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ABSTRACT

Increasingly, practitioners apply neural networks to complex problems in natu-
ral language processing (NLP), such as syntactic parsing, that have rich output
structures. Many such applications require deterministic constraints on the output
values; for example, requiring that the sequential outputs encode a valid tree. While
hidden units might capture such properties, the network is not always able to
learn them from the training data alone, and practitioners must then resort to post-
processing. In this paper, we present an inference method for neural networks that
enforces deterministic constraints on outputs without performing post-processing
or expensive discrete search over the feasible space. Instead, for each input, we
nudge the continuous weights until the network’s unconstrained inference proce-
dure generates an output that satisfies the constraints. We find that our method
reduces the number of violating outputs by up to 81%, while improving accuracy.

1 INTRODUCTION

Many neural networks have discrete-valued output units that correspond to an inference or prediction
about an input. Often, a problem might involve multiple discrete outputs. Unlike multiclass classi-
fication, which associates a single discrete output with each input, so called structured prediction
problems associate multiple outputs with each input. For example, in multi-label classification,
instead of predicting a single relevant class pertaining to the image or sentence, we must predict all
relevant classes: the image contains a dog, a tree, and a sky. In sequence prediction problems, the
discrete outputs might be a sequence of words or symbols that must form a coherent translation of a
source language sentence (Cho et al., 2014; Sutskever et al., 2014), description of an image (Vinyals
et al., 2015b), answer to a question (Kumar et al., 2016), or a parse-tree for an input sentence (Vinyals
et al., 2015a). Crucially, in structured prediction, the output values are interdependent. Even though
neural networks usually predict outputs independently or sequentially (one output at a time), the
hidden units allow them to successfully capture many dependencies.

Sometimes, the outputs must obey hard constraints. For example, in sequence labeling with BILOU
encoding, a ‘begin’ marker B cannot immediately follow an ‘inside’ marker I (Ratinov & Roth,
2009). In clustering, pairwise binary decisions must obey transitivity so that they yield a valid
equivalence class relation over the data points (McCallum & Wellner, 2005; Wick et al., 2006; 2008).
In syntactic/dependency parsing, the output sequence must encode a valid parse tree (McDonald
& Pereira, 2006; Vinyals et al., 2015a; Dyer et al., 2016). In formal language generation or neural
compilers the output must belong to a context free language or compile (Reed & de Freitas, 2016). In
dual decomposition approaches to joint inference, copies of variables must satisfy equality constraints
(Koo et al., 2010; Rush et al., 2010; Rush & Collins, 2012). Finally, in some ensemble methods,
the outputs of multiple conditionally independent classifiers must reach a consensus on the output
class. Indeed, there are a tremendous number of problems that require hard constraints on the outputs.
Unlike softer dependencies, violating a hard-constraint is often unacceptable because the output of
the network would not “type-check” causing problems for downstream components. Unfortunately
in practice, networks are not always able to exactly learn constraints from the training data alone.

As a motivating example, consider a sequence-to-sequence network that inputs a sentence and outputs
a sequence of “shift-reduce” commands that describe the sentence’s parse tree. Briefly, the shift-
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reduce commands control a parsing algorithm by indicating how and when to use its stack. Each
command controls whether to shift (s) a token onto the stack, reduce (r) the top of the stack into a
parent tree node, or push (!) the current reduction back onto the stack.

To be successful, the network must generate commands that imply a valid tree over the entire input
sentence. However, the decoder outputs just a single command at a time, producing some outputs
that are not globally-consistent, valid shift-reduce programs. Indeed, the output may not have enough
shifts to include every input token in the tree or may attempt to reduce when the stack is empty. For
example, the following input sentence “ So it ’s a very mixed bag . ” comprises ten space-delimited
tokens (the quotations are part of the input), but our unconstrained sequence-to-sequence network
outputs an invalid sequence with only nine shifts ssr!sr!ssssrrr!rr!ssrrrrrr!. We must
introduce another shift so the last token is pushed onto the stack and issue another reduce so it
is inserted into the tree.

