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ABSTRACT

The Schrodinger bridge problem is concerned with finding a stochastic dynamical
system bridging two marginal distributions that minimises a certain transportation
cost. This problem, which represents a generalisation of optimal transport to the
stochastic case, has received attention due to its connections to diffusion models
and flow matching, as well as its applications in the natural sciences. However,
all existing algorithms allow to infer such dynamics only for cases where samples
from both distributions are available. In this paper, we propose the first general
method for modelling Schrodinger bridges when one (or both) distributions
are given by their unnormalised densities, with no access to data samples. Our
algorithm relies on a generalisation of the iterative proportional fitting (IPF)
procedure to the data-free case, inspired by recent developments in off-policy
reinforcement learning for training of diffusion samplers. We demonstrate the
efficacy of the proposed data-to-energy IPF on synthetic problems, finding that it
can successfully learn transports between multimodal distributions. As a secondary
consequence of our reinforcement learning formulation, which assumes a fixed
time discretisation scheme for the dynamics, we find that existing data-to-data
Schrodinger bridge algorithms can be substantially improved by learning the
diffusion coefficient of the dynamics. Finally, we apply the newly developed
algorithm to the problem of sampling posterior distributions in latent spaces of
generative models, thus creating a data-free image-to-image translation method.

1 INTRODUCTION

Two modern approaches to generative modelling that have paved the way for scalable and efficient
generation of high-fidelity images (Dhariwal & Nichol, 2021; Rombach et al.|[2021)), videos (Polyak
et al.,|2024), audio (Chen et al.,|2021a;|Kong et al.,[2021) and text (Nie et al., 2025} |Sahoo et al.,[2025)
are diffusion models and flow matching. Diffusion models (Sohl-Dickstein et al., 2015} |Ho et al.}
2020; Song et al.,[2021b) assume a noising stochastic process that transforms data into a tractable
noise distribution and use score-based techniques to learn its reverse process, which transforms noise
into data. Flow matching (Liu et al.| 2023} |/Albergo et al.| 2023} [Lipman et al., {2023 [Tong et al.,
2024a) learns time-dependent deterministic dynamics that give a transportation map between two
arbitrary distributions. Both approaches can be seen as special cases of the more general problem of
learning stochastic dynamics between two arbitrary distributions.

The problem of inferring an optimal stochastic bridge between two distributions is called the
Schrodinger bridge (SB) problem, which was initially proposed in|Schrodinger| (1931;/1932)) and has
recently been studied using various machine learning techniques (Huang et al.,|2021; |Vargas et al.,
2021; Chen et al., [2021b} |Stromme} [2023}; |Shi et al.| 2023} [Tong et al.,2024b). One computational
approach to the Schrodinger bridge problem is the iterative proportional fitting (IPF) algorithm
(Fortetl [1940; |Vargas et al.,|[2021; |De Bortoli et al., [2021)), which maintains a pair of processes in
forward and reverse time and iteratively updates them by solving half-bridge problems (see §2)).
Upon convergence, the two processes become time reversals of each other and solve the SB problem.
Notably, the typical training of diffusion models — with a fixed noising process that transforms a
data distribution into a Gaussian by construction — is a degenerate case of IPF that converges in
a single step. However, existing variants of IPF work only in a setting where samples from both
marginal distributions are available and thus cannot be used to model bridges when one (or both) of
the marginal distributions is given as an unnormalised density, without access to data samples.

We propose to extend the IPF algorithm to the case where one or both marginal distributions are given
by unnormalised densities or energy functions: p(x) = e"¢™)/Z, Z = f e~ dx, where & can
be queried, but Z is unknown. Our proposed data-to-energy (or energy-to-energy) IPF generalises
recently developed techniques for training diffusion models to sample from a distribution given by an
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unnormalised density (Zhang & Chenl, 2022} |Vargas et al.| 2023}2024; |Berner et al., 2024} |Albergo
& Vanden-Eijnden, 2025; |Blessing et al., 20254, inter alia). In particular, we build upon off-policy
reinforcement learning losses and stabilisation techniques for diffusion samplers (Richter et al.| [2020;
Richter & Berner, 2024} |[Lahlou et al.} 2023} |Sendera et al.| [2024} (Gritsaev et al.,[2025) to propose
an efficient training for the IPF steps in the data-to-energy setting. Our algorithm is the first general
method for inferring data-to-energy and energy-to-energy Schrodinger bridges.

Wielding the newly proposed algorithm, we make three contributions:

(1) We show that the proposed data-to-energy and energy-to-energy IPF algorithms successfully learn
stochastic bridges with low transport cost between synthetic datasets and densities, performing
on par with the transports learnt by data-to-data IPF using samples from a ground-truth oracle.

(2) As a secondary contribution, we show that — as a consequence of the time discretisation used in
our reinforcement learning formulation — existing data-to-data IPF algorithms can be improved
by learning the diffusion coefficient of the dynamics, in addition to the drift, generalising the
results of (Gritsaev et al.|(2025) for diffusion samplers to the more general SB setting.

(3) We apply the data-to-energy IPF algorithm to the problem of translating prior distributions to
posteriors in latent spaces of generative models, generalising the outsourced diffusion sampling
of |Venkatraman et al.| (2025) to yield a scalable data-free image-to-image translation method.

2 DATA-TO-DATA SCHRODINGER BRIDGES
2.1 ITERATIVE PROPORTIONAL FITTING FOR DATA-TO-DATA SB

Setting: The SB problem and its connection to optimal transport. We present some background
on the SB problem; see |[Léonard| (2014); De Bortoli et al.| (2021) for relevant and more detailed
overviews. Let po and p; be two given distributions over the space R?, assumed to be absolutely
continuous (thus used interchangeably with their density functions) and of finite variance. Let Q; be
a reference process on the time interval [0, 1] taking values in R¢ (usually an Ornstein-Uhlenbeck
process, such as the Wiener process). The Schrodinger bridge problem can be formalised as:

Py = arngin {KL (P; | Q;) s.t. (m0)#P; = po, (m1)4P; = p1}, (D

where the minimisation is taken over all processes P, whose marginals at times t = O and 7 = 1,
written (mo)#P; and (71)4P;, equal po and p, respectively. The solution P; is a stochastic dynamical
system that transports pg to p; — that is, a bridge — that is the closest to Q, in KL divergence. If the
reference process Q; is given by an It stochastic differential equation (SDE)

