energy* (or *energy-to-energy*) IPF generalises recently developed techniques for training diffusion models to sample from a distribution given by an

unnormalised density (Zhang & Chen, 2022; Vargas et al., 2023; 2024; Berner et al., 2024; Albergo & Vanden-Eijnden, 2025; Blessing et al., 2025a, *inter alia*). In particular, we build upon off-policy reinforcement learning losses and stabilisation techniques for diffusion samplers (Richter et al., 2020; Richter & Berner, 2024; Lahlou et al., 2023; Sendera et al., 2024; Gritsae et al., 2025) to propose an efficient training for the IPF steps in the data-to-energy setting. Our algorithm is the first general method for inferring data-to-energy and energy-to-energy Schrödinger bridges.

Wielding the newly proposed algorithm, we make three contributions:

- (1) We show that the proposed data-to-energy and energy-to-energy IPF algorithms successfully learn stochastic bridges with low transport cost between synthetic datasets and densities, performing on par with the transports learnt by data-to-data IPF using samples from a ground-truth oracle.
- (2) As a secondary contribution, we show that – as a consequence of the time discretisation used in our reinforcement learning formulation – existing data-to-data IPF algorithms can be improved by learning the diffusion coefficient of the dynamics, in addition to the drift, generalising the results of Gritsae et al. (2025) for diffusion samplers to the more general SB setting.
- (3) We apply the data-to-energy IPF algorithm to the problem of translating prior distributions to posteriors in latent spaces of generative models, generalising the outsourced diffusion sampling of Venkatraman et al. (2025) to yield a scalable data-free image-to-image translation method.

## 2 DATA-TO-DATA SCHRÖDINGER BRIDGES

### 2.1 ITERATIVE PROPORTIONAL FITTING FOR DATA-TO-DATA SB

**Setting: The SB problem and its connection to optimal transport.** We present some background on the SB problem; see Léonard (2014); De Bortoli et al. (2021) for relevant and more detailed overviews. Let  $p_0$  and  $p_1$  be two given distributions over the space  $\mathbb{R}^d$ , assumed to be absolutely continuous (thus used interchangeably with their density functions) and of finite variance. Let  $\mathbb{Q}_t$  be a reference process on the time interval  $[0, 1]$  taking values in  $\mathbb{R}^d$  (usually an Ornstein-Uhlenbeck process, such as the Wiener process). The Schrödinger bridge problem can be formalised as:

$$\mathbb{P}_t^* = \arg \min_{\mathbb{P}_t} \{ \text{KL}(\mathbb{P}_t \parallel \mathbb{Q}_t) \text{ s.t. } (\pi_0)_\# \mathbb{P}_t = p_0, (\pi_1)_\# \mathbb{P}_t = p_1 \}, \quad (1)$$

where the minimisation is taken over all processes  $\mathbb{P}_t$  whose marginals at times  $t = 0$  and  $t = 1$ , written  $(\pi_0)_\# \mathbb{P}_t$  and  $(\pi_1)_\# \mathbb{P}_t$ , equal  $p_0$  and  $p_1$ , respectively. The solution  $\mathbb{P}_t^*$  is a stochastic dynamical system that transports  $p_0$  to  $p_1$  – that is, a *bridge* – that is the closest to  $\mathbb{Q}_t$  in KL divergence. If the reference process  $\mathbb{Q}_t$  is given by an Itô stochastic differential equation (SDE)

$$\mathbb{Q}_t : dX_t = F_{\text{ref}}(X_t, t) dt + \sigma_t dW_t, \quad X_0 \sim q_0,$$

then, under mild conditions (see Léonard (2014)) the solution to (1) exists, is unique, and also takes the form of a SDE:

$$\mathbb{P}_t : dX_t = F(X_t, t) dt + \sigma_t dW_t, \quad X_0 \sim p_0.$$

with the same diffusion coefficient. The KL then takes the form of a dynamic transport cost

$$\text{KL}(\mathbb{P}_t \parallel \mathbb{Q}_t) = \text{KL}(p_0 \parallel q_0) + \mathbb{E}_{X_t \sim \mathbb{P}_t} \int_0^1 \frac{\|F_{\text{ref}}(X_t, t) - F(X_t, t)\|^2}{2\sigma_t^2} dt, \quad (2)$$

reducing the problem (1) to one of inferring the drift function  $F$  minimising the cost (2). This representation makes clear that as  $\sigma_t \rightarrow 0$ , the SB problem approaches the dynamic optimal transport problem between  $p_0$  and  $p_1$  with squared-euclidean cost (see Tong et al. (2024a)). For  $\sigma_t > 0$ , the joint marginal distribution of  $\mathbb{P}_t^*$  over  $X_0, X_1$  is an *entropy-regularised* optimal transport, a key observation in the derivation of the SB algorithm in Tong et al. (2024b).

**Iterative proportional fitting.** Computationally, the SB problem can be solved using the iterative proportional fitting (IPF) algorithm (Fortet, 1940; Vargas et al., 2021; De Bortoli et al., 2021). IPF defines a recursion initialised at  $\overrightarrow{\mathbb{P}}_t^0 = \mathbb{Q}_t$ :

$$\overleftarrow{\mathbb{P}}_t^{n+1} = \arg \min_{\mathbb{P}_t} \left\{ \text{KL}(\mathbb{P}_t \parallel \overrightarrow{\mathbb{P}}_t^n) \text{ s.t. } (\pi_0)_\# \mathbb{P}_t = p_0 \right\} = p_0 \otimes \overrightarrow{\mathbb{P}}_{t|0}^n, \quad (3a)$$

$$\overrightarrow{\mathbb{P}}_t^{n+1} = \arg \min_{\mathbb{P}_t} \left\{ \text{KL}(\mathbb{P}_t \parallel \overleftarrow{\mathbb{P}}_t^{n+1}) \text{ s.t. } (\pi_1)_\# \mathbb{P}_t = p_1 \right\} = p_1 \otimes \overleftarrow{\mathbb{P}}_{t|1}^{n+1}, \quad (3b)$$

108 where each step is the solution to a *half-bridge* problem, which pins the previous iterate at one of the  
 109 marginals  $p_0$  or  $p_1$  (here  $\vec{\mathbb{P}}_{t|0}^n$  denotes the conditional process given  $X_0$  and  $\vec{\mathbb{P}}_{t|1}^{n+1}$  the conditional  
 110 process given  $X_1$ ). IPF for Schrödinger bridges is thus a dynamic generalisation of the Sinkhorn  
 111 algorithm (Sinkhorn, 1964), which computes entropic optimal transport by iteratively renormalising  
 112 a cost matrix over rows and columns. It can be shown (De Bortoli et al., 2021) that the iterates  $\vec{\mathbb{P}}_t^n$   
 113 and  $\vec{\mathbb{P}}_t^n$  converge to the same stochastic process, and this process solves the SB problem (1).  
 114

115 If  $\vec{\mathbb{P}}_t^0 = \mathbb{Q}_t$  is represented as a SDE, then the iterates defined in (3b) and (3a) can be represented as  
 116 forward-time and reverse-time SDEs initialised at  $p_0$  and  $p_1$ , respectively. We can thus introduce  
 117 SDEs with neurally parametrised drifts (Tzen & Raginsky, 2019):  
 118

$$\vec{\mathbb{P}}_t^n : d\vec{X}_t = \vec{F}_{\theta_n}(X_t, t) dt + \sigma_t d\vec{W}_t, \quad (4a)$$

$$\vec{\mathbb{P}}_t^n : d\vec{X}_t = \vec{F}_{\varphi_n}(X_t, t) dt + \sigma_t d\vec{W}_t, \quad (4b)$$

122 where  $\sigma_t$  coincides with the diffusion coefficient of the reference process, and perform the iterations  
 123 (3) as optimisation problems over  $\theta_n$  and  $\varphi_n$ . (We henceforth occasionally drop the subscript  $n$   
 124 from the parameters, with the understanding that (3a) optimises  $\varphi = \varphi_{n+1}$  under a fixed  $\theta_n$  and (3a)  
 125 optimises  $\theta = \theta_{n+1}$  under a fixed  $\varphi_{n+1}$ .)

126 **Data-to-data IPF in a time discretisation.** To approximately perform the optimisations involved  
 127 in IPF with respect to the parameters  $\theta$  and  $\varphi$ , we discretise the SDEs (4) representing  $\vec{\mathbb{P}}_t$  and  $\vec{\mathbb{P}}_t$  over  
 128  $K$  steps using the Euler-Maruyama scheme with  $\Delta t = \frac{1}{K}$ . The continuous-time processes are thus  
 129 approximated by discrete-time Markov chains, *i.e.*, joint distributions over discrete-time trajectories  
 130  $\tau = (x_0, x_{\Delta t}, \dots, x_1)$ , having the factorisation:

$$\vec{p}_\theta(\tau|x_0) = p_0(x_0) \prod_{k=0}^{K-1} \vec{p}_\theta(x_{(k+1)\Delta t} | x_{k\Delta t}), \quad \underbrace{\vec{p}_\theta(x_{(k+1)\Delta t} | x_{k\Delta t}) = \mathcal{N}\left(x_{k\Delta t} + \vec{F}_\theta(x_{k\Delta t}, k\Delta t)\Delta t, \sigma_{k\Delta t}^2 \Delta t\right)}_{\text{Euler-Maruyama step with step size } \Delta t}, \quad (5a)$$

$$\vec{p}_\varphi(\tau|x_1) = p_1(x_1) \prod_{k=1}^K \vec{p}_\varphi(x_{(k-1)\Delta t} | x_{k\Delta t}), \quad \underbrace{\vec{p}_\varphi(x_{(k-1)\Delta t} | x_{k\Delta t}) = \mathcal{N}\left(x_{k\Delta t} + \vec{F}_\varphi(x_{k\Delta t}, k\Delta t)\Delta t, \sigma_{k\Delta t}^2 \Delta t\right)}_{\text{reverse-time Euler-Maruyama step with step size } \Delta t}. \quad (5b)$$

139 As proposed in Vargas et al. (2021), the two IPF optimisation problems in (3) can be approximately  
 140 solved by maximum likelihood. On the level of the discretised processes, this amounts to the  
 141 following recurrence:

$$\varphi_{n+1} = \arg \max_{\varphi} \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_{\theta_n}(\tau|x_0)} \sum_{k=1}^K \log \vec{p}_\varphi(x_{(k-1)\Delta t} | x_{k\Delta t}) \quad (6a)$$

$$\theta_{n+1} = \arg \max_{\theta} \mathbb{E}_{x_1 \sim p_1, \tau \sim \vec{p}_{\varphi_{n+1}}(\tau|x_1)} \sum_{k=0}^{K-1} \log \vec{p}_\theta(x_{(k+1)\Delta t} | x_{k\Delta t}). \quad (6b)$$

148 The optimisation problem in (6a) (resp. (6b)) requires taking a sample from the marginal distribution  
 149  $x_0 \sim p_0$  (resp.  $x_1 \sim p_1$ ), rolling out a trajectory in forward time from  $\vec{p}_\theta$  (resp. in reverse time from  
 150  $\vec{p}_\varphi$ ) initialised at the sample, and maximising the log-likelihood of this trajectory in the opposite  
 151 direction, *i.e.*, under  $\vec{p}_\varphi$  (resp. under  $\vec{p}_\theta$ ). This procedure essentially requires samples from  $p_0$  (resp.  
 152 from  $p_1$ ) to be available.

