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Abstract

Building large medical imaging datasets for image segmentation is a challenging
task due to manual outlining. In this work, we explore the use of stereology to
cut the costs of annotation. We train a segmentation model using a coarse point
counting grid as the sole annotation and quantify the impact of this approach
on segmentation performance. Results show that dense masks are not a strict
requirement for training segmentation models to achieve satisfying performance.
Since deciding whether a small set of grid points overlaps a structure of interest is
an inherently faster operation than tracing a dense outline, this method allows to
scale up volume annotation to large datasets.

1 Introduction

Segmentation of organs and other substructures from medical images allows quantitative evaluation
of morphological parameters related to volume and shape, as, for example, in cardiac, brain analysis
or abdominal organs [1]. The most frequently used CNN architecture for medical image segmentation
is U-net, published by Ronneberger et al [2], and its derivatives. The characterizing feature of the
U-net architecture is the use of skip connections between the up-sampling and down-sampling paths.
During training, network parameters are optimized by minimizing a loss function evaluated on the
overlap between the network output and a ground truth image. The ground truth is usually provided
by human experts as a binary volume representing dense segmentation of the target structure, and as
such it requires a considerable amount of time and effort.

Starting from the 1960s, enabled by technological advances in microscopy, the need to obtain 3D
information about biological objects based on their 2D appearance arose, giving rise to stereology
[3]. The average volume density volume of a target structure can be estimated accurately from the
sum of areas on planar sections distanced by T . Such areas can be in turn estimated using a test grid
consisting of a set of points p arranged in a rectangular or hexagonal lattice, each with an associated
surrounding area a/p. By counting the number of test grid points P falling into the structure of
interest, the volume of the structure is estimated as V = T ⇤ a/p ⇤

P
P .

In this work, we adopt the point counting method as weak supervision of an image segmentation
task and demonstrate that training a U-net with a point counting mask incurs in limited decrease
in segmentation performance, which is out-weighted by the opportunity of annotating volumes at a
much lower cost. Since deciding whether a small set of points on a coarse grid overlaps a structure
of interest is an inherently faster operation than tracing a dense outline, this method allows to scale
up volume annotation to large datasets. Results also hint at the fact that a higher number of weakly
supervised volumes is preferable to a lower number of densely annotated volumes.
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2 Methods & Experiments

In this work we train a 3D U-Net [2] using both a dense segmentation target as well as targets
generated from grids at different point densities on the same data. In the experiments, we focus on
hexagonal grids, to maximize the chances of overlap with rounded biological shapes. We denote
the horizontal distance between two adjacent grid points as stride. Grids are superimposed on each
segmented slice and their offset is randomized per slice. Grid points are then manually classified
whether or not they overlap with the structure of interest. At each training iteration, we dynamically
generate a dense ground truth by padding each grid point on its 2D plane by a variable amount. In one
set of experiments we keep the padding amount fixed to (stride� 1)/2 (FixP), while in a second set
of experiments we randomize the padding amount on each 2D slice in the range [0; (stride� 1)/2]
(RP). Note that this second case leads to a data augmentation effect, since the padding amount
changes independently for each slice at each training iteration. We evaluate our method using point
grids of stride 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and compare each with the performance obtained using
the dense ground truth.

The data employed for this study are 399 high-resolution abdominal CT scans acquired with a slice
thickness of 3mm. A dense segmentation of the pancreas was manually provided by two expert
radiologists. The original image size is 512⇥ 512⇥Nslices. Scans are clipped between �150 and
500 Hounsfield units and a down-sampling with average and max pooling with factor 2 are applied to
image and ground truth, respectively. Each scan is then re-scaled to a [0, 1] range. A random selection
of 79 scans are kept for performance comparisons, while the remaining 320 scans are employed for
training. Out of this set, a random subset of 100 scans serves a reduced dataset for evaluating the
effect of sample size on segmentation performance.

The input to the model are 3D slabs of size 256⇥ 256⇥ 10. The z location of the slab is randomized
during training. The model has 5 3D convolutional blocks followed by max pooling and tanh
activation modules on both the up-samling and down-sampling path. Batch normalization is applied
to the input of the network. We train the model using the Adam optimizer. The learning rate starts
at 1e�4 and it is reduced by a factor of 0.5 if no improvement is seen for 200 epochs. We use the
complement of the Dice coefficient as loss function. The Dice coefficient D between two binary
volumes ranges between 0 and 1 and can be written as D =
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, where the sum runs
over N voxels of the predicted binary segmentation volume pi 2 P and the mask binary volume
gi 2 G, where P is network output and G is the grid generated mask. During training, the model
aims to minimize 1 � D. During every training iteration, we feed randomly rotated versions of
the training images as input. The applied rotation is a random rotation around the z axis in the
range [�30, 30] degrees. All code is written in Python, using the PyTorch deep learning library
(http://pytorch.org).

3 Results

During inference, the scan is subdivided into consecutive slabs spaced by one slice. An average of all
predictions at each voxel is assumed as the output, no further post-processing is applied. Results are
reported in Table 1 and in Figure 1 and show that weak supervision achieves is within a few percent
accuracy from full supervision for all grids. Performance obtained using a grid of stride 5 on 320
scans exceed the ones obtained using a dense target on 100 scans. Using large strides (greater than 9)
randomizing padding is a key factor for achieving good segmentation performance.
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Table 1: Results for all experiments. Volume density is a ratio between the number of grid points
overlapped with the ground truth and the number of voxels of the ground truth. All performances are
evaluated on 79 independent scans and expressed in terms of Dice coefficient (standard deviation).

Stride grid Volume density (%) 100 scans (RP) 320 scans (FixP) 320 scans (RP)
ground truth 100 0.78 (0.12) 0.85 (0.09) 0.85 (0.09)

3 11.11 (0,10) 0.73 (0.14) 0.82 (0.09) 0.81 (0.12)
5 4.00 (0,07) 0.71 (0.15) 0.81 (0.09) 0.80 (0.12)
7 2.04 (0,06) 0.71 (0.14) 0.79 (0.10) 0.77 (0.13)
9 1.23 (0,05) 0.68 (0.16) 0.78 (0.09) 0.80 (0.09)

11 0.82 (0,05) 0.71 (0.12) 0.76 (0.10) 0.79 (0.10)
13 0.59 (0,04) 0.72 (0.11) 0.73 (0.09) 0.77 (0.10)
15 0.45 (0,04) 0.71 (0.11) 0.70 (0.10) 0.77 (0.10)
17 0.35 (0,04) 0.68 (0.14) 0.67 (0.11) 0.73 (0.12)
19 0.28 (0,03) 0.66 (0.13) 0.65 (0.09) 0.74 (0.10)
21 0.23 (0,03) 0.58 (0.17) 0.64 (0.10) 0.75 (0.11)

Figure 1: First row: ground truth (yellow) superimposed on 3 CT slices and the prediction (red) on
the mid CT slice. From second to fifth rows: test grid with different stride superimposed on the mid
CT slice (crosses on and off the ground truth are in green and pink, respectively), examples of padded
grids and the prediction (red) on the mid CT slice.
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