Qi dX; = Frep(Xy,t) dt + 0 AW, Xo ~ qo,
then, under mild conditions (see |Léonard| (2014)) the solution to exists, is unique, and also takes
the form of a SDE:
P, : dX; = F(X;,t)dt + oy dW;,  Xp ~ po.
with the same diffusion coefficient. The KL then takes the form of a dynamic transport cost

U\ Fet (X, 1) = F(X,, )2
KL(E, [| Q) = KL(po |l 4o) + Ex, 5, / WFrer (Xe. ) = FCXR DI g, @
0

20‘12
reducing the problem (I)) to one of inferring the drift function F minimising the cost (2). This
representation makes clear that as o; — 0, the SB problem approaches the dynamic optimal transport
problem between pg and p; with squared-euclidean cost (see [Tong et al.|(2024a))). For oy > O,
the joint marginal distribution of P} over Xy, X; is an entropy-regularised optimal transport, a key
observation in the derivation of the SB algorithm in [Tong et al.| (2024b).

Iterative proportional fitting. Computationally, the SB problem can be solved using the iterative
proportional fitting (IPF) algorithm (Fortet, [1940; |Vargas et al.| 2021}, [De Bortoli et al.,[2021)). IPF

. . . . . -
defines a recursion initialised at P9 = Q,:

Sn+l : =n =n

P =arg mm{KL(Pt | B})s.t. (mo)4P; = po} =po® Pz|0’ (3a)
P,

715:’“ = arg min{KL(P, I <]P_’;M) s.t. (m)uP; = Pl} =p1® j??ﬁls (3b)
P,
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where each step is the solution to a half-bridge problem, which pins the previous iterate at one of the
— —
marginals pg or p; (here P;’lo denotes the conditional process given X, and ]P’:’ﬁ] the conditional

process given X). IPF for Schrodinger bridges is thus a dynamic generalisation of the Sinkhorn
algorithm (Sinkhorn, [1964)), which computes entropic optimal transport by iteratively renormalising

>
a cost matrix over rows and columns. It can be shown (De Bortoli et al., 2021) that the iterates P}
—
and P} converge to the same stochastic process, and this process solves the SB problem .
_)0 . . .
If P} = Q; is represented as a SDE, then the iterates defined in li and l) can be represented as

forward-time and reverse-time SDEs initialised at pg and p, respectively. We can thus introduce
SDEs with neurally parametrised drifts (I'’zen & Raginsky, 2019):

— e —
P? . dXt = an(Xt,l) dt+0’t th, (43.)
— R —
P? . dXt = F(pn(Xt’t) dt+0-z th, (4b)

where o coincides with the diffusion coefficient of the reference process, and perform the iterations
(3) as optimisation problems over 6,, and ¢,. (We henceforth occasionally drop the subscript n
from the parameters, with the understanding that optimises ¢ = ¢, under a fixed 6,, and
optimises 6 = 6,41 under a fixed ¢;,4+1.)

Data-to-data IPF in a time discretisation. To approximately perform the optimisations involved

- —
in IPF with respect to the parameters 6 and ¢, we discretise the SDEs (4) representing P, and P, over

K steps using the Euler-Maruyama scheme with At = % The continuous-time processes are thus

approximated by discrete-time Markov chains, i.e., joint distributions over discrete-time trajectories
T = (X0, XA - - -, X1), having the factorisation:

5
Po(Tlxo) . .
IK—l 1 : Euler-Maruyama step with step size At |
—
P o(r)=po(xo) 1_[ B o (X (kr1)ar | Xkar): T o(xX(katyar | Xkar) =N (xkAz + F o (xpar, kKADAL, U,%A,At), (52)
k=0
Po(rlx)
K —
Do (1)=pi1(x1) 1_[ Do (Xk-1)ar 1Xka)s P (X(k—1)Ar | XkA) =N (xkAz + F o (xpas, KADAL, O',fA,At) . (5b)
k=1 ! |

1 | reverse-time Euler-Maruyama step with step size At
As proposed in |Vargas et al.|(2021)), the two IPF optimisation problems in (3)) can be approximately
solved by maximum likelihood. On the level of the discretised processes, this amounts to the
following recurrence:

K
Pn+1 = arg;naXExONpo,TN—ﬁgn (t]x0) Z log Py (X(k-1)ar | Xxar) (6a)
=1
K-1
On+1 = arg éﬂaXExwpl,p‘;%H (zlx1) Z log 7 o (X (ks 1)ar | Xiear)- (6b)
k=0

The optimisation problem in (resp. (6b)) requires taking a sample from the marginal distribution
xo ~ po (resp. x; ~ p1), rolling out a trajectory in forward time from 7' ¢ (resp. in reverse time from
(179,,) initialised at the sample, and maximising the log-likelihood of this trajectory in the opposite
direction, i.e., under }7(/, (resp. under 7 ¢). This procedure essentially requires samples from pg (resp.
from p1) to be available.

We call this iterative algorithm the log-likelihood method and give an algorithmic presentation in
Algorithm ] It contrasts with the method proposed inDe Bortoli et al| (2021), which uses a slightly
different discretisation scheme, although the two coincide in the continuous-time limit (K — o).

Diffusion models as a special case. Diffusion models (Sohl-Dickstein et al.,|2015; Ho et al., [2020;
Song et al.,|2021b) can be seen as a special case of the IPF algorithm that converges in a single step.
If po is a data distribution and p; is Gaussian, and Q; is a noising process that transports any source
distribution to p; by construction, then Q; initialised at pg is already a bridge between po and p;.