153 We call this iterative algorithm the *log-likelihood method* and give an algorithmic presentation in  
 154 Algorithm 1. It contrasts with the method proposed in De Bortoli et al. (2021), which uses a slightly  
 155 different discretisation scheme, although the two coincide in the continuous-time limit ( $K \rightarrow \infty$ ).

156 **Diffusion models as a special case.** Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;  
 157 Song et al., 2021b) can be seen as a special case of the IPF algorithm that converges in a single step.  
 158 If  $p_0$  is a data distribution and  $p_1$  is Gaussian, and  $\mathbb{Q}_t$  is a noising process that transports any source  
 159 distribution to  $p_1$  by construction, then  $\mathbb{Q}_t$  initialised at  $p_0$  is already a bridge between  $p_0$  and  $p_1$ .  
 160 Thus the first iteration of IPF – learning  $\vec{\mathbb{P}}_t^1$  by maximum-likelihood training (6a) on trajectories  
 161 sampled from  $p_0 \otimes \mathbb{Q}_t|_0$  – already yields a bridge between  $p_0$  and  $p_1$ , so all subsequent iterations are

| <b>Algorithm 1:</b> Data-to-Data IPF |                                                                             | <b>Algorithm 2:</b> Data-to-Energy IPF                                                                                                                      |                                                                                                                                                             |
|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 162                                  | <b>for</b> $n = 0, \dots, n_{\max}$ <b>do</b>                               | 1                                                                                                                                                           | <b>Initialise buffer</b> $\mathcal{B} = \emptyset$                                                                                                          |
| 163                                  | /* Backward IPF step (6a) */                                                | 2                                                                                                                                                           | <b>for</b> $n = 0, \dots, n_{\max}$ <b>do</b>                                                                                                               |
| 164                                  | <b>while</b> not converged <b>do</b>                                        | /* Backward IPF step (6a) */                                                                                                                                | /* Backward IPF step (6a) */                                                                                                                                |
| 165                                  | $x_0 \sim p_0$                                                              | <b>while</b> not converged <b>do</b>                                                                                                                        | <b>while</b> not converged <b>do</b>                                                                                                                        |
| 166                                  | $\tau = (x_0, x_{\Delta t}, \dots, x_1) \sim \vec{p}_\theta(\tau   x_0)$    | $x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau   x_0)$                                                                                                        | Gradient step on $\varphi$ with                                                                                                                             |
| 167                                  | using (5a)                                                                  | $\nabla \log \vec{p}_\varphi(\tau   x_1)$                                                                                                                   | Update $\mathcal{B}$ with samples $x_1$                                                                                                                     |
| 168                                  | Gradient step on $\varphi$ with                                             | /* Forward IPF step (8) */                                                                                                                                  | /* Forward IPF step (8) */                                                                                                                                  |
| 169                                  | $\nabla \log \vec{p}_\varphi(\tau   x_1)$                                   | <b>while</b> not converged <b>do</b>                                                                                                                        | <b>while</b> not converged <b>do</b>                                                                                                                        |
| 170                                  | /* Forward IPF step (6b) */                                                 | <b>if</b> on-policy <b>then</b>                                                                                                                             | <b>if</b> on-policy <b>then</b>                                                                                                                             |
| 171                                  | $x_1 \sim p_1$                                                              | $x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau   x_0)$                                                                                                        | $x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau   x_0)$                                                                                                        |
| 172                                  | <b>while</b> not converged <b>do</b>                                        | <b>else</b>                                                                                                                                                 | <b>else</b>                                                                                                                                                 |
| 173                                  | $x_1 \sim p_1$                                                              | $x_1 \sim \mathcal{B}, \tau^{(1)} \sim \vec{p}_\varphi(\tau   x_1)$                                                                                         | $x_1 \sim \mathcal{B}, \tau^{(1)} \sim \vec{p}_\varphi(\tau   x_1)$                                                                                         |
| 174                                  | $\tau = (x_0, \dots, x_{1-\Delta t}, x_1) \sim \vec{p}_\varphi(\tau   x_1)$ | $\tau^{(2)}, \dots, \tau^{(N)} \sim \vec{p}_\theta(\tau   x_0^{(1)})$                                                                                       | $\tau^{(2)}, \dots, \tau^{(N)} \sim \vec{p}_\theta(\tau   x_0^{(1)})$                                                                                       |
| 175                                  | using (5b)                                                                  | Gradient step on $\theta$ with                                                                                                                              | Gradient step on $\theta$ with                                                                                                                              |
| 176                                  | Gradient step on $\theta$ with                                              | $\nabla \text{Var}_i \left( \log \frac{\vec{p}_\theta(\tau^{(i)}   x_0^{(1)})}{\vec{p}_\varphi(\tau^{(i)}   x_1^{(i)})} + \mathcal{E}_1(x_1^{(i)}) \right)$ | $\nabla \text{Var}_i \left( \log \frac{\vec{p}_\theta(\tau^{(i)}   x_0^{(1)})}{\vec{p}_\varphi(\tau^{(i)}   x_1^{(i)})} + \mathcal{E}_1(x_1^{(i)}) \right)$ |
| 177                                  | $\nabla \log \vec{p}_\theta(\tau   x_0)$                                    | /* Forward IPF step (8) */                                                                                                                                  | /* Forward IPF step (8) */                                                                                                                                  |
| 178                                  | <b>return</b> $\theta, \varphi$                                             | 13                                                                                                                                                          | 14 <b>return</b> $\theta, \varphi$                                                                                                                          |
| 179                                  |                                                                             |                                                                                                                                                             |                                                                                                                                                             |
| 180                                  |                                                                             |                                                                                                                                                             |                                                                                                                                                             |
| 181                                  |                                                                             |                                                                                                                                                             |                                                                                                                                                             |
| 182                                  |                                                                             |                                                                                                                                                             |                                                                                                                                                             |
| 183                                  |                                                                             |                                                                                                                                                             |                                                                                                                                                             |

Figure 1: **Left:** Algorithm for data-to-data IPF. **Right:** Algorithm for data-to-energy IPF, showing the replay buffer with backward trajectory reuse (§3.1), with differences highlighted in red.

redundant and  $\vec{P}_t^1$  solves the SB problem. In practice, training  $\vec{P}_t^1$  as a neural SDE proceeds by score matching, which is simply a Rao-Blackwellised estimate of the IPF maximum-likelihood objective (Song et al., 2021a).

## 2.2 DISCRETISATION ALLOWS FLEXIBLE KERNELS

The majority of existing work (Chen et al., 2021b; Vargas et al., 2021; De Bortoli et al., 2021; Shi et al., 2023) trains only the drift functions  $\vec{F}_\theta, \vec{F}_\varphi$  or related objects using objectives similar to (6). In contrast to that, **we propose to train not only the drift, but also diffusion coefficients of both processes**, by replacing the variances  $\sigma_{k\Delta t}^2$  in (5) by learnt functions  $\vec{\sigma}_\theta^2(x_k, k\Delta t)$  and  $\vec{\sigma}_\varphi^2(x_k, k\Delta t)$ . We expect this to correct for the effect of time discretisation error, inspired by the results for diffusion samplers in Gritsaev et al. (2025).

The optimisation problems in (6) can then be solved with respect to the parameters of both the drift and diffusion coefficients. We compare this approach to those that do not learn the variance in Table 1.

## 3 DATA-FREE SCHRÖDINGER BRIDGES

### 3.1 IPF FOR DATA-TO-ENERGY SB

We now consider the setting where samples from  $p_0$  are available, but  $p_1$  is given by an unnormalised density  $p_1(x) = e^{-\mathcal{E}_1(x)}/Z$ ,  $Z = \int e^{-\mathcal{E}_1(x)} dx$  is unknown. In this case, the odd-numbered IPF steps (3a) can be performed (via (6a)), but the even-numbered steps (3b) cannot be done using (6b), as they require samples from  $p_1$ . Instead, we need an objective that would fit  $\vec{P}_t^{n+1}$  as a forward-time SDE matching  $p_1 \otimes \vec{P}_{t|1}^{n+1}$  without samples from  $p_1$ .

In the time discretisation (5), the IPF step (3b) for  $\vec{P}_t^{n+1}$  requires enforcing that for every  $x_0$ ,  $\vec{p}_\theta(\tau | x_0) \propto \vec{p}_\varphi(\tau | x_1)p_1(x_1)$  over all trajectories  $\tau = (x_0, x_{\Delta t}, \dots, x_1)$  starting at  $x_0$ .