We could attempt to fix the output with post-processing, but where is the right place to insert
these commands in the sequence? There are 406 = choose(29, 2) candidate locations. Further
complicating our post-processing dilemma is the fact that the output contains several other errors
that are seemingly unrelated to the constraint. Instead, we could attempt to fix the problem with a
more sophisticated decoder, but this is difficult because the decoder outputs a single character at each
time-step and our constraints are global, limiting corrections to the end of the sequence when it is too
late to rectify an earlier decision. A beam search is less myopic, but in practice most of the network’s
output mass is peaked on the best output token, resulting in little improvement.

In this paper, we propose an inference method for neural networks that enforces output constraints
without employing combinatorial discrete search. The idea is to modify some (or all) of the weights
for each instance at test-time, iteratively nudging them, until the network’s efficient unconstrained
inference procedure produces a valid output. We achieve this by expressing the hard constraints as
an optimization problem over the continuous weights and employ back-propagation to change them.
Prima facie, back-propagation is doomed because the constraint loss is necessarily a function of the
argmax that produced the discrete values. However, we circumvent this problem by optimizing over
the energy of the violating outputs instead. Since the weights directly determine the output through
the energy, we are able to manipulate the unconstrained inference procedure to produce the desired
result. Much like scoped-learning, the algorithm customizes the weights for each example at test-time
(Blei et al., 2002), but does so in a way to satisfy the constraints.

When applied to the above example, our method removes enough energy mass from the invalid output
space in only twelve steps, allowing unconstrained decoding to produce a valid output sequence:

ssr!sr!ssssrrr!rr!ssrrrrrr! (initial output)
sssr!ssssrr!srrr!rr!ssrrrrrr! (rectified output after 12 steps)

Interestingly, the network generates an additional s command at the beginning of the sequence while
also producing a cascade of error correction in later time steps: the new output now satisfies the
constraints and is a perfectly correct parse. Of course, enforcing constraints does not always lead to
an improvement in accuracy, but we find that often it does in practice, especially for a well-trained
network. We find that our method is able to completely satisfy constraints in up to 81% of the outputs.

2 BACKGROUND

Consider a neural network that generates a variable length output vector y = {yi}
ny
1 from a variable

length input vector x = {xi}mx1 . For example, in image classification, the input vector encodes fixed
multi-dimensional tensor of pixel intensities and the output vector comprises just a single element
corresponding to the discrete class label. In sequence-to-sequence, the input might be a variable
length vector of French tokens, and the output would be a variable length vector of its English
translation. It is sometimes convenient to think of the network as a function from input to output

f(x;W ) 7→ y (1)

However, for the purpose of exposition, we separate the neural network into a real-valued model
(negative energy function) that scores the compatibility of the outputs (given the weights and input)
and an inference procedure that searches for high scoring outputs.
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For the model, let yi be a discrete output from an output unit and let ψ(yi;x,W ) be its corresponding
real-valued log-space activation score (e.g., the log of the softmax for locally normalized models or
simply a linear activation value for globally normalized models). Define the negative energy Ψ over a
collection of output values y as an exponentiated sum of log-space activation scores

Ψ(y;x,W ) = exp

(∑
i

ψ(yi;x,W )

)
(2)

Then, inference is the problem of finding the values of the outputs y that maximize the negative
energy given fixed inputs x and weights W . Thus, we can rewrite the neural network as the function:

f(x;W ) 7→ argmax
y

Ψ(y;x,W ) (3)

The purpose of separating the model from the inference procedure is so we can later formalize our
optimization problem. We emphasize that this formulation is consistent with existing neural networks.
Indeed, inference in feed-forward networks is a single feed-forward pass from inputs to outputs.
When the outputs only depend on each other through hidden states that only depend on earlier layers
of the network, feed-forward inference is exact in the sense that it finds the optimum of Equation 3.
For recurrent neural networks (RNNs), each output depends on hidden states that are functions of
previous output values. However, we can still think of the usual procedure that produces the highest
scoring output at each time step as a local greedy approximation to global inference; of course, the
procedure can optionally be improved with a beam.