Thus the first iteration of IPF — learning ?} by maximum-likelihood training (6a)) on trajectories
sampled from po ® Q;|o — already yields a bridge between p¢ and p1, so all subsequent iterations are
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Algorithm 1: Data-to-Data IPF Algorithm 2: Data-to-Energy IPF
1 forn=0,...,npx do 1 Initialise buffer B = 0
/+ Backward IPF step () */ 2forn=0,...,nnx do
2 while ot converged do /* Backward IPF step (6a)  +/
3 X0 ~ Po 3 while not converged do
4 T = (X0, Xar> - - - X1) ~ Pol(T | X0) 4 X0 ~ po,T ~ Po(t|x0)
using 5 Gradient step on ¢ with
5 Gradient step on ¢ with V log ‘ﬁw (t]x1)
Vlog ([790 (1] x1) 6 | Update 8 with samples x;
/+ Forward IPF step () %/ /+ Forward IPF step () */
6 while not converged do 7 while not converged do
7 X1 ~ p1 8 if on-policy then
8 7= (X05 s X1-ar, X1) ~ P (7T | 9 | X0~ po.T~TPo(t|x0)
x1) psing ) 10 else
9 Gradlen_t>step on 6 with " x; ~ B, ~ ?W(T | x1)
B Vlog po(t | x0) " T(z)"”,T(N)Nﬁy(ﬂxél))
10 return 0, ¢ 13 Gradient step on 6 with
= (20D ,
V Var; (log zO(Ti‘X‘(’”) + & (xg'))
P (W ]x")

14 return 6, ¢

Figure 1: Left: Algorithm for data-to-data IPF. Right: Algorithm for data-to-energy IPF, showing
the replay buffer with backward trajectory reuse (§3.1)), with differences highlighted in red.

redundant and ?} solves the SB problem. In practice, training j@ as a neural SDE proceeds by score
matching, which is simply a Rao-Blackwellised estimate of the IPF maximum-likelihood objective
(Song et al.}2021a).

2.2 DISCRETISATION ALLOWS FLEXIBLE KERNELS

The majority of existing work (Chen et al.,|2021b; [Vargas et al.,[2021} De Bortoli et al.,|2021} |Shi

et al.| 2023)) trains only the drift functions 77)9, <I*T¢ or related objects using objectives similar to

In contrast to that, we propose to train not only the drift, but also diffusion coefficients of both
processes, by replacing the variances 0',% A, 10 (5) by learnt functions ?29 (xk, kAt) and F?p (xk, kAt).
We expect this to correct for the effect of time discretisation error, inspired by the results for diffusion

samplers in |Gritsaev et al.[(2025).

The optimisation problems in (6) can then be solved with respect to the parameters of both the
drift and diffusion coefficients. We compare this approach to those that do not learn the variance in
Table [T

3 DATA-FREE SCHRODINGER BRIDGES
3.1 IPF FOR DATA-TO-ENERGY SB

We now consider the setting where samples from p( are available, but p; is given by an unnormalised
density p(x) = e &) /7 7 = f e~ () dy is unknown. In this case, the odd-numbered IPF steps
(3a) can be performed (via (6a)), but the even-numbered steps (3b) cannot be done using (6b), as they

require samples from p. Instead, we need an objective that would ﬁt?’);’“ as a forward-time SDE

&
matching p; ® P :’ﬁl without samples from p;.

N
In the time discretisation , the IPF step l| for P™! requires enforcing that for every x,
ﬁ h . . .
P o(7 | x0) < po(r|x1)pi(x1) over all trajectories T = (xop, Xa;, . . ., X1) starting at xo.

To approximately enforce this proportionality, we introduce a source-conditional variant of the
second-moment, or log-variance, loss used for training diffusion samplers (Richter et al.| (2020);
see [Berner et al.| (2025) for an overview of related losses and their consistency properties in the
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continuous-time limit). The idea is to minimise the variance of the log-ratio of the two sides of the
proportionality over trajectories T sharing the same x:

Dot | x)
p1(x1) P (| x1)

where the variance is taken over some full-support distribution p"™"(- | xo) over trajectories. (The
normalising constant Z does not affect the variance, nor do we need to know the marginal of the
process being learnt at time 0.) The empirical variance over a batch of N trajectories sampled from
pUan (7 | xo) is an unbiased estimate of and can be used in the loss. (The training policy we use
below takes N non-i.i.d. trajectories, thus p™" (- | x9) can be a distribution over batches of 7.)

LLV(.XO, 9) = Var IOg = Var + 81 ()C]) . (7)

K —
Z D o(Xkar | X(k=1)At)
log

b
= Pe(xu-nar | Xkar)

Because this proportionality must hold for every xo, we must also average (7)) over xo ~ p(‘)r‘Clin (x0),

where pgai“ is some training distribution over xq. Thus the full objective for the forward IPF step is

Bo(r | xo)
T o(r® [ xD)
train

The choice of p;™"(xo) and pU"n (. | xo) is very important and we discuss it in the next subsection.

L(G):EX()Npgai"(xo)ET(l) .... 7-(N)Nplrain(,lx()) Vari log . (8)

+81(x§i)))

Comparison with diffusion samplers. The objective (7)) is a conditional variant of the log-variance,
or VarGrad, loss (Richter et al.,2020) previously used for diffusion-based samplers of unnormalised

target densities. In that setting — but not in ours, since the marginal of p; ® (]P_’;‘ﬁl at time O is not pg
unless IPF has converged — the density of the process being learnt at time O is known to be po(xo).
Thus po(xp) can be placed in the numerator of the loss in (7)) and variance can be taken over both x
and 7. An alternative objective would fit the density at x¢, yielding a variant of the related trajectory

balance (TB) loss for diffusion samplers (Malkin et al., 2022; [Lahlou et al.,[2023).

Yet another alternative would avoid IPF altogether and simply perform joint optimisation of both 8
and ¢ using a VarGrad- or TB-like objective to enforce that po(xo) P ¢ (7 | x0) = p1 (xl)}T‘p (] x1)
over all trajectories 7. Such a bridge sampling approach is taken in Blessing et al.| (2025aib); |Gritsaev:
et al.[(2025). However, this approach would yield a bridge that is not necessarily the solution to the SB
problem (E]), since the KL to the reference process is not minimised. In a future work, it would be inter-
esting to compare our IPF approach with those that regularise bridge sampling losses by the cost (2).

3.2 OFF-POLICY TRAINING METHODS

The objective (8) leaves room for the choice of training distributions pgai“ (xo) and p"@ (7 | xq),
which can vary over the course of training. In this way, training with this loss is a form of off-policy
reinforcement learning, a connection that has been elucidated and exploited for improved training of
diffusion samplers in|Sendera et al.| (2024)).