To approximately enforce this proportionality, we introduce a source-conditional variant of the second-moment, or log-variance, loss used for training diffusion samplers (Richter et al. (2020); see Berner et al. (2025) for an overview of related losses and their consistency properties in the

continuous-time limit). The idea is to minimise the variance of the log-ratio of the two sides of the proportionality over trajectories  $\tau$  sharing the same  $x_0$ :

$$\mathcal{L}_{\text{LV}}(x_0, \theta) = \text{Var} \left( \log \frac{\vec{p}_\theta(\tau | x_0)}{p_1(x_1) \overleftarrow{p}_\varphi(\tau | x_1)} \right) = \text{Var} \left( \sum_{k=1}^K \log \frac{\vec{p}_\theta(x_{k\Delta t} | x_{(k-1)\Delta t})}{\overleftarrow{p}_\varphi(x_{(k-1)\Delta t} | x_{k\Delta t})} + \mathcal{E}_1(x_1) \right), \quad (7)$$

where the variance is taken over some full-support distribution  $p^{\text{train}}(\cdot | x_0)$  over trajectories. (The normalising constant  $Z$  does not affect the variance, nor do we need to know the marginal of the process being learnt at time 0.) The empirical variance over a batch of  $N$  trajectories sampled from  $p^{\text{train}}(\tau | x_0)$  is an unbiased estimate of (7) and can be used in the loss. (The training policy we use below takes  $N$  *non-i.i.d.* trajectories, thus  $p^{\text{train}}(\cdot | x_0)$  can be a distribution over *batches* of  $\tau$ .)

Because this proportionality must hold for every  $x_0$ , we must also average (7) over  $x_0 \sim p_0^{\text{train}}(x_0)$ , where  $p_0^{\text{train}}$  is some training distribution over  $x_0$ . Thus the full objective for the forward IPF step is

$$\mathcal{L}(\theta) = \mathbb{E}_{x_0 \sim p_0^{\text{train}}(x_0)} \mathbb{E}_{\tau^{(1)}, \dots, \tau^{(N)} \sim p^{\text{train}}(\cdot | x_0)} \left[ \text{Var}_i \left( \log \frac{\vec{p}_\theta(\tau^{(i)} | x_0)}{\overleftarrow{p}_\varphi(\tau^{(i)} | x_1^{(i)})} + \mathcal{E}_1(x_1^{(i)}) \right) \right]. \quad (8)$$

The choice of  $p_0^{\text{train}}(x_0)$  and  $p^{\text{train}}(\cdot | x_0)$  is very important and we discuss it in the next subsection.

**Comparison with diffusion samplers.** The objective (7) is a conditional variant of the log-variance, or *VarGrad*, loss (Richter et al., 2020) previously used for diffusion-based samplers of unnormalised target densities. In that setting – *but not in ours*, since the marginal of  $p_1 \otimes \overleftarrow{\mathbb{P}}_{t|1}^{n+1}$  at time 0 is not  $p_0$  unless IPF has converged – the density of the process being learnt at time 0 is known to be  $p_0(x_0)$ . Thus  $p_0(x_0)$  can be placed in the numerator of the loss in (7) and variance can be taken over both  $x_0$  and  $\tau$ . An alternative objective would fit the density at  $x_0$ , yielding a variant of the related *trajectory balance* (TB) loss for diffusion samplers (Malkin et al., 2022; Lahou et al., 2023).

Yet another alternative would avoid IPF altogether and simply perform joint optimisation of both  $\theta$  and  $\varphi$  using a VarGrad- or TB-like objective to enforce that  $p_0(x_0) \vec{p}_\theta(\tau | x_0) = p_1(x_1) \overleftarrow{p}_\varphi(\tau | x_1)$  over all trajectories  $\tau$ . Such a *bridge sampling* approach is taken in Blessing et al. (2025a;b); Gritsaev et al. (2025). However, this approach would yield a bridge that is not necessarily the solution to the SB problem (1), since the KL to the reference process is not minimised. In a future work, it would be interesting to compare our IPF approach with those that regularise bridge sampling losses by the cost (2).

### 3.2 OFF-POLICY TRAINING METHODS

The objective (8) leaves room for the choice of training distributions  $p_0^{\text{train}}(x_0)$  and  $p^{\text{train}}(\tau | x_0)$ , which can vary over the course of training. In this way, training with this loss is a form of off-policy reinforcement learning, a connection that has been elucidated and exploited for improved training of diffusion samplers in Sendera et al. (2024).

A naïve choice would take  $p_0^{\text{train}} = p_0$  and  $p^{\text{train}}(\tau | x_0) = \vec{p}_\theta(\tau | x_0)$  (*on-policy* training). However, for the complex high-dimensional distributions on-policy training is insufficient, as modes that are not discovered by the sampler are very unlikely to be explored. To facilitate training we adapt practices from diffusion sampling literature to guide the sampling process towards the areas of high density of the target distribution  $p_1$ . In the next paragraphs we discuss such techniques.

**Replay buffer.** We keep a replay buffer of final samples  $x_1$  from the process  $\vec{p}_\theta(\tau | x_0)$ . During training, to obtain  $x_0$ , we sample  $x_1$  from the buffer, then sample a reverse trajectory to obtain  $x_0$  for training:  $\tilde{x}_0 \sim \overleftarrow{p}_\varphi(\cdot | x_1)$ . As the model trains and begins to better approximate  $p_1$ , the buffer becomes populated with samples  $x_1$  that are probable under  $p_1$ . Thus, the buffer helps the sampler focus on the relevant regions of the space and retain information about previously discovered modes.

**Reverse trajectories.** To obtain the batch of trajectories  $\tau$  starting at  $x_0$ , we use both the reverse trajectory used to produce  $x_0$  (see above) and a batch of  $N - 1$  trajectories drawn on-policy from  $\vec{p}_\theta(\tau | x_0)$  to form a batch of  $N$  trajectories sharing their initial point. The reuse of the backward trajectories allows the algorithm to learn on trajectories that reach high-density regions of  $p_1$ . However, using *only* reverse trajectories prevents the model from sufficiently exploring the whole space. Therefore, careful tuning is needed to strike a perfect balance between exploration and exploitation. We use  $N = 2$  for all our experiments.

270 **Langevin updates.** Following the method of Sendera et al. (2024) for diffusion samplers, we  
 271 periodically update the buffer using a few steps of unadjusted Langevin on the density  $p_1$  to correct  
 272 for the sampler’s imperfect fit to the target.

273 **Mixing on-policy and off-policy training.** In the training policy, we use a mixture of initial points  
 274  $x_0$  and trajectories  $\tau$  sampled on-policy and those sampled using the Langevin-updated buffer with  
 275 reverse trajectory reuse, as described above. The frequency of using the buffer is called the *off-policy*  
 276 *ratio*, and we ablate different off-policy ratios in Table 3. For most of the experiments we use constant  
 277 off-policy ratio 0.8.

278 We provide details of all off-policy methods in Appendix D, and these methods are ablated in §5.4.

279 **3.3 ITERATIVE PROPORTIONAL FITTING WITH DATA-TO-ENERGY STEPS**

280 The full IPF algorithm for data-to-energy SB alternates between backward steps that train  $\varphi$  to  
 281 convergence using the maximum-likelihood objective (6a) and forward steps that train  $\theta$  to conver-  
 282 gence using (8). The backward step is trained using samples from  $p_0$  and forward trajectories from  
 283  $\vec{p}_\theta(\tau | x_0)$ , while the forward step is trained using trajectories obtained using the off-policy methods  
 284 described above. The complete algorithm is summarised in Algorithm 2. We reuse the model weights  
 285 from the previous IPF step, buffer state is also preserved, although we randomly reinitialise a fraction  
 286 of samples stored in buffer for the outsourced experiments.

287 **Energy-to-energy generalisation.** The data-to-energy IPF algorithm easily can be generalised to  
 288 the case where samples from neither  $p_0$  nor  $p_1$  are available, but both are given by unnormalised  
 289 densities  $p_i(x) = e^{-\mathcal{E}_i(x)}/Z_i$ . In this case, both the backward and forward IPF steps must be  
 290 performed using the variance-based loss (7), with appropriate choices of training distributions (such  
 291 as keeping separate replay buffers for both marginals). We call this *energy-to-energy* SB and show  
 292 preliminary results in §5.2.

293 **Evaluation metrics.** We consider three metrics for evaluating the approximate solutions to the  
 294 SB problem yielded by our data-to-energy IPF algorithm. Because SB is a constrained optimisation  
 295 problem, it is necessary to measure both the constraint satisfaction (*i.e.*, that the solution is a transport  
 296 from  $p_0$  to  $p_1$ ) and the cost (divergence from the reference process). To this end we measure ELBO,  
 297 path KL, and Wasserstein distance to oracle samples from the target distribution (when available);  
 298 see Appendix B for details.

299 **4 OUTSOURCED SAMPLING WITH SCHRÖDINGER BRIDGES**

300 We describe how our algorithm for solving data-to-energy Schrödinger bridges can be applied to the  
 301 problem of Bayesian posterior sampling under a pretrained generative model prior  $p(x)$  by pulling  
 302 the sampling problem back to its latent space.

303 Consider a posterior of the form  $p(x | y) \propto p(x)r(x, y)$ , where  $p(x)$  is a prior over the data space (*e.g.*,  
 304 images) and  $r(x, y)$  is a constraint function that encodes the conditional information about the sample  
 305  $x$  (*e.g.*, a class likelihood or match to a text prompt). If the pretrained generative model is expressed as  
 306 a deterministic function  $f$  of a random noise variable  $z \sim p(z)$ , Venkatraman et al. (2025) proposed  
 307 to sample the posterior pulled back to the noise space, with density  $p(z | y) \propto p(z)r(f(z), y)$ , using  
 308 a diffusion sampler. If  $z$  is distributed with this density, then samples  $f(z)$  follow the desired posterior  
 309 distribution  $p(x | y)$  in data space. Such a method was successfully applied in the latent spaces of  
 310 various models types, such as GANs, continuous normalising flows.

311 Instead of using a diffusion sampler, we propose to model a Schrödinger bridge between the dis-  
 312 tributions  $p(z)$  and  $p(z | y)$ . Since neither the normalising constant nor samples from the latter  
 313 distribution are available, we use the data-to-energy algorithm described in §3.1. Modelling a  
 314 Schrödinger bridge instead of simply a diffusion sampler has the advantage of transporting prior  
 315 samples to nearby posterior samples in latent space, which is expected to preserve semantic content  
 316 that is not constrained by  $y$ ; we show this empirically in §5.3.