3 CONSTRAINED INFERENCE FOR NEURAL NETWORKS

A major advantage of neural networks is that once trained, inference is extremely efficient. However,
constraints can render inference intractable due to discrete search. Our goal is take advantage of the
fact that unconstrained inference is inexpensive and design a constrained inference algorithm that
exploits such a procedure as a black box. Our method iteratively adjusts the weights for each test-time
input, concentrating the probability mass on the feasible region so that unconstrained inference
becomes increasingly likely to generate an output that satisfies the constraints.

In this work, we focus on constraints that require the outputs to belong to an input-dependent context-
free language Lx (CFL). The idea is to treat the output space of the neural network as the terminal
symbols, and devise the appropriate production rules and non-terminals to express constraints on
them. An advantage of employing CFLs over other formalisms such as first order logic (FOL) is
that CFLs are intuitive for expressing constraints on the outputs, especially for language models and
sequence-to-sequence networks. For example, when modeling Python or Java code, it is easy to
express many of the desired programming language’s constraints using a CFL, but cumbersome in
FOL. Indeed, CFLs are an expressive class of languages.

To motivate our algorithm, we begin with the ideal optimization problem and argue that unlike
for linear models with local constraints, the resulting Lagrangian is not well suited for globally
constrained inference in neural networks. We ultimately settle on an alternative objective function that
reasonably models our constrained inference problem. Although our algorithm lacks the theoretical
guarantees enjoyed by classic relaxation algorithms we nevertheless find it works well in practice.

Consider the following constrained inference problem for neural networks

max
y

Ψ(x,y,W )

s. t. y ∈ Lx
(4)

Naively enforcing the constraint requires combinatorial discrete search, which is intractable in general.
Instead, we prefer a smooth optimization problem with meaningful gradients to guide the search.

With this in mind, let g(y,L) 7→ r for r ∈ R+ be a function that measures a loss between a sentence
y and a grammar L such that g(y,L) = 0 if and only if there are no grammatical errors in y. That is,
g(y,L) = 0 for the feasible region and is strictly positive everywhere else. For a large class of CFLs,
g could be the least errors count function (Lyon, 1974) or a weighted version thereof. We could then
express CFL membership as an equality constraint and minimize the Lagrangian

min
λ

max
y

Ψ(x,y,W ) + λg(y,L) (5)
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However, this dual optimization problem has a major flaw. Our constraints are global and do not
necessarily factorize over the individual outputs. Consequently, there is just a single dual variable
λ. Optimizing λ does little more than eliminate a single contour of output configurations at a time,
resulting in a brute-force trial and error search.

Instead, observe that the network’s weights control the negative energy of the output configurations.
By properly adjusting the weights, we can affect the outcome of inference by removing mass from
invalid outputs. The weights are likely to generalize much better than the single dual variable because
in most neural networks, the weights are tied across space (e.g., CNNs) or time (e.g., RNNs). As a
result, lowering the negative energy for a single invalid output has the effect of lowering the negative
energy for an entire family of invalid outputs, enabling faster search. With this in mind, we introduce
an independent copy Wλ of the network’s weights W and minimize with respect to these “dual
weights” instead of the dual variable. This is powerful because we have effectively introduced an
exponential number of “dual variables” (via the energy, which scores each output) that we can easily
control via the weights; although similar, the new optimization is no longer equivalent to the original:

min
Wλ

max
y

Ψ(x,y,W ) + Ψ(x,y,Wλ)g(y,L) (6)

While a step in the right direction, the objective still requires combinatorial search because (1) the
maximization involves two non-linear neural networks and (2) a greedy decoding algorithm is unable
to cope with the global loss g() because the constraints do not factorize over the individual outputs.
In contrast the functions involved in classic Lagrangian relaxation methods for NLP have multipliers
for each output variable that can be combined with linear models to form a single unified decoding
problem for which efficient inference exists (Koo et al., 2010; Rush et al., 2010; Rush & Collins,
2012). Since our non-linear functions and global constraints do not afford us the same ability, we
must modify the optimization problem for a final time so that we can employ the network’s efficient
inference procedure as a black-box. In particular, we (1) remove the negative-energy term that
involves the original weights W and compensate with a regularizer that attempts to keep the dual
weights Wλ as close to these weights as possible and (2) maximize exclusively over the network
parameterized by Wλ. The result is a different optimization problem on which our algorithm is based:

min
Wλ

(
Ψ(x,y,Wλ)g(y,Lx) + α‖W −Wλ‖2

∣∣∣∣ y = argmax
y

Ψ(x,y,Wλ)