A naive choice would take pgai“ = po and p™i"(7 | x9) = P o(7 | xo) (on-policy training). However,
for the complex high-dimensional distributions on-policy training is insufficient, as modes that are not
discovered by the sampler are very unlikely to be explored. To facilitate training we adapt practices
from diffusion sampling literature to guide the sampling process towards the areas of high density of
the target distribution p;. In the next paragraphs we discuss such techniques.

Replay buffer. We keep a replay buffer of final samples x; from the process 7 ¢ (7 | x). During
training, to obtain xo, we sample x| from the buffer, then sample a reverse trajectory to obtain xg
for training: %y ~ <17</,(~ | x1). As the model trains and begins to better approximate p1, the buffer
becomes populated with samples x; that are probable under p;. Thus, the buffer helps the sampler
focus on the relevant regions of the space and retain information about previously discovered modes.

Reverse trajectories. To obtain the batch of trajectories 7 starting at xo, we use both the reverse
trajectory used to produce x¢ (see above) and a batch of N — 1 trajectories drawn on-policy from
7 6(7 | x0) to form a batch of N trajectories sharing their initial point. The reuse of the backward
trajectories allows the algorithm to learn on trajectories that reach high-density regions of p;j.
However, using only reverse trajectories prevents the model from sufficiently exploring the whole
space. Therefore, careful tuning is needed to strike a perfect balance between exploration and
exploitation. We use N = 2 for all our experiments.
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Langevin updates. Following the method of Sendera et al.| (2024) for diffusion samplers, we
periodically update the buffer using a few steps of unadjusted Langevin on the density p; to correct
for the sampler’s imperfect fit to the target.

Mixing on-policy and off-policy training. In the training policy, we use a mixture of initial points
X0 and trajectories T sampled on-policy and those sampled using the Langevin-updated buffer with
reverse trajectory reuse, as described above. The frequency of using the buffer is called the off-policy
ratio, and we ablate different off-policy ratios in Table[3] For most of the experiments we use constant
off-policy ratio 0.8.

We provide details of all off-policy methods in Appendix [D] and these methods are ablated in §5.4]
3.3 ITERATIVE PROPORTIONAL FITTING WITH DATA-TO-ENERGY STEPS

The full IPF algorithm for data-to-energy SB alternates between backward steps that train ¢ to
convergence using the maximum-likelihood objective (6a) and forward steps that train 6 to conver-
gence using (8). The backward step is trained using samples from po and forward trajectories from
7 o(1 | x0), while the forward step is trained using trajectories obtained using the off-policy methods
described above. The complete algorithm is summarised in Algorithm[2] We reuse the model weights
from the previous IPF step, buffer state is also preserved, although we randomly reinitialise a fraction
of samples stored in buffer for the outsourced experiments.

Energy-to-energy generalisation. The data-to-energy IPF algorithm easily can be generalised to
the case where samples from neither pg nor p; are available, but both are given by unnormalised
densities p;(x) = e~ /Z;. In this case, both the backward and forward IPF steps must be
performed using the variance-based loss (7), with appropriate choices of training distributions (such
as keeping separate replay buffers for both marginals). We call this energy-fo-energy SB and show
preliminary results in §5.2

Evaluation metrics. We consider three metrics for evaluating the approximate solutions to the
SB problem yielded by our data-to-energy IPF algorithm. Because SB is a constrained optimisation
problem, it is necessary to measure both the constraint satisfaction (i.e., that the solution is a transport
from pg to p1) and the cost (divergence from the reference process). To this end we measure ELBO,
path KL, and Wasserstein distance to oracle samples from the target distribution (when available);
see Appendix [B]for details.

4 QOUTSOURCED SAMPLING WITH SCHRODINGER BRIDGES

We describe how our algorithm for solving data-to-energy Schrodinger bridges can be applied to the
problem of Bayesian posterior sampling under a pretrained generative model prior p(x) by pulling
the sampling problem back to its latent space.

Consider a posterior of the form p(x | y) o< p(x)r(x, y), where p(x) is a prior over the data space (e.g.,
images) and r(x, y) is a constraint function that encodes the conditional information about the sample
x (e.g., a class likelihood or match to a text prompt). If the pretrained generative model is expressed as
a deterministic function f of a random noise variable z ~ p(z), Venkatraman et al.|(2025) proposed
to sample the posterior pulled back to the noise space, with density p(z | y) o< p(z)r(f(z),y), using
a diffusion sampler. If z is distributed with this density, then samples f(z) follow the desired posterior
distribution p(x | y) in data space. Such a method was successfully applied in the latent spaces of
various models types, such as GANs, continuous normalising flows.

Instead of using a diffusion sampler, we propose to model a Schrodinger bridge between the dis-
tributions p(z) and p(z | y). Since neither the normalising constant nor samples from the latter
distribution are available, we use the data-to-energy algorithm described in §3.11 Modelling a
Schrodinger bridge instead of simply a diffusion sampler has the advantage of transporting prior
samples to nearby posterior samples in latent space, which is expected to preserve semantic content
that is not constrained by y; we show this empirically in §5.3]

Metrics for outsourced stochastic transport. In order to evaluate the performance of our method
on the stochastic optimal transport task in the latent space, we compute path KL in the latent space,
as well as the L? static transport cost between prior samples from pg(xo) and the pushed-forward
samples from the approximated posterior p (7 | x9)po(xo). For image tasks with a classifier reward,
in order to evaluate the quality of generated images with respect to the target posterior, we use the
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Table 1: Comparison of data-to-data IPF methods. Bold indicates the best-performing method.