317 **Metrics for outsourced stochastic transport.** In order to evaluate the performance of our method  
 318 on the stochastic optimal transport task in the latent space, we compute path KL in the latent space,  
 319 as well as the  $L^2$  static transport cost between prior samples from  $p_0(x_0)$  and the pushed-forward  
 320 samples from the approximated posterior  $\vec{p}(\tau | x_0)p_0(x_0)$ . For image tasks with a classifier reward,  
 321 in order to evaluate the quality of generated images with respect to the target posterior, we use the

Table 1: Comparison of data-to-data IPF methods. **Bold** indicates the best-performing method.

| Distributions →                              | Gauss ↔ GMM                       |                                   | Gauss ↔ Two Moons                 |                                   | Two Moons ↔ GMM                   |                                   |
|----------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Algorithm ↓ Metric →                         | $\mathcal{W}_2^2(\downarrow)$     | Path KL ( $\downarrow$ )          | $\mathcal{W}_2^2(\downarrow)$     | Path KL ( $\downarrow$ )          | $\mathcal{W}_2^2(\downarrow)$     | Path KL ( $\downarrow$ )          |
| DSBM-IMF (Shi et al., 2023)                  | 0.046 $\pm$ 0.004                 | 1.004 $\pm$ 0.137                 | 0.061 $\pm$ 0.034                 | <b>1.813<math>\pm</math>0.960</b> | 0.043 $\pm$ 0.012                 | <b>1.893<math>\pm</math>0.369</b> |
| DSBM-IMF+ (Shi et al., 2023)                 | 0.060 $\pm$ 0.049                 | <b>0.909<math>\pm</math>0.426</b> | 0.049 $\pm$ 0.007                 | 1.848 $\pm$ 0.285                 | 0.038 $\pm$ 0.010                 | <b>1.894<math>\pm</math>0.324</b> |
| [SF] $^2$ M (Tong et al., 2024b)             | 0.041 $\pm$ 0.021                 | 2.295 $\pm$ 0.513                 | 0.053 $\pm$ 0.022                 | 3.321 $\pm$ 1.862                 | 0.057 $\pm$ 0.030                 | 3.823 $\pm$ 0.314                 |
| <i>IPF-based</i>                             |                                   |                                   |                                   |                                   |                                   |                                   |
| DSB mean (De Bortoli et al., 2021)           | 0.093 $\pm$ 0.096                 | 5.886 $\pm$ 4.460                 | 0.111 $\pm$ 0.041                 | 6.398 $\pm$ 1.949                 | 0.078 $\pm$ 0.029                 | 5.520 $\pm$ 3.163                 |
| DSB score (De Bortoli et al., 2021)          | 0.052 $\pm$ 0.018                 | 5.645 $\pm$ 3.474                 | 0.171 $\pm$ 0.149                 | 14.346 $\pm$ 8.776                | 0.066 $\pm$ 0.035                 | 5.231 $\pm$ 2.802                 |
| SDE (Chen et al., 2021b)                     | <b>0.037<math>\pm</math>0.010</b> | 2.088 $\pm$ 1.228                 | 0.033 $\pm$ 0.004                 | 2.262 $\pm$ 0.268                 | <b>0.025<math>\pm</math>0.010</b> | 3.915 $\pm$ 0.285                 |
| LL fixed var. $\approx$ Vargas et al. (2021) | <b>0.037<math>\pm</math>0.014</b> | 2.507 $\pm$ 0.366                 | 0.033 $\pm$ 0.005                 | 2.351 $\pm$ 0.149                 | 0.031 $\pm$ 0.011                 | 3.710 $\pm$ 0.332                 |
| LL learnt var. (ours)                        | <b>0.042<math>\pm</math>0.018</b> | 2.840 $\pm$ 0.668                 | <b>0.022<math>\pm</math>0.009</b> | 4.288 $\pm$ 1.876                 | <b>0.023<math>\pm</math>0.013</b> | 3.938 $\pm$ 0.526                 |

mean log-constraint value and FID (Heusel et al., 2017). The latter is computed between images decoded from latents sampled from the trained SB model and images of the target class(es), which are not available to the model during training.

## 5 EXPERIMENTS

### 5.1 BENEFITS OF TRAINABLE VARIANCE

In order to show the benefits of trainable variance in time-discretised processes, we present the comparisons of existing data-to-data SB methods with our proposed algorithms, including both learnt-variance and fixed-variance alternatives. The data-to-data experiments are conducted on synthetic several 2-dimentional benchmarks (following Shi et al. (2023)): Gauss ↔ GMM, Gauss ↔ Two Moons, Two Moons ↔ GMM (where Gauss is an isotropic Gaussian and GMM is a mixture of eight Gaussians). We compare with Shi et al. (2023) (DSBM and DSBM++), De Bortoli et al. (2021) (DSB), which also uses IPF for training, Chen et al. (2021b) (SDE), which uses a continuous-time version of IPF, and Tong et al. (2024b) ([SF] $^2$ M), which relies on a minibatch approximation to entropic optimal transport. All experiments use  $K = 20$  discretisation steps. The results, in Table 1, clearly show the benefits of training the variances, despite the discrete-time processes not being consistent with an undelying continuous-time process.

We further investigate the effect of learnt variance at varying numbers of discretisation steps. We find that learnt variance allows for more accurate modelling in both data-to-energy and data-to-data settings when the number of steps is small. Results are shown in Fig. 2 (in numerical form in Table 4).

For all 2-dimensional experiments we use  $dX_t = \sqrt{2} dW_t$  as the reference process, training is done using 4000 steps for both backward and forward processes and 20 IPF steps. We use the same neural network architecture for all 2-dimensional experiments. We provide a detailed experiment configuration in Appendix D.

### 5.2 DATA-TO-ENERGY AND ENERGY-TO-ENERGY SCHRÖDINGER BRIDGE

To prove the viability of data-to-energy Schrödinger bridge training we compare the bridge between Gaussian and GMM distributions trained using data-to-data and data-to-energy IPF versions (where the data-to-energy version has no access to the data samples that the data-to-data algorithms sees). Fig. 3 shows the resulting IPF trajectories and Table 4 shows that the data-to-energy model is comparable to one trained with data samples.

### 5.3 OUTSOURCED SCHRÖDINGER BRIDGE

Finally, we show the scalability of our method by running data-to-energy Schrödinger bridge algorithm in the latent space of generative model. We use generators of StyleGAN Karras et al. (2020; 2021) and SN-GAN Miyato et al. (2018) generator trained on CIFAR-10 Krizhevsky (2009) and VAE Kingma & Welling (2014); Rezende et al. (2014) generator trained on MNIST LeCun et al. (1998). We train the bridge model between the latent space prior  $p(z)$ , which in our case is always a Gaussian distribution, and reward-reweighted prior of the form  $r(f(z), y) \cdot p(z)$ . The reward function  $r(x, y)$

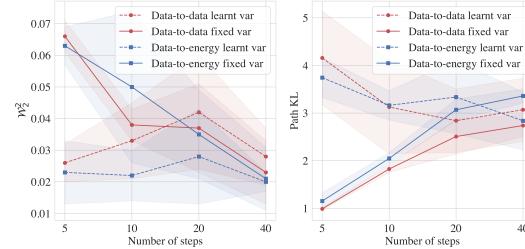


Figure 2:  $\mathcal{W}_2^2$  and Path KL depending on the number of discretization steps for Gauss ↔ GMM.

378 is a classifier that returns the probability of the object  $x$  belonging to the class  $y$  (i.e., the probability  
 379 that  $x$  is, for example, boat for CIFAR-10 or the digit 5 for MNIST).

380  
 381 MNIST experiments are conducted in two se-  
 382 tups: (a) reward function returns the probability  
 383 that  $x$  is even or odd (b) reward function returns  
 384 the probability that  $x = 5$ . For CIFAR-10 exper-  
 385 iments we use StyleGAN (Karras et al., 2020;  
 386 2021) generator with latent dimension 512 and  
 387 SN-GAN Miyato et al. (2018) generator with  
 388 latent dimension 128. We use a pretrained clas-  
 389 sifier model as a reward function. Samples are  
 390 shown in Fig. 4; more CIFAR-10 results can be  
 391 found in Appendix E.

392 In Table 2 we compute FID between samples  
 393 of the target class posterior obtained from the  
 394 trained SB and images belonging to the target  
 395 class in the dataset, as well we the same metric  
 396 for a set of ground truth posterior samples ob-  
 397 tained by rejection sampling. Remarkably, the  
 398 transported samples tend to have lower FID than  
 399 samples from the true distribution.

400 These results reveal a benefit of training a  
 401 Schrödinger bridge model, as opposed to a dif-  
 402 fusion sampler or an arbitrary stochastic map-  
 403 ping. It can be seen in Fig. 4 that images al-  
 404 ready belonging to the target class change little,  
 405 while those belonging to other classes main-  
 406 tain features that are unrelated to the target class;  
 407 the background and global structure are pre-  
 408 served. This suggests that style transfer for  
 409 higher-dimensional images can be a promising  
 410 application of our method.