)
(7)

Informally, our algorithm alternates the maximization (by running efficient unconstrained inference)
and minimization (by performing SGD) until it produces a feasible output or it exceeds a maximum
number of iterations. For each test-example, we re-initialize the dual weights to the trained weights to
ensure the network does not deviate too far from the trained network. More precisely see Algorithm 1.

Algorithm 1 Constrained inference for neural nets
Inputs: test instance x, input specific CFL Lx, pretrained weights W
Wλ ←W #reset instance-specific weights
while not converged do
y← f(x;Wλ) #perform inference using weights Wλ

∇ ← ∂
∂Wλ

Ψ(x,y,Wλ)g(y,Lx) + α‖W −Wλ‖2 #compute constraint loss
Wλ ←Wλ − η∇ #update instance-specific weights with SGD or a variant thereof

end while

4 APPLICATION TO PARSING

Consider the structured prediction problem of syntactic parsing in which the goal is to input a sentence
comprising a sequence of tokens and output a tree describing the grammatical parse of the sentence.
One way to model the problem with neural networks is to linearize the representation of the parse
tree and then employ the familiar sequence-to-sequence model (Vinyals et al., 2015a).

Let us suppose we linearize the tree using a sequence of shift (s) and reduce (r,r!) commands that
control an implicit shift reduce parser. Intuitively, these commands describe the exact instructions for
converting the input sentence into a complete parse tree: the interpretation of the symbol s is that we
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shift an input token onto the stack and the interpretation of the symbol r is that we start (or continue)
reducing (popping) the top elements of the stack, the interpretation of a third symbol ! is that we stop
reducing and push the reduced result back onto the stack. Thus, given an input sentence and an output
sequence of shift-reduce commands, we can deterministically recover the tree by simulating a shift
reduce parser. For example, the sequence ssrr!ssr!rr!rr! encodes a type-free version of the
parse tree (S (NP the ball) (VP is (NP red))) for the input sentence “the ball is red”
It is easy to recover the tree structure from the input sentence and the output commands by simulating
a shift reduce parser, performing one command at a time as prescribed by the classic algorithm.

Note that for output sequences to form a valid tree over the input, the sequence must satisfy a number
of constraints. First, the number of shifts must equal the number of input tokens mx, otherwise either
the tree would not cover the entire input sentence or the tree would contain spurious terminal symbols.
Second, the parser cannot issue a reduce command if there are no items left on the stack. Third, the
number of reduces must be sufficient to leave just a single item, the root node, on the stack.

We can express most of these constraints with a CFL

L =



G → sRr!

R → sRr

R → Rr!

R → RR

R → ε

(8)

Intuitively, Rule 1 states that a valid shift-reduce command set must begin with a shift (since stack is
initially empty, there is nothing to reduce) and end with a reduce that places the final result on the
stack. Rule 2 states that if we do a shift, then we need to reduce the shifted token at some point in the
future. Rule 3 states that if we do not shift then we are allowed to reduce only if we also push the
result on the stack. Rule 4 allows for multiple subtrees. Rule 5 is the base case.

Note, however, that this grammar is for a general purpose shift-reduce language, but we need to
constrain the number of shifts to equal the number of input tokens mx. Since the constraint is a bit
verbose to express with production rules, we can instead write the regular language (s(r!)?)mx(r!)?

where m is the number of elements in x and intersect it with our CFL.

Lx = L ∩ (s(r!)?)mx(r!)? (9)

Rather than relying on a general purpose algorithm to compute g(y,Lx) that measures the number
of grammatical errors, we instead implement it specifically for our language. Let ctni=1(b(i)) be the
function that counts the number of times proposition b(i) is true. Now, define the following loss

g(y,Lx) = (m−ct
i
(yi=s))2+

(∑
i

ct
j>i

(yj=r)− ct
j>i

(yj ∈ {s, !})

)2

+ct
i
(yi=r)−(ct

i
(yi∈{s, !}))2

(10)
The first term measures the amount of violation due to the regular language and the second and third
terms measure the amount of violation according to the CFL.