Distributions — Gauss & GMM Gauss < Two Moons Two Moons < GMM
Algorithm | Metric — W2() PathKL(]) W2Z(]) PahKL(l) W) PathKL(])
DSBM-IMF (Shi et al.|[2023) 0.046+0.004  1.004+0.137 0.061+0.034  1.813:0.960 0.043x0012  1.893-+0.369
DSBM-IMF+ (Shi et al.[[2023) 0.060+0.049  0.909:0.426 0.049+0.007 1.848+0.285 0.038+0.010 1.894+0.324
[SF]*M (Tong et al.|2024b) 0.041x0.021  2.295+0513 0.053+0022  3.321:+1.862 0.0570.030  3.823+0314
IPF-based

DSB mean (De Bortoli et al.||2021)  0.093:0.096 5.886=+4.460 0.111+0041  6.398+1.949 0.078+0.029 5.520+3.163
DSB score (De Bortoli et al.|[2021)  0.052+0.018 5.645+3.474 0.171x0.149  14.346+8.776  0.066+0.035  5.231+2.802

SDE (Chen et al.|[2021b) 0.037+0.010 2.088+1.228 0.033+0.004 2.262+0.268 0.025+0.010  3.915:+0.285
LL fixed var. ~|Vargas et al.|(2021)  0.037x0.014  2.507+0.366 0.033+0.005 2.351:0.149 0.031+0.011  3.710£0.332
LL learnt var. (ours) 0.042+0.018  2.840=0.668 0.022+0.009 4.288:+1.876 0.023-0.013  3.938+0.526

mean log-constraint value and FID (Heusel et al., [2017). The latter is computed between images
decoded from latents sampled from the trained SB model and images of the target class(es), which
are not available to the model during training.

5 EXPERIMENTS
5.1 BENEFITS OF TRAINABLE VARIANCE

In order to show the benefits of trainable variance in time-discretised processes, we present the
comparisons of existing data-to-data SB methods with our proposed algorithms, including both learnt-
variance and fixed-variance alternatives. The data-to-data experiments are conducted on synthetic
several 2-dimentional benchmarks (following |Shi et al.[(2023)): Gauss « GMM, Gauss < Two
Moons, Two Moons <> GMM (where Gauss is an isotropic Gaussian and GMM is a mixture of eight
Gaussians). We compare with |Shi et al.| (2023) (DSBM and DSBM++), De Bortoli et al.| (2021)
(DSB), which also uses IPF for training, |Chen et al.|(2021b)) (SDE), which uses a continuous-time
version of IPF, and [Tong et al.| (2024b) ([SF]°M), which relies on a minibatch approximation to
entropic optimal transport. All experiments use K = 20 discretisation steps. The results, in Table[T}
clearly show the benefits of training the variances, despite the discrete-time processes not being
consistent with an undelying continuous-time process.

We further investigate the effect of learnt variance at varying numbers of discretisation steps. We find
that leant variance allows for more accurate modelling in both data-to-energy and data-to-data settings
when the number of steps is small. Results are shown in Fig. 2] (in numerical form in Table {)).

For all 2-dimensional experiments we use dX; =
\/EdW, as the reference process, training is
done using 4000 steps for both backward and
forward processes and 20 IPF steps. We use _°”
the same neural network architecture for all 2- = oo
dimensional experiments. We provide a detailed 003

experiment configuration in Appendix D] oo TS

«- Data-to-data learnt var 5
007

0.06

Path KL

001

5.2 DATA-TO-ENERGY AND ’ Number o seps v Numberofscps °
ENERGY-TO-ENERGY SCHRODINGER BRIDGE

Figure 2: (sz and Path KL depending on the num-

To prove the viability of data-to-energy ber of discretization steps for Gauss < GMM.

Schrodinger bridge training we compare the
bridge between Gaussian and GMM distributions trained using data-to-data and data-to-energy
IPF versions (where the data-to-energy version has no access to the data samples that the data-to-data
algorithms sees). Fig. [3]shows the resulting IPF trajectories and Table [d] shows that the data-to-energy
model is comparable to one trained with data samples.

5.3 OUTSOURCED SCHRODINGER BRIDGE

Finally, we show the scalability of our method by running data-to-energy Schrédinger bridge algorithm
in the latent space of generative model. We use generators of StyleGAN [Karras et al.| (20205 2021)
and SN-GAN Miyato et al.| (2018) generator trained on CIFAR-10 |[Krizhevsky| (2009) and VAE
Kingma & Welling| (2014)); Rezende et al.|(2014) generator trained on MNIST [LeCun et al.| (1998)).
We train the bridge model between the latent space prior p(z), which in our case is always a Gaussian
distribution, and reward-reweighted prior of the form r(f(z), y) - p(z). The reward function r(x, y)



Under review as a conference paper at ICLR 2026

is a classifier that returns the probability of the object x belonging to the class y (i.e., the probability
that x is, for example, boat for CIFAR-10 or the digit 5 for MNIST).

MNIST experiments are conducted in two se- r=0 i t=1
tups: (a) reward function returns the probability
that x is even or odd (b) reward function returns
the probability that x = 5. For CIFAR-10 exper-
iments we use StyleGAN (Karras et al., [2020j
2021) generator with latent dimension 512 and
SN-GAN Miyato et al.| (2018) generator with
latent dimension 128. We use a pretrained clas-
sifier model as a reward function. Samples are
shown in Fig. 4} more CIFAR-10 results can be
found in Appendix

In Table [2| we compute FID between samples
of the target class posterior obtained from the
trained SB and images belonging to the target
class in the dataset, as well we the same metric
for a set of ground truth posterior samples ob-
tained by rejection sampling. Remarkably, the
transported samples tend to have lower FID than
samples from the true distribution.

IPF step 20 IPF step 7 IPF step 1

IPF step 20 IPF step 7 IPF step 1

These results reveal a benefit of training a
Schrodinger bridge model, as opposed to a dif-
fusion sampler or an arbitrary stochastic map-
ping. It can be seen in Fig. 4] that images al-
ready belonging to the target class change little,
while those belonging to other classes maintain
features that are unrelated to the target class:
the background and global structure are pre-
served. This suggests that style transfer for
higher-dimensional images can be a promising
application of our method.