#### 411 5.4 ABLATIONS 412 OF OFF-POLICY TECHNIQUES

413 In order to verify our design choices for the high-  
 414 dimensional experiments we provide a detailed  
 415 ablation of the various off-policy reinforcement

416 learning tricks described in §3.2. The results are given in a Table 3. We use a simple on-policy setup as  
 417 a baseline. We find that saving samples in a replay buffer (*buffer*) to use them for sampling backward  
 418 trajectories and applying Langevin update to the buffer samples (*buffer + Langevin*) significantly  
 419 improves the Path KL metrics, therefore yielding a bridge closer to the optimal one. Moreover, we  
 420 show that reusing backward trajectories for the computation of loss also improves Path KL, giving the  
 421 best model based on this metric. However, reusing backward trajectories negatively impacts the mean  
 422 log-reward metric, possibly because it prevents mode collapse. To balance between modeling modes  
 423 and achieving low transport cost, we explore the possibilities of both setting a smaller off-policy ratio

424  
 425 Table 2: ELBO ( $\uparrow$ ) values  
 426 and FID ( $\downarrow$ ) scores comparing  
 427 CIFAR-10 samples from the  
 428 posterior under a GAN prior  
 429 and a classifier to data samples  
 430 of the target class.

| Source $\downarrow$ Class $\rightarrow$ | SN-GAN |        |        |        | StyleGAN |        |
|-----------------------------------------|--------|--------|--------|--------|----------|--------|
|                                         | Car    | Cat    | Dog    | Horse  | Horse    | Truck  |
| Same class                              | 10.371 | 17.950 | 15.034 | 12.876 | 12.876   | 9.289  |
| Rejection sampling                      | 31.334 | 42.242 | 43.691 | 35.019 | 97.855   | 76.403 |
| Langevin                                | 25.296 | 33.619 | 37.665 | 27.601 | 85.611   | 68.678 |
| Diffusion sampler                       | 83.940 | ?      | 60.512 | ?      | ?        | ?      |
| Outsourced SB                           | 22.312 | 40.489 | 37.287 | 33.021 | 58.988   | 55.346 |
| ELBO                                    |        |        |        |        |          |        |
| Outsourced SB                           | -6.737 | -9.356 | -6.087 | -5.961 | -21.784  | -6.809 |

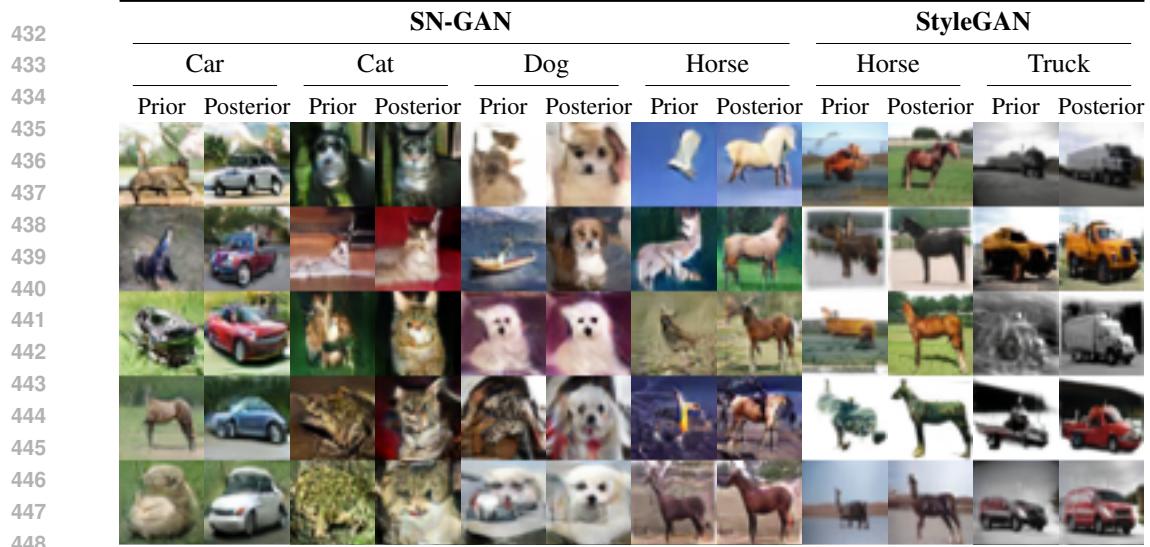


Figure 4: Outsourced Schrödinger bridge on MNIST and CIFAR-10. The bridge preserves style features (thickness, background colour, orientation) while transforming digits to the target class.

Table 3: Ablation of off-policy reinforcement learning techniques on the SN-GAN outsourced sampling problem. **Bold** indicates the best result, underlined indicates second best. The model is trained to amortise sampling from one class (dogs).

| Algorithm ↓ Metric →        | ELBO (↑)        | Path KL (↓)    | $L_2^2(x_0, x_1)(\downarrow)$ | mean log-reward (↑) |
|-----------------------------|-----------------|----------------|-------------------------------|---------------------|
| on-policy                   | -190.920        | 1506.407       | 10.949                        | -0.233              |
| buffer                      | <u>-188.351</u> | 622.895        | 10.957                        | <b>-0.125</b>       |
| + Langevin                  | -188.554        | 383.514        | <u>10.130</u>                 | -0.286              |
| + reuse backward trajectory | <b>-188.149</b> | <b>206.094</b> | <b>10.046</b>                 | -0.657              |
| + annealed off-policy ratio | -188.355        | <u>244.270</u> | 11.386                        | -0.149              |
| smaller off-policy ratio    | -188.620        | 668.255        | 11.027                        | <u>-0.131</u>       |

– fraction of off-policy trajectories – and annealing the off-policy ratio throughout the training; the latter sometimes produces improvements. All ablation experiments are conducted using the SN-GAN generator and VGG13 classifier on CIFAR-10 dataset. All models are trained to amortise sampling from one class (Dogs) and are trained with the same seed.

## 6 CONCLUSION

This paper shows the potential of training data-to-energy Schrödinger bridges in a time discretisation with learnable drift and variance for the forward and backward processes. We showed that, despite its complexity, our method can be successfully scaled. Future work should focus more on scaling the data-to-energy Schrödinger bridges to higher dimensions, as well as arbitrary prior distributions, which would significantly improve the versatility of the proposed algorithms. Moreover, the trained samplers are prone to mode collapse, therefore, future work should investigate techniques to further improve mode coverage. One more promising direction would be to amortise over the distribution of conditions in image generation problems, instead of learning a model for each specific condition. Finally, we are excited to explore various domains in which the proposed algorithms can be applied. Interesting areas include text-conditional image reward fine-tuning of diffusion models and discrete Schrödinger bridge problems.

486 REFERENCES  
487

488 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying  
489 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

490 Michael Samuel Albergo and Eric Vanden-Eijnden. NETS: A non-equilibrium transport sampler.  
491 *International Conference on Machine Learning (ICML)*, 2025.

492 Arip Asadulaev, Rostislav Korst, Vitalii Shutov, Alexander Korotin, Yaroslav Grebnyak, Vahe  
493 Egiazarian, and Evgeny Burnaev. Optimal transport maps are good voice converters. *arXiv  
494 preprint arXiv:2411.02402*, 2024.

495 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint  
496 arXiv:1607.06450*, 2016.

497 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based  
498 generative modeling. *Transactions on Machine Learning Research*, 2024.

499 Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, and Nikolay Malkin. From  
500 discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster  
501 training. *arXiv preprint arXiv:2501.06148*, 2025.

502 Denis Blessing, Julius Berner, Lorenz Richter, and Gerhard Neumann. Underdamped diffusion  
503 bridges with applications to sampling. *International Conference on Learning Representations  
(ICLR)*, 2025a.

504 Denis Blessing, Xiaogang Jia, and Gerhard Neumann. End-to-end learning of Gaussian mixture  
505 priors for diffusion sampler. *International Conference on Learning Representations (ICLR)*, 2025b.

506 Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause. The schrödinger bridge between  
507 gaussian measures has a closed form. In *International Conference on Artificial Intelligence and  
508 Statistics*, pp. 5802–5833. PMLR, 2023.

509 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-  
510 Grad: Estimating gradients for waveform generation. *International Conference on Learning  
511 Representations (ICLR)*, 2021a.

512 Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of Schrödinger  
513 bridge using forward-backward SDEs theory. *International Conference on Learning Representations  
(ICLR)*, 2021b.

514 Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. Optimal transport in systems and control.  
515 *Annual Review of Control, Robotics, and Autonomous Systems*, 4(1):89–113, 2021c.

516 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger  
517 bridge with applications to score-based generative modeling. *Advances in Neural Information  
518 Processing Systems (NeurIPS)*, 2021.

519 W Edwards Deming and Frederick F Stephan. On a least squares adjustment of a sampled frequency  
520 table when the expected marginal totals are known. *The Annals of Mathematical Statistics*, 11(4):  
521 427–444, 1940.

522 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. *Advances  
523 in Neural Information Processing Systems (NeurIPS)*, 2021.

524 Robert Fortet. Résolution d'un système d'équations de M. Schrödinger. *Journal de mathématiques  
525 pures et appliquées*, 19(1-4):83–105, 1940.

526 Milena Gazdieva, Petr Mokrov, Litu Rout, Alexander Korotin, Andrey Kravchenko, Alexander Filippov,  
527 and Evgeny Burnaev. An optimal transport perspective on unpaired image super-resolution.  
528 *Journal of Optimization Theory and Applications*, 207(2):40, 2025.

529 Timofei Gritsaev, Nikita Morozov, Kirill Tamogashev, Daniil Tiapkin, Sergey Samsonov, Alexey  
530 Naumov, Dmitry Vetrov, and Nikolay Malkin. Adaptive destruction processes for diffusion  
531 samplers. *arXiv preprint arXiv:2506.01541*, 2025.

540 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
 541 GANs trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*  
 542 *Neural Information Processing Systems (NeurIPS)*, 2017.

543

544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*  
 545 *Neural Information Processing Systems (NeurIPS)*, 2020.

546

547 Jian Huang, Yuling Jiao, Lican Kang, Xu Liao, Jin Liu, and Yanyan Liu. Schrödinger–Föllmer  
 548 sampler. *IEEE Transactions on Information Theory*, 71:1283–1299, 2021.

549

550 Leonid V. Kantorovich. Mathematical methods of organizing and planning production. *Management*  
 551 *science*, 6(4):366–422, 1960.

552

553 Leonid V. Kantorovich and Gennady S. Rubinshtein. On a space of totally additive functions. *Vestnik*  
 554 *of the St. Petersburg University: Mathematics*, 13(7):52–59, 1958.

555

556 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing  
 557 and improving the image quality of stylegan. *Computer Vision and Pattern Recognition (CVPR)*,  
 558 2020.