5 RELATED WORK

There has been recent work in applying neural networks to structured prediction problems. For
example, the recent structured prediction energy networks (SPENS) combines graphical models and
neural networks via an energy function defined over the output variables (Belanger & McCallum,
2016). SPENS focuses on soft constraints (via the energy function) and performs inference by
relaxing the binary output variables to be continuous and then backpropagating into them. In contrast,
our method focuses on hard constraints and we backpropagate into the weights rather than into the
outputs directly. We could combine our method with SPENs to handle soft constraints; for example,
by back-propagating the output energy into the weights instead of the relaxed outputs themselves.

There has been recent work on applying neural networks to parsing problems that require the ability to
handle hard constraints. For example, by employing a sequence-to-sequence network (Vinyals et al.,
2015a) or a custom network designed for shift reduce parsing (Dyer et al., 2016). The former requires
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task inference weights changed (Wλ) conversion rate accuracy

azbz

unconstrained none 0.0% 75.6%
constrained all 65.2% 82.4%
constrained output only 20.9% 77.8%
constrained encoder only 58.2% 82.5%
constrained decoder only 57.4% 82.3%

sr no types unconstrained none 0.0% 84.0%
constrained all 81.8% 84.4%

sr with types

unconstrained none 0.0% 87.8%
constrained all 79.2% 88.3%
constrained output only 5.0% 88.1%
constrained decoder (top layer) 36.2% 88.2%
constrained decoder (all layers) 54.7% 88.3%
constrained decoder (top) + attention 38.0% 88.1%
constrained decoder (all) + attention 56.5% 88.2%

Table 1: Conversion rates on all three tasks with 100 steps of SGD. Note that satisfying the constraints
has no negative affect on accuracy and often has a positive affect.

bzazbzazbzazazbzbzbzbzbz −→ zbaaazbaaazbaaaaaazbzbzbzbzb

iteration output loss accuracy
0 zbaaazbaaazbaaaaaazbzbzbaaazbzb 0.260 75.0

39 zbaaazbaaazbaaaaaazbzbzbaaazbzb 0.259 75.0
40 zbaaazbaaazbaaaaaazbzbzbaaazb 0.250 80.0
72 zbaaazbaaazbaaaaaazbzbzbaaazb 0.249 80.0
73 zbaaazbaaazbaaaaaazbzbzbzbzb 0.0 100.0

Table 2: An example for which enforcing the constraints improves accuracy. Red indicates errors.
The output changes more than once before the constraints are finally enforced. Greedy decoding with
constraints might correct this example because the spurious a’s are at the end of the sequence.

the output to form a valid parse tree and hence they employ post-processing to ensure this property.
The latter satisfies constraints as part of the decoding process by sampling over a combinatorial space.
Our approach does not rely on post processing or discrete search.

Another intriguing approach is to distill the hard constraints into the weights at training time using a
teacher network (Hu et al., 2016). The method is appealing because it does not require constrained
inference or combinatorial search. However, the method must achieve a difficult balance between the
loss due to the training data and the loss due to the constraint violations. Further, it would crucially
rely on network’s ability to generalize the constraints learned on the training data to the testing data.

Finally, our method highly resembles dual decomposition and more generally Lagrangian relaxation
for structured prediction (Koo et al., 2010; Rush et al., 2010; Rush & Collins, 2012). In such
techniques, it is assumed that a computationally efficient inference algorithm can maximize over
a superset of the feasible region (indeed this assumption parallels our exploitation of the fact that
unconstrained inference in the neural network is efficient). Then, the method employs gradient
descent to gradually concentrate this superset onto the feasible region until the constraints are
satisfied. However, for computational reasons, these techniques assume that the constraints factorize
over the output and that the functions are linear so that they can be combined into a single model. In
contrast, we have a single dual variable so we instead minimize with respect to the weights, which
generalize better over the output. Further, we are unable to combine the dual into a single model over
which we can do inference because the network is highly non-linear.