=
s
i
&l

IPF step 20 IPF step 7 IPF step 1

Figure 3: Comparison of learnt processes at var-
5.4 ABLATIONS ious IPF iterations for data-to-data (fop), data-to-
OF OFF-POLICY TECHNIQUES energy (middle) and energy-to-energy (bottom) set-
tings. For the energy-to-energy setting we use two

In order to verify our design choices for the high- different mixtures of Gaussian distributions.

dimensional experiments we provide a detailed

ablation of the various off-policy reinforcement

learning tricks described in The results are given in a Table[3] We use a simple on-policy setup as
a baseline. We find that saving samples in a replay buffer (buffer) to use them for sampling backward
trajectories and applying Langevin update to the buffer samples (buffer + Langevin) significantly
improves the Path KL metrics, therefore yielding a bridge closer to the optimal one. Moreover, we
show that reusing backward trajectories for the computation of loss also improves Path KL, giving the
best model based on this metric. However, reusing backward trajectories negatively impacts the mean
log-reward metric, possibly because it prevents mode collapse. To balance between modeling modes
and achieving low transport cost, we explore the possibilities of both setting a smaller off-policy ratio

SN-GAN StyleGAN
Table 2: ELBO (1) values Source | Class — Car Cat Dog Horse  Horse  Truck
and FID ({) scores comparing  Same class 10371 17.950 15.034 12.876 12.876  9.289
CIFAR-10 samples from the Reicciion sampling  31.334  42.242 43.691 35019 97.855  76.403
posterior under a GAN prior Langevin 25296 33.619 37.665 27.601 85.611 68.678
and a classifier to data samples  Diffusion sampler ~ 83.940 ? 60.512 ? ? ?
of the target class. Outsourced SB 22312 40489 37287 33.021 58988 55.346
ELBO
Outsourced SB 6737 9356 -6.087 -5961 -21.784 -6.809
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SN-GAN StyleGAN
Car Cat Dog Horse Horse Truck

NN a Qo
N NN NN
wyWo b

Figure 4: Outsourced Schrodinger bridge on MNIST and CIFAR-10. The bridge preserves style
features (thickness, background colour, orientation) while tranforming digits to the target class.
Table 3: Ablation of off-policy reinforcement learning techniques on the SN-GAN outsourced
sampling problem. Bold indicates the best result, underlined indicates second best. The model is
trained to amortise sampling from one class (dogs).

Algorithm | Metric — ELBO (1) Path KL (]) L%(xo,xl)(l) mean log-reward (T)
on-policy —-190.920 1506.407 10.949 -0.233
buffer —188.351 622.895 10.957 -0.125
+ Langevin —-188.554 383.514 10.130 —-0.286
+ reuse backward trajectory —-188.149 206.094 10.046 —-0.657
+ annealed off-policy ratio  —188.355 244.270 11.386 -0.149
smaller off-policy ratio —-188.620 668.255 11.027 -0.131

— fraction of off-policy trajectories — and annealing the off-policy ratio throughout the training; the
latter sometimes produces improvements. All ablation experiments are conducted using the SN-GAN
generator and VGG13 classifier on CIFAR-10 dataset. All models are trained to amortise sampling
from one class (Dogs) and are trained with the same seed.

6 CONCLUSION

This paper shows the potential of training data-to-energy Schrodinger bridges in a time discretisation
with learnable drift and variance for the forward and backward processes. We showed that, despite
its complexity, our method can be successfully scaled. Future work should focus more on scaling
the data-to-energy Schrodinger bridges to higher dimensions, as well as arbitrary prior distributions,
which would significantly improve the versatility of the proposed algorithms. Moreover, the trained
samplers are prone to mode collapse, therefore, future work should investigate techniques to further
improve mode coverage. One more promising direction would be to amortise over the distribution
of conditions in image generation problems, instead of learning a model for each specific condition.
Finally, we are excited to explore various domains in which the proposed algorithms can be applied.
Interesting areas include text-conditional image reward fine-tuning of diffusion models and discrete
Schrodinger bridge problems.
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A RELATED WORKS

In this section we establish links between our method and other research directions in the literature.

Optimal transport. Optimal transport is a well-established area of research with a solid theoretical
background and scalable applied algorithms. The problem is concerned with finding the optimal
transportation map which minimises a given transportation cost. Originally, the problem was proposed
by Monge in Monge| (1781). In 20th century this problem was reformulated and generalised by a
Kantorovich in a series of works including [Kantorovich & Rubinshtein| (1958)); Kantorovich/(1960).
Since then the problem has been rigorously studied, refer to Peyré et al.|(2019); |Villani| (2008) for a
detailed presentation of theory. In a discrete case optimal transport can be solved using Sinkhorn’s
algorithm (Sinkhorn, [1964; Peyré et al.,|2019). Recent works have applied optimal transport to a
series of machine learning problems, including image-to-image translation (Korotin et al.| [2022),
voice conversion (Asadulaev et al.,|2024)), and super-resolution (Gazdieva et al., |[2025)).

Schrodinger bridges. Schrodinger bridge problem is concerned with finding stochastic optimal
transport dynamics between two distributions. The problem was originally proposed by Schrodinger
in|Schrodinger| (1931} 1932). The Schrodinger bridge problem can be seen as a regularised version
of dynamic optimal transport (Léonard, |2014) and has interesting connections to optimal control
theory (Chen et al.|[2021c). Computationally, the problem can be solved using Iterative Proportional
Fitting (IPF) algorithm (Fortet, |1940; Deming & Stephan, [1940; Sinkhorn, |1964). De Bortoli et al.
(2021));|Vargas et al.| (2021) proposed the scalable formulation of this method that allows to compute
Schrodinger bridge between a pair of distributions given by unbiased samples. |Chen et al.|(2021b))
proposes a continuous-time variant of IPF. Methods distinct from IPF have also been proposed (Shi
et al., [2023} [Tong et al.} 2024b)); all of them assume access to samples from the target distribution for
an unbiased objective.

Diffusion samplers. Data-to-energy Schrodinger bridge is related to the problem of sampling from
an unnormalised density. Diffusion samplers (Zhang & Chenl 2022} |Vargas et al., 2023} Richter|
& Berner, 2024} Berner et al.} [2024; Blessing et al., |2025a) represent one of the approaches that
solve this problem. Some methods use off-policy reinforcement learning techniques (Lahlou et al.,
2023} [Sendera et al., [2024)) to amortise sampling from intractable density. The theoretical connection
among various objectives was established in Berner et al.[(2025).

Outsourced sampling. The concept of outsourced diffusion sampling — modelling continuous-
time dynamics in latent space for posterior inference under pretrained priors — was proposed in
Venkatraman et al.[ (2025). The work shows that sampling can be efficiently conducted in the latent
space of a generator, where the density landscape is smoother.