559

560 Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo  
 561 Aila. Alias-free generative adversarial networks. *Advances in Neural Information Processing*  
 562 *Systems (NeurIPS)*, 2021.

563

564 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *International Conference on*  
 565 *Learning Representations (ICLR)*, 2014.

566

567 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile  
 568 diffusion model for audio synthesis. *International Conference on Learning Representations (ICLR)*,  
 569 2021.

570

571 Alexander Korotin, Daniil Selikhanovich, and Evgeny Burnaev. Neural optimal transport. *International*  
 572 *Conference on Learning Representations (ICLR)*, 2022.

573

574 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,  
 575 University of Toronto, 2009.

576

577 Salem Lahliou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-  
 578 García, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous  
 579 generative flow networks. *International Conference on Machine Learning (ICML)*, 2023.

580

581 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to  
 582 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

583

584 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 585 for generative modeling. *International Conference on Learning Representations (ICLR)*, 2023.

586

587 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and  
 588 transfer data with rectified flow. *International Conference on Learning Representations (ICLR)*,  
 589 2023.

590

591 Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal  
 592 transport. *Discrete and Continuous Dynamical Systems*, 34(4):1533–1574, 2014.

593

594 Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:  
 595 Improved credit assignment in GFlowNets. *Advances in Neural Information Processing Systems*  
 596 *(NeurIPS)*, 2022.

597

598 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for  
 599 generative adversarial networks. *International Conference on Learning Representations (ICLR)*,  
 600 2018.

601

602 Gaspard Monge. *Mémoire sur la Théorie des Déblais et des Remblais*. Imprimerie royale, 1781.

594 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-  
 595 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,  
 596 2025.

597

598 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data  
 599 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

600 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,  
 601 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie Gen: A cast of media foundation  
 602 models. *arXiv preprint arXiv:2410.13720*, 2024.

603

604 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and  
 605 approximate inference in deep generative models. *International Conference on Machine Learning  
 (ICML)*, 2014.

606

607 Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. *International Conference  
 608 on Learning Representations (ICLR)*, 2024.

609

610 Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. Var-  
 611 Grad: a low-variance gradient estimator for variational inference. *Advances in Neural Information  
 612 Processing Systems (NeurIPS)*, 2020.

613

614 Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution  
 615 image synthesis with latent diffusion models. *Computer Vision and Pattern Recognition (CVPR)*,  
 2021.

616

617 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and  
 618 Volodymyr Kuleshov. The diffusion duality. *International Conference on Machine Learning  
 (ICML)*, 2025.

619

620 Erwin Schrödinger. Über die Umkehrung der Naturgesetze. *Sitzungsberichte der Preussischen  
 621 Akademie der Wissenschaften, Physikalisch-mathematische Klasse*, pp. 144–153, 1931.

622

623 Erwin Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique.  
 624 In *Annales de l'institut Henri Poincaré*, volume 2, pp. 269–310, 1932.

625

626 Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,  
 627 Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion  
 628 samplers. *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

629

630 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger  
 631 bridge matching. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

632

633 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image  
 634 recognition. *International Conference on Learning Representations (ICLR)*, 2015.

635

636 Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices.  
 637 *The annals of mathematical statistics*, 35(2):876–879, 1964.

638

639 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised  
 640 learning using nonequilibrium thermodynamics. *International Conference on Machine Learning  
 (ICML)*, 2015.

641

642 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of  
 643 score-based diffusion models. *Advances in Neural Information Processing Systems (NeurIPS)*,  
 2021a.

644

645 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 646 Poole. Score-based generative modeling through stochastic differential equations. *International  
 647 Conference on Learning Representations (ICLR)*, 2021b.

648

649 Austin Stromme. Sampling from a Schrödinger bridge. *Artificial Intelligence and Statistics (AISTATS)*,  
 2023.

648 Simo Särkkä and Arno Solin. *Applied stochastic differential equations*, volume 10. Cambridge  
 649 University Press, 2019.

650

651 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-  
 652 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models  
 653 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024a.

654

655 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet,  
 656 Guy Wolf, and Yoshua Bengio. Simulation-free Schrödinger bridges via score and flow matching.  
 657 *Artificial Intelligence and Statistics (AISTATS)*, 2024b.

658

659 Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent Gaussian  
 660 models in the diffusion limit. *arXiv preprint arXiv:1905.09883*, 2019.

661

662 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger  
 663 bridges via maximum likelihood. *Entropy*, 23(9):1134, August 2021.

664

665 Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. *International  
 666 Conference on Learning Representations (ICLR)*, 2023.

667

668 Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets variational in-  
 669 ference: Controlled monte carlo diffusions. *International Conference on Learning Representations  
 670 (ICLR)*, 2024.

671

672 Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio,  
 673 Glen Berseth, and Nikolay Malkin. Outsourced diffusion sampling: Efficient posterior inference in  
 674 latent spaces of generative models. *International Conference on Machine Learning (ICML)*, 2025.

675

676

677 Cédric Villani. *Optimal transport: old and new*, volume 338. Springer, 2008.

678

679 Qinsheng Zhang and Yongxin Chen. Path Integral Sampler: A stochastic control approach for  
 680 sampling. *International Conference on Learning Representations (ICLR)*, 2022.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A RELATED WORKS**  
 703

704 In this section we establish links between our method and other research directions in the literature.

705 **Optimal transport.** Optimal transport is a well-established area of research with a solid theoretical  
 706 background and scalable applied algorithms. The problem is concerned with finding the optimal  
 707 transportation map which minimises a given transportation cost. Originally, the problem was proposed  
 708 by Monge in Monge (1781). In 20th century this problem was reformulated and generalised by a  
 709 Kantorovich in a series of works including Kantorovich & Rubinshtein (1958); Kantorovich (1960).  
 710 Since then the problem has been rigorously studied, refer to Peyré et al. (2019); Villani (2008) for a  
 711 detailed presentation of theory. In a discrete case optimal transport can be solved using Sinkhorn’s  
 712 algorithm (Sinkhorn, 1964; Peyré et al., 2019). Recent works have applied optimal transport to a  
 713 series of machine learning problems, including image-to-image translation (Korotin et al., 2022),  
 714 voice conversion (Asadulaev et al., 2024), and super-resolution (Gazdieva et al., 2025).

715 **Schrödinger bridges.** Schrödinger bridge problem is concerned with finding stochastic optimal  
 716 transport dynamics between two distributions. The problem was originally proposed by Schrödinger  
 717 in Schrödinger (1931; 1932). The Schrödinger bridge problem can be seen as a regularised version  
 718 of dynamic optimal transport (Léonard, 2014) and has interesting connections to optimal control  
 719 theory (Chen et al., 2021c). Computationally, the problem can be solved using Iterative Proportional  
 720 Fitting (IPF) algorithm (Fortet, 1940; Deming & Stephan, 1940; Sinkhorn, 1964). De Bortoli et al.  
 721 (2021); Vargas et al. (2021) proposed the scalable formulation of this method that allows to compute  
 722 Schrödinger bridge between a pair of distributions given by unbiased samples. Chen et al. (2021b)  
 723 proposes a continuous-time variant of IPF. Methods distinct from IPF have also been proposed (Shi  
 724 et al., 2023; Tong et al., 2024b); all of them assume access to samples from the target distribution for  
 725 an unbiased objective.

726 **Diffusion samplers.** Data-to-energy Schrödinger bridge is related to the problem of sampling from  
 727 an unnormalised density. Diffusion samplers (Zhang & Chen, 2022; Vargas et al., 2023; Richter  
 728 & Berner, 2024; Berner et al., 2024; Blessing et al., 2025a) represent one of the approaches that  
 729 solve this problem. Some methods use off-policy reinforcement learning techniques (Lahlou et al.,  
 730 2023; Sendera et al., 2024) to amortise sampling from intractable density. The theoretical connection  
 731 among various objectives was established in Berner et al. (2025).

732 **Outsourced sampling.** The concept of outsourced diffusion sampling – modelling continuous-  
 733 time dynamics in latent space for posterior inference under pretrained priors – was proposed in  
 734 Venkatraman et al. (2025). The work shows that sampling can be efficiently conducted in the latent  
 735 space of a generator, where the density landscape is smoother.

736 **B METRICS FOR DATA-TO-ENERGY SB**  
 737

738 First, if both samples from  $p_0$  and the density of  $p_0$  are available, we evaluate the quality of the learnt  
 739  $\vec{p}_\theta$  as a sampler of  $p_1$  using the evidence lower bound:

$$740 \text{ELBO} = \mathbb{E}_{x_0 \sim p_0(x_0), \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \log \frac{\overline{p}_\varphi(\tau | x_1) \exp(-\mathcal{E}_1(x_1))}{\vec{p}_\theta(\tau | x_0) p_0(x_0)} \right] \leq \log Z,$$

741 which equals the true  $\log Z = \log \int \exp(-\mathcal{E}_1(x)) dx$  if and only if the processes  $\vec{p}_\theta$  and  $\overline{p}_\varphi$  coincide.

742 Second, if samples from  $p_1$  are available (even if not available to the learner during training), we  
 743 report the 2-Wasserstein distance  $\mathcal{W}_2$  between batches of true samples from  $p_1(x_1)$  and samples  
 744 obtained from the learnt model  $p_\theta(\tau | x_0)$ , which measures the discrepancy between the target and  
 745 modelled marginals.