6 EXPERIMENTS

In this section we empirically evaluate our constrained inference procedure on two sequence-to-
sequence tasks. The first is a transduction task between two simple languages, which we describe
next. The second is the sequence-to-sequence shift-reduce parsing task described in Section 4.
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azazbzazbzbzazbzbzbzbzbz −→ aaaaaazbaaazbzbaaazbzbzbzbzb

iteration output loss accuracy
0 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2472 66.7
1 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2467 66.7
2 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2462 66.7
3 aaaaaazbaaazbzbaaazbzbzbzbzb 0.0 100.0

Table 3: An example for which enforcing the constraints improves accuracy. Red indicates errors.
Note that greedy decoding with constraints would not fix the errors in the middle since errors are
made before constraints are violated. In contrast, the proposed method takes the constraints into
account in a globall manner, allowing earlier errors to be corrected by future constraint violations.

bzbzbzbzazbzbzazazazazbz−→zbzbzbzbaaazbzbaaaaaaaaaaaazb

iteration output loss accuracy
0 zbzbzbzbaaazbaaaaaaaaaaaazbaaa 0.2954 74.2
4 zbzbzbzbzbaaaaaaaaazbzbaaaaaa 0.0 60.0

Table 4: An example for which enforcing the constraints degrades accuracy. Errors in red.

A transducer T : L1 → L2 is a function from a source language to a target language. For the purpose
of the experiments T is known and our goal is to learn it from data. We choose a transducer similar
to those studied in recent work (Grefenstette et al., 2015). The source language L0 is (az|bz)?
and the target language L1 is (aaa|zb)?. The transducer is defined to map az to aaa and bz to
zb. For example, T(bzazbz) 7→zbaaazb. The training set comprises 1934 sequences of length
2–20 and the test set contain sentences of lengths 21-24. As is common practice, we employ shorter
sentences for training to require generalization to longer sentences at test time.

We employ a thirty-two hidden unit single-layered, attentionless, sequence-to-sequence long short-
term memory (LSTM) in which the decoder LSTM inputs the final encoder state at each time-step. The
encoder and decoder LSTMs each have their own set of weights. We train the network for 1000 epochs
using RMSProp to maximize the likelihood of the output (decoder) sequences in the training set. The
network achieves perfect train accuracy while learning the rules of the output grammar nearly perfectly,
even on the test-set. However, despite learning the train-set perfectly, the network fails to learn the
input-specific constraint that the number of a’s in the output should be three times as the number in
the input. We implement a loss for this constraint and evaluate how well our method enforces the

constraint at test-time: g(y,Lx1) = (n + m)−1
((

3
∑
xi
I(xi = a)

)
−
(∑

yi
I(yi = a)

))2
where

n+m, the combined intput/output length, normalizes between 0 and 1. For constrained inference we
run Algorithm 1 and employ vanilla stochastic gradient descent with a learning rate of 0.05 and no
weight decay. We cap the number of iterations at a maximum of 100.

The top section of Table 1 contains the results for this azbz task. We use the term converted to refer
to a sentence that initially had a constraint-violation, but was later fixed by the constrained-inference
procedure. The conversion rate is the percentage of such sentences that we convert: on this task, up
to two-thirds. We experiment with which subset of the weights is best for satisfying the constraints,
finding that it is best to modify them all. We also report accuracy to study an initial concern.
Specifically, we had to omit the negative energy of the original weights W from our optimization
problem, Equation 7, potentially allowing the network to find a set of dual weights Wλ that happen
to satisfy the constraints, but that have poor performance. However, we found this not to be the case.
In fact, we report the token-wise accuracy over the examples for which the unconstrained neural
network violated constraints and find that on the contrary, accuracy improves. Further, we find the
regularizer is unnecessary since the initialization Wλ = W ensures the network never drifts too far.