B METRICS FOR DATA-TO-ENERGY SB

First, if both samples from po and the density of pg are available, we evaluate the quality of the learnt
7 ¢ as a sampler of p; using the evidence lower bound:

P o(T | x1) exp(—E1(x1))
Po(t | x0)po(xo)

which equals the true log Z = log / exp(—&1(x)) dx if and only if the processes 7 ¢ and <17¢ coincide.

ELBO =E log <logZ,

x0~po(x0),T~P g (T|x0)

Second, if samples from p| are available (even if not available to the learner during training), we
report the 2-Wasserstein distance ‘W, between batches of true samples from p;(x;) and samples
obtained from the learnt model po (7 | x¢), which measures the discrepancy between the target and
modelled marginals.

Third, to approximate the cost, we compute the path KL in discrete time:

o
KL(po ® E o[l po ® Qujo) = KL (po(x0) @ Ba (7 | %0) Il po(x0) © (7 | x0)) ©)
Po(t|xo)
= EX()NP(),TN?G(T\XO) [ g q(t | x0) (10)
K-1
= Ex0~p0’7'~?9(f‘x0) Z KL(?B('X;(-'.I | xk) ” Q(x;<+] | xk))l (11)
k=0
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where ¢(7) is the time discretisation of the reference process Q;. The estimator using transition KLs
in can be seen to be a Rao-Blackwellised (lower-variance) variant of the estimator in (10}, and
we use it because the KL can be computed analytically (as all transition kernels are Gaussian). It can
be shown (Appendix [C)) that this path KL is equivalent to path energy as used in [Shi et al.| (2023).

C RELATION BETWEEN PATH KL AND PATH ENERGY

In this section we explain the relation between path KL and path energy (Shi et al.| [2023)). Assuming
that the transition kernels are given by:

‘_D)g(x;ﬁ_l | x1) =N (xk +vg(xy, kAr)At, 0'2Atl) (12)

q(Xpy | X)) = N (Xk,O'zA[I) (13)

where vg(x;, 1) is a leant drift, o is constant and is the same for both P;0 and Qy|o, time-discrete
path KL can be written in the following form:

KL (po(x0) ® B o(r | x0) Il po(xo) ® g (r | x0)) (14)
P9(7|Xo)] Pa(xk+1 | xx)
= Ex ~po.T~Po(7|x Ex ~po,T~ 7| X 15)
0~P0,T~p o(T|x0) [ q(1 | x0) 0~P0,T~P 6 (T|x0) Z q(x]<+1 | xk)
K- 1

=E e po, i~ B (1) Xl = Xk) = (16)

lve(xk, kAl)H2
200 2

Given that x4 — xx = vg(x}, kAt)At + cAtég, & ~ N(0,1) for 0 < k < K — 1 and the &, are
independent, the path KL can be finally written as:

KL (po(x0) ®F o(7 | x0) Il po(xo) ® 4(7 | x0)) a7)
K-1
IvoCux, kADIP ! )
:Exo~po,T~7y(T|xo) lz 20_2 At At —0 ﬁEPO(XO)‘@?g(T‘Xo) ||v9(-xt9t)|| dr
k=0
(1s)

The limit is justified by the Girsanov theorem (Sarkka & Solin, 2019). This yields the path energy
used in [Shi et al.| (2023)).

D EXPERIMENT DETAILS
D.1 DATA-TO-DATA EXPERIMENTS

All data-to-data experiments are conducted under the unified setup. For neural network we use an
MLP with 3 hidden layers and 64 neurons in each layer, each layer is followed by a LayerNormBa
et al.[(2016) and SiLU activation function. All neural networks are trained using AdamW optimiser
with learning rate 0.0008. Sampling is done in 20 steps with #n,x = 0.2 and dr = 0.01. We train
forward and backward models for 4000 steps at each IPF iteration and we train each model for 20 IPF
iterations. [SF]?M is trained using 160, 000 steps. The metrics are computed using 10, 000 samples
from the target distributions and 10’000 samples obtained from the learnt forward process. All the
metrics are averaged over 5 seeds (42, 43, 44, 45, 46).

D.2 2D DATA-TO-ENERGY EXPERIMENTS

For the data-to-energy experiments we use the same neural networks as for data-to-data experiments.
We use 20 steps for sampling with 7,,x = 0.8 and df = 0.04. Neural networks are optimised with
AdamW optimiser with learning rate 0.0005. When Langevin update is used, we update buffer
samples every 500 steps during training of the forward process. Langevin is used with the step size
0.01 and we do 50 updates each time. We use 2 trajectories from each x( for the computation of the
VarGrad loss. All the metrics are averaged over 5 seeds (42, 43, 44, 45, 46).

D.3 2D ENERGY-TO-ENERGY EXPERIMENTS

We provide a description of energy-to-energy experiment shown in Fig. [3]| We use GMM with 5
modes for the distribution pg and GMM with 8 modes for distribution p;. For both distributions we
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Table 4: SB metrics for varying the number of time discretisation steps in data-to-data and data-to-
energy setting with both learnt and fixed variance (Gauss <> GMM).

Number of steps — K=5 K=10 K =20 K =40
Algorithm | Metric — w3 Path KL Wy Path KL w3 Path KL W2 Path KL
Data-to-data learnt var. 0.026+0.006 4.158+0986  0.033x0.012  3.127x0981  0.042:0.018 2.840+0.668 0.028+0.009 3.070=0.666
Data-to-data fixed var. 0.066+0.005  0.988+0.031  0.038+0.005 1.825+0073 0.037:0.014 2.507+0366 0.023:0010 2.739+0.233
Data-to-energy learnt var  0.023z0.010  3.745x0415  0.022+0.008 3.162x0308 0.028x0.015 3.337:0775  0.020:0.003 2.838+0.609

Data-to-energy fixed var ~ 0.063+0.006 1.152+0.172  0.050:0.024 2.047+0.123  0.035:0014 3.069:0226 0.021x0010 3.360:0.150

rely exclusively on the corresponding log-densities. We do not use samples from either pg or p;.
We keep replay buffers for both densities. We initialise both replay buffers with Gaussian noise in
the beginning of training. Since samples are unavailable we use objective Equation (7) to learn the
forward process and similar objective:

Dot | x1) o Do (X(k-1)ar | Xkar)
Liv(x1, ) = Var |log = = Var Zlog_)
P o(T | x0)po(xo) = Polxkar | Xk-1)ar)

to learn the backward process.