746 Third, to approximate the cost, we compute the path KL in discrete time:

$$747 \text{KL}(p_0 \otimes \vec{P}_{t|0} \| p_0 \otimes \mathbb{Q}_{t|0}) \approx \text{KL} \left( p_0(x_0) \otimes \vec{p}_\theta(\tau | x_0) \| p_0(x_0) \otimes q(\tau | x_0) \right) \quad (9)$$

$$748 = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \log \frac{\vec{p}_\theta(\tau | x_0)}{q(\tau | x_0)} \right] \quad (10)$$

$$749 = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \sum_{k=0}^{K-1} \text{KL}(\vec{p}_\theta(x'_{k+1} | x_k) \| q(x'_{k+1} | x_k)) \right] \quad (11)$$

756 where  $q(\tau)$  is the time discretisation of the reference process  $\mathbb{Q}_t$ . The estimator using transition KLs  
 757 in (11) can be seen to be a Rao-Blackwellised (lower-variance) variant of the estimator in (10), and  
 758 we use it because the KL can be computed analytically (as all transition kernels are Gaussian). It can  
 759 be shown (Appendix C) that this path KL is equivalent to path energy as used in Shi et al. (2023).  
 760

### 761 C RELATION BETWEEN PATH KL AND PATH ENERGY

762 In this section we explain the relation between path KL and path energy (Shi et al., 2023). Assuming  
 763 that the transition kernels are given by:

$$764 \vec{p}_\theta(x'_{k+1} | x_k) = \mathcal{N}\left(x_k + v_\theta(x'_k, k\Delta t)\Delta t, \sigma^2 \Delta t I\right) \quad (12)$$

$$766 767 q(x'_{k+1} | x_k) = \mathcal{N}\left(x_k, \sigma^2 \Delta t I\right) \quad (13)$$

768 where  $v_\theta(x_t, t)$  is a leant drift,  $\sigma^2$  is constant and is the same for both  $\mathbb{P}_{t|0}$  and  $\mathbb{Q}_{t|0}$ , time-discrete  
 769 path KL can be written in the following form:

$$770 771 \text{KL}\left(p_0(x_0) \otimes \vec{p}_\theta(\tau | x_0) \| p_0(x_0) \otimes q(\tau | x_0)\right) \quad (14)$$

$$772 773 = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \log \frac{\vec{p}_\theta(\tau | x_0)}{q(\tau | x_0)} \right] = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \sum_{k=0}^{K-1} \log \frac{\vec{p}_\theta(x'_{k+1} | x_k)}{q(x'_{k+1} | x_k)} \right] \quad (15)$$

$$775 776 = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \sum_{k=0}^{K-1} \left( \frac{v_\theta(x_k, k\Delta t)}{\sigma^2} (x_{k+1} - x_k) - \frac{\|v_\theta(x_k, k\Delta t)\|^2}{2\sigma^2} \Delta t \right) \right] \quad (16)$$

778 Given that  $x_{k+1} - x_k = v_\theta(x'_k, k\Delta t)\Delta t + \sigma\Delta t\xi_k$ ,  $\xi_k \sim \mathcal{N}(0, I)$  for  $0 \leq k \leq K-1$  and the  $\xi_{k_i}$  are  
 779 independent, the path KL can be finally written as:

$$780 781 \text{KL}\left(p_0(x_0) \otimes \vec{p}_\theta(\tau | x_0) \| p_0(x_0) \otimes q(\tau | x_0)\right) \quad (17)$$

$$782 783 = \mathbb{E}_{x_0 \sim p_0, \tau \sim \vec{p}_\theta(\tau | x_0)} \left[ \sum_{k=0}^{K-1} \frac{\|v_\theta(x_k, k\Delta t)\|^2}{2\sigma^2} \Delta t \right] \xrightarrow{\Delta t \rightarrow 0} \frac{1}{2\sigma^2} \mathbb{E}_{p_0(x_0) \otimes \vec{p}_\theta(\tau | x_0)} \left[ \int \|v_\theta(x_t, t)\|^2 dt \right] \quad (18)$$

786 The limit is justified by the Girsanov theorem (Särkkä & Solin, 2019). This yields the path energy  
 787 used in Shi et al. (2023).

## 788 D EXPERIMENT DETAILS

### 789 D.1 DATA-TO-DATA EXPERIMENTS

792 All data-to-data experiments are conducted under the unified setup. For neural network we use an  
 793 MLP with 3 hidden layers and 64 neurons in each layer, each layer is followed by a LayerNormBa  
 794 et al. (2016) and SiLU activation function. All neural networks are trained using AdamW optimiser  
 795 with learning rate 0.0008. Sampling is done in 20 steps with  $t_{\max} = 0.2$  and  $dt = 0.01$ . We train  
 796 forward and backward models for 4000 steps at each IPF iteration and we train each model for 20 IPF  
 797 iterations. [SF]<sup>2</sup>M is trained using 160,000 steps. The metrics are computed using 10,000 samples  
 798 from the target distributions and 10'000 samples obtained from the learnt forward process. All the  
 799 metrics are averaged over 5 seeds (42, 43, 44, 45, 46).

### 800 D.2 2D DATA-TO-ENERGY EXPERIMENTS

801 For the data-to-energy experiments we use the same neural networks as for data-to-data experiments.  
 802 We use 20 steps for sampling with  $t_{\max} = 0.8$  and  $dt = 0.04$ . Neural networks are optimised with  
 803 AdamW optimiser with learning rate 0.0005. When Langevin update is used, we update buffer  
 804 samples every 500 steps during training of the forward process. Langevin is used with the step size  
 805 0.01 and we do 50 updates each time. We use 2 trajectories from each  $x_0$  for the computation of the  
 806 VarGrad loss. All the metrics are averaged over 5 seeds (42, 43, 44, 45, 46).

### 807 D.3 2D ENERGY-TO-ENERGY EXPERIMENTS

808 We provide a description of energy-to-energy experiment shown in Fig. 3. We use GMM with 5  
 809 modes for the distribution  $p_0$  and GMM with 8 modes for distribution  $p_1$ . For both distributions we

810  
811 Table 4: SB metrics for varying the number of time discretisation steps in data-to-data and data-to-  
812 energy setting with both learnt and fixed variance (Gauss  $\leftrightarrow$  GMM).

| 813 Number of steps $\rightarrow$               | 814 $K = 5$       |                   | 815 $K = 10$      |                   | 816 $K = 20$      |                   | 817 $K = 40$      |                   |
|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 818 Algorithm $\downarrow$ Metric $\rightarrow$ | $W_2^2$           | 819 Path KL       | $W_2^2$           | 820 Path KL       | $W_2^2$           | 821 Path KL       | $W_2^2$           | 822 Path KL       |
| 823 Data-to-data learnt var.                    | 0.026 $\pm$ 0.006 | 4.158 $\pm$ 0.986 | 0.033 $\pm$ 0.012 | 3.127 $\pm$ 0.981 | 0.042 $\pm$ 0.018 | 2.840 $\pm$ 0.666 | 0.028 $\pm$ 0.009 | 3.070 $\pm$ 0.666 |
| 824 Data-to-data fixed var.                     | 0.066 $\pm$ 0.005 | 0.988 $\pm$ 0.031 | 0.038 $\pm$ 0.005 | 1.825 $\pm$ 0.073 | 0.037 $\pm$ 0.014 | 2.507 $\pm$ 0.366 | 0.023 $\pm$ 0.010 | 2.739 $\pm$ 0.233 |
| 825 Data-to-energy learnt var                   | 0.023 $\pm$ 0.010 | 3.745 $\pm$ 0.415 | 0.022 $\pm$ 0.008 | 3.162 $\pm$ 0.308 | 0.028 $\pm$ 0.015 | 3.337 $\pm$ 0.775 | 0.020 $\pm$ 0.003 | 2.838 $\pm$ 0.609 |
| 826 Data-to-energy fixed var                    | 0.063 $\pm$ 0.006 | 1.152 $\pm$ 0.172 | 0.050 $\pm$ 0.024 | 2.047 $\pm$ 0.123 | 0.035 $\pm$ 0.014 | 3.069 $\pm$ 0.226 | 0.021 $\pm$ 0.010 | 3.360 $\pm$ 0.150 |

827  
828  
829  
830  
831 rely exclusively on the corresponding log-densities. We do not use samples from either  $p_0$  or  $p_1$ .  
832 We keep replay buffers for both densities. We initialise both replay buffers with Gaussian noise in  
833 the beginning of training. Since samples are unavailable we use objective Equation (7) to learn the  
834 forward process and similar objective:

$$835 \mathcal{L}_{\text{LV}}(x_1, \varphi) = \text{Var} \left( \log \frac{\overleftarrow{p}_\varphi(\tau | x_1)}{\overrightarrow{p}_\theta(\tau | x_0) p_0(x_0)} \right) = \text{Var} \left( \sum_{k=1}^K \log \frac{\overleftarrow{p}_\varphi(x_{(k-1)\Delta t} | x_{k\Delta t})}{\overrightarrow{p}_\theta(x_{k\Delta t} | x_{(k-1)\Delta t})} + \mathcal{E}_0(x_0) \right), \quad (19)$$

836 to learn the backward process.

#### 837 D.4 OUTSOURCED SCHRÖDINGER BRIDGE EXPERIMENTS

838 **Experiments on MNIST.** For MNIST experiments, we use a custom VAE with 3 layers in both the  
839 decoder and encoder. We use a custom MNIST classifier as a reward model, which consists of 3 MLP  
840 layers. Each layer is followed by the ReLU activation function, except for the last one, which uses  
841 a sigmoid. We train the forward and backward networks for 5,000 steps during each IPF iteration,  
842 with 20 IPF iterations in total. All the networks are trained with AdamW optimiser using learning  
843 rate 0.0008. We do not use Langevin updates for this experiment, relying only on a replay buffer. We  
844 use the same MLPs as in 2D data-to-energy experiment to parameterise the backward and forward  
845 drift and variance.

846 **Experiments on CIFAR-10 with SN-GAN and StyleGAN.** For the CIFAR-10 experiments, we  
847 use MLP with 3 hidden layers, which has 256 hidden units for the SN-GAN experiments and 512  
848 for the StyleGAN experiments. We train forward network for 500 steps and backward network for  
849 100 steps during each IPF iteration, for a total of 300 IPF iterations. All the networks are trained  
850 with AdamW optimiser using learning rate 0.0005. Langevin updates are made every 500 iterations  
851 during the training of the forward network. We run Langevin for 500 steps with initial step size of  
852 0.01 and anneal step size to 0.001 during the updates.

853 We use 20 steps for sampling with  $dt = 0.04$  for the StyleGAN experiments and  $dt = 0.005$  for  
854 SN-GAN experiments. We use Wiener process,  $dX_t = \sqrt{2}dW_t$ , as the reference process. All the main  
855 experiments are conducted with a replay buffer and Langevin updates, with off-policy ratio of 0.8,  
856 and the backward trajectories are reused for computing VarGrad loss.