In order to gain a better understanding of the algorithm’s behavior, we provide data-cases that
highlight both success and failure (Tables 2,3,4). The title of these tables is the input and the desired
ground truth output. The rows of the table show the network’s output at each iteration (as indicated).
The loss column is the constraint loss weighted by the output’s energy Ψ(x,y,Wλ)g(y,LX1 ), and
the final column is the token-wise accuracy between the output and the ground truth.

7



Under review as a conference paper at ICLR 2017

〈“ So it ’s a very mixed bag . ”〉 −→ sssr!ssssrr!srrr!rr!ssrrrrrr!

iteration output loss accuracy
0 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0857 33.3%

11 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0855 33.3%
12 sssr!ssssrr!srrr!rr!ssrrrrrr! 0.0000 100.0%

Table 5: A shift-reduce example for which the method successfully enforces constraints. The initial
output has only nine shifts, but there are ten tokens in the input. Enforcing the constraint not only
corrects the number of shifts to ten, but changes the implied tree structure to the correct tree.

Table 2 contains an example for which our method successfully satisfies the constraints resulting
in perfect accuracy. However, because the constraint violation appears at the end of the string, a
greedy decoder that opportunistically enforces constraints on the fly could potentially correct this
error. In Table 3 we show a more interesting example for which such a greedy decoder would not
be as successful. In particular, the unconstrained network outputs the final aaa too early in the
sequence, but the constraint that controls the number of a’s in the output is not violated until the
end of the sequence. In contrast, our method takes the constraint into account globally, allowing
the network to not only rectify the constraint, but to achieve perfect accuracy on the sentence
(in just four gradient updates). Finally, in Table 4, we show an example for which enforcing the
constraints hurts the accuracy. The updates causes the network to erroneously change outputs that
were actually correct. This can happen if (a) the underlying network is sometimes inaccurate in
its output or confidence/probabilities thereon or (b) the gradient steps are too large causing the
network to completely leapfrog over the correct solution in a single step. The latter can be avoided by
normalizing the constraint loss so it does not grow unbounded with the number of outputs and by
erring on the side of a smaller learning rate.

We repeat the same experiment (middle section of Table 1), but on the shift-reduce parsing task
described in Section 4. We convert the Wall Street Journal portion of the Penn Tree Bank (PTB) into
shift-reduce commands and randomly split into 30k train and 9.2k test examples. We increase the
number of hidden units to sixty-four to accommodate the larger input space (50k words) and employ
Equation 10 (normalized by sequence length) for the constraint loss. We measure the sequence-
aligned token accuracy. Otherwise, we employ the exact same experimental parameters as the azbz
task, both for training the LSTM and for our algorithm. We find that our algorithm performs even
better on the real-world task, converting over 80% of the violated outputs. We again find that our
procedure has no negative impact on accuracy, which in fact improves, but not as substantially as for
the azbz task. Table 5 contains a successful example that we had previously highlighted in Section 1.
The algorithm satisfies the constraints, and also corrects the remaining output errors.

Finally, we conduct a version of the shift-reduce experiment that includes the phrase types (e.g.,
noun-phrase (NP)). To accommodate the larger output space (output alphabet size increases to 479),
we employ a larger network with 128 hidden units, attention and three-layers. Note that even this
more sophisticated network fails to learn the constraints from data and adding layers does not help.
The larger network affords us the opportunity to experiment with modifying different subsets of
weights for enforcing constraints. As seen in the last section of Table 1, modifying all the weights
works best, converting 79.2% of the violating sentences; again without negatively affecting accuracy.

7 CONCLUSION

We presented an algorithm for satisfying constraints in neural networks that avoids combinatorial
search, but employs the network’s efficient unconstrained procedure as a black box. We evaluated
the algorithm on two sequence to sequence tasks, a toy transducer problem and a real-world shift-
reduce parsing problem. We found that the method was able to completely rectify up to 80% of
violated outputs when capping the number of iterations at 100. Often, enforcing constraints caused
the accuracy to improve, dispelling initial concerns that adjusting the weights at test-time would
be treacherous. Our method currently lacks the same theoretical guarantees as classic Lagrangian
relaxation methods, so in future work we want to focus on supplemental theory and additional
objective functions. We also hope to extend the work to handle soft constraints, for example, as
imposed by an external language model.
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