+&o(xo) |, (19)

D.4 OUTSOURCED SCHRODINGER BRIDGE EXPERIMENTS

Experiments on MNIST. For MNIST experiments, we use a custom VAE with 3 layers in both the
decoder and encoder. We use a custom MNIST classifier as a reward model, which consists of 3 MLP
layers. Each layer is followed by the ReLU activation function, except for the last one, which uses
a sigmoid. We train the forward and backward networks for 5, 000 steps during each IPF iteration,
with 20 IPF iterations in total. All the networks are trained with AdamW optimiser using learning
rate 0.0008. We do not use Langevin updates for this experiment, relying only on a replay buffer. We
use the same MLPs as in 2D data-to-energy experiment to parameterise the backward and forward
drift and variance.

Experiments on CIFAR-10 with SN-GAN and StyleGAN. For the CIFAR-10 experiments, we
use MLP with 3 hidden layers, which has 256 hidden units for the SN-GAN experiments and 512
for the StyleGAN experiments. We train forward network for 500 steps and backward network for
100 steps during each IPF iteration, for a total of 300 IPF iterations. All the networks are trained
with AdamW optimiser using learning rate 0.0005. Langevin updates are made every 500 iterations
during the training of the forward network. We run Langevin for 500 steps with initial step size of
0.01 and anneal step size to 0.001 during the updates.

We use 20 steps for sampling with dr = 0.04 for the StyleGAN experiments and d¢ = 0.005 for
SN-GAN experiments. We use Wiener process, dX; = \/§th, as the reference process. All the main
experiments are conducted with a replay buffer and Langevin updates, with off-policy ratio of 0.8,
and the backward trajectories are reused for computing VarGrad loss.

For the reward model we use VGG (Simonyan & Zisserman, 2015) classifier pretrained on CIFAR-10.
The weights are taken from https://github.com/huyvnphan/PyTorch_CIFAR10. We
use VGG-13 for SN-GAN experiments and VGG-19 for StyleGAN experiments.

For the rejection sampling (ground truth), the FID score is computed between 6, 000 images sampled
proportionally to the probabilities obtained from classifier and 6, 000 images from the CIFAR-10
dataset. For the outsourced SB the FID score is computed between 6, 000 samples from the learnt
model and 6, 000 real CIFAR-10 samples. All scores are computed only on the images of a specific
class. All other metrics (path KL, mean log-reward, L% (x0,x1), ELBO) are computed using a batch
size of 512.

E ADDITIONAL RESULTS

In addition to the Fig. 2| we also provide the metrics for the ablation in Table 4] We use the same
architecture and hyperparameters as in data-to-data experiments and vary only the number of sampling
steps. For the data-to-energy runs we use a replay buffer with Langevin updates, the off-policy ratio
is set to 0.8 and the backward trajectories are not reused for the loss computation. ’W22 is computed
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using 10, 000 ground truth samples and samples from 7 (7 | xo) po(xo). Path KL is also computed
on 10, 000 samples.

F VISUAL EXAMPLES FOR OUTSOURCED SB

F.1 CURATED EXAMPLES

SN-GAN StyleGAN
Car Cat Dog Horse Horse Truck

Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior

Figure 5: Curated examples of outsoursed SB with SN-GAN and StyleGAN generators.
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F.2 UNCURATED EXAMPLES

Posterior

Figure 8: Uncurated examples of outsoursed SB with SN-GAN for the class dogs.
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Figure 9: Uncurated examples of outsoursed SB with SN-GAN for the class horses.

Prior Posterior

Figure 10: Uncurated examples of outsoursed SB with StyleGAN for the class horses.

Posterior

Figure 11: Uncurated examples of outsoursed SB with StyleGAN for the class trucks.
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F.3 EXAMPLES FOR SCHODINGER BRIDGE WITH NON-GAUSSIAN PRIOR

Posterior (Dogs)

Posterior (Cats)

Figure 12: Uncurated examples of outsourced SB with SN-GAN between classes cats and dogs.

Posterior (Cars) Posterior (Trucks)

N R

JTF s T B

Figure 13: Uncurated examples of outsourced SB with SN-GAN between classes cars and trucks.

G COMPARISON WITH ANALYTICAL SOLUTION

To validate the proposed SB algorithm, apply it to the problem of finding the SB between two
Gaussians. In this case, the problem has an analytical solution Bunne et al.| (2023). For our

experiments, we train SB between N (0, I) and N ([ﬂ , [?(2)’ ig]) We compare data-to-energy and

data-to-energy SB algorithms, proposed in this paper, as well as DSBM [De Bortoli et al.| (2021)), to
the SB computed analytically. For comparison, we use the Wasserstein-2 distance computed between
samples, obtained from the SB algorithm and analytical solution, for each time step of the trajectory.
The results are in Fig. [T4]
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diffusion sampler
Data-to-data 5B

10° § —.- Data-to-energy SB with leant variance
Data-to-energy SB with fixed variance
— osem
~=- Analytical SB
S 100
=
1072

0000 0010 0020 0.030 0040 0.050 0.060 0070 0080 0090 0100 0110 0120 0130 0140 0150 0.160 0.170 0.180 0190 0200
Time

Figure 14: Comparison of SB algorithms in terms of ‘W, distance to the analytical solution

21



	Introduction
	Data-to-data Schrödinger bridges
	Iterative proportional fitting for data-to-data SB
	Discretisation allows flexible kernels

	Data-free Schrödinger bridges
	IPF for data-to-energy SB
	Off-policy training methods
	Iterative proportional fitting with data-to-energy steps

	Outsourced sampling with Schrödinger bridges
	Experiments
	Benefits of trainable variance
	Data-to-energy and energy-to-energy Schrödinger bridge
	Outsourced Schrödinger bridge
	Ablations of off-policy techniques

	Conclusion
	Related works
	Metrics for data-to-energy SB
	Relation between path KL and path energy
	Experiment details
	Data-to-data experiments
	2D data-to-energy experiments
	2D Energy-to-energy experiments
	Outsourced Schrödinger bridge experiments

	Additional results
	Visual examples for outsourced SB
	Curated examples
	Uncurated examples
	Examples for Schödinger bridge with non-Gaussian prior

	Comparison with Analytical Solution