857 For the reward model we use VGG (Simonyan & Zisserman, 2015) classifier pretrained on CIFAR-10.  
858 The weights are taken from [https://github.com/huyvnphan/PyTorch\\_CIFAR10](https://github.com/huyvnphan/PyTorch_CIFAR10). We  
859 use VGG-13 for SN-GAN experiments and VGG-19 for StyleGAN experiments.

860 For the rejection sampling (ground truth), the FID score is computed between 6,000 images sampled  
861 proportionally to the probabilities obtained from classifier and 6,000 images from the CIFAR-10  
862 dataset. For the outsourced SB the FID score is computed between 6,000 samples from the learnt  
863 model and 6,000 real CIFAR-10 samples. All scores are computed only on the images of a specific  
864 class. All other metrics (path KL, mean log-reward,  $L_2^2(x_0, x_1)$ , ELBO) are computed using a batch  
865 size of 512.

#### 866 E ADDITIONAL RESULTS

867 In addition to the Fig. 2 we also provide the metrics for the ablation in Table 4. We use the same  
868 architecture and hyperparameters as in data-to-data experiments and vary only the number of sampling  
869 steps. For the data-to-energy runs we use a replay buffer with Langevin updates, the off-policy ratio  
870 is set to 0.8 and the backward trajectories are not reused for the loss computation.  $W_2^2$  is computed

864 using 10,000 ground truth samples and samples from  $\vec{p}(\tau | x_0)p_0(x_0)$ . Path KL is also computed  
 865 on 10,000 samples.  
 866

## 867 F VISUAL EXAMPLES FOR OUTSOURCED SB

### 868 F.1 CURATED EXAMPLES

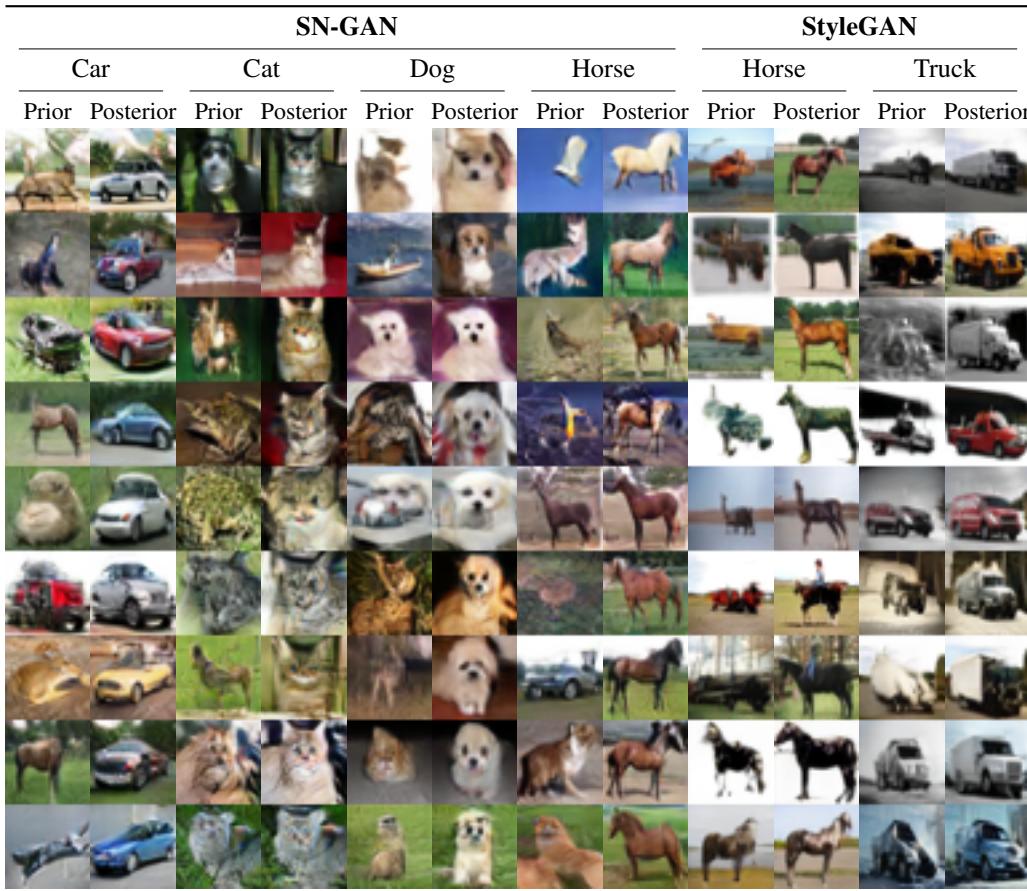
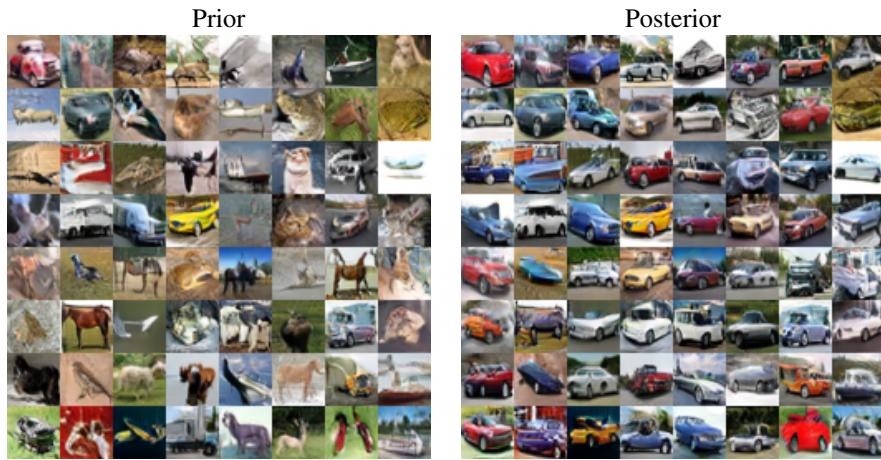
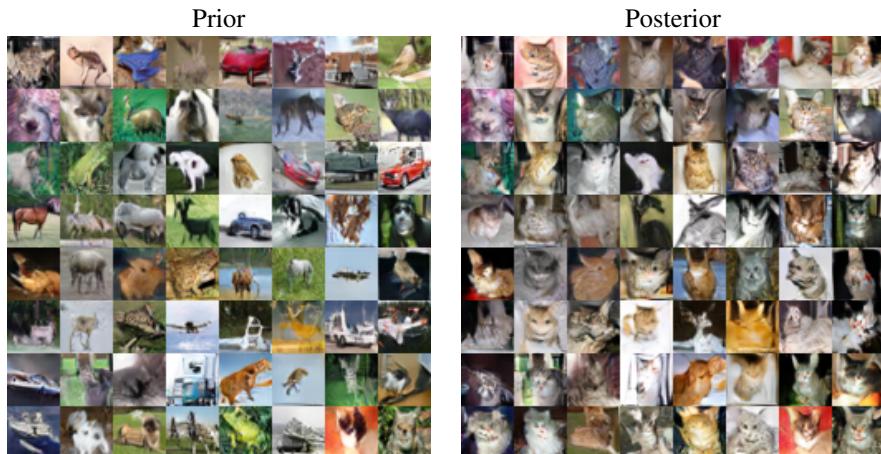


Figure 5: Curated examples of outsourced SB with SN-GAN and StyleGAN generators.

918  
919

## F.2 UNCURATED EXAMPLES

920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934935  
936Figure 6: Uncurred examples of outsourced SB with SN-GAN for the class *cars*.937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952953  
954Figure 7: Uncurred examples of outsourced SB with SN-GAN for the class *cats*.955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970

971

Figure 8: Uncurred examples of outsourced SB with SN-GAN for the class *dogs*.

Figure 9: Uncurated examples of outsourced SB with SN-GAN for the class *horses*.Figure 10: Uncurated examples of outsourced SB with StyleGAN for the class *horses*.Figure 11: Uncurated examples of outsourced SB with StyleGAN for the class *trucks*.

1026

## F.3 EXAMPLES FOR SCHÖDINGER BRIDGE WITH NON-GAUSSIAN PRIOR

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

## Posterior (Cats)      Posterior (Dogs)

Figure 12: Uncurated examples of outsourced SB with SN-GAN between classes *cats* and *dogs*.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

## Posterior (Cars)      Posterior (Trucks)

Figure 13: Uncurated examples of outsourced SB with SN-GAN between classes *cars* and *trucks*.

1066

## G COMPARISON WITH ANALYTICAL SOLUTION

1067

1068

1069

1070

1071

1072

1073

1074

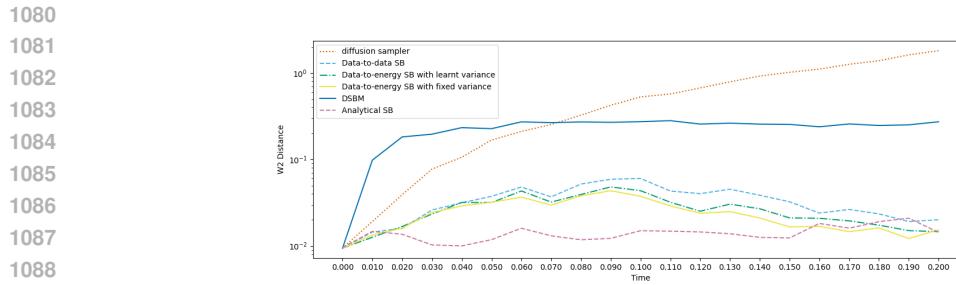
1075

1076

1077

1078

1079

Figure 14: Comparison of SB algorithms in terms of  $\mathcal{W}_2$  distance to the analytical solution

1080  
 1081  
 1082  
 1083  
 1084  
 1085  
 1086  
 1087  
 1088  
 1089  
 1090  
 1091  
 1092  
 1093  
 1094  
 1095  
 1096  
 1097  
 1098  
 1099  
 1100  
 1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133