
Under review as submission to TMLR

Distilled Circuits: A Mechanistic Study of Internal Restruc-
turing in Knowledge Distillation

Anonymous authors
Paper under double-blind review

Abstract

Knowledge distillation compresses a larger neural model (teacher) into smaller, faster student
models by training them to match teacher outputs. However, the internal computational
transformations that occur during this process remain poorly understood. We apply tech-
niques from mechanistic interpretability to analyze how internal circuits, representations, and
activation patterns differ between teachers and students. Focusing on GPT2 and its distilled
counterpart DistilGPT2, and generalizing our findings to both bidirectional architectures
and larger model pairs, we find that student models can reorganize, compress, and discard
teacher components, often resulting in a stronger reliance on fewer individual components.
To quantify functional alignment beyond output similarity, we introduce an alignment metric
based on influence-weighted component similarity, validated across multiple tasks. Our
findings reveal that while knowledge distillation preserves broad functional behaviors, it
also causes significant shifts in internal computation, with important implications for the
robustness and generalization capacity of distilled models.

1 Introduction

Knowledge distillation (KD) compresses neural models by training a smaller student model to replicate
the outputs of a larger teacher, enabling comparable performance with fewer parameters and more efficient
deployment in terms of computation, memory, and inference time (Hinton et al., 2015; Sanh et al., 2020).
Despite its widespread use, the internal transformations that occur during the KD process remain poorly
understood (Stanton et al., 2021; Baek & Tegmark, 2025; Zhang et al., 2023).

While prior work has focused on optimizing knowledge transfer between teacher and student, less attention
has been given to the internal mechanisms that emerge in the student. Distilled models often develop
alternative computational strategies to approximate teacher behavior with fewer parameters (Wu et al., 2024).
These mechanisms may improve efficiency but can also undermine generalization by relying on heuristics
that diverge from those of the teacher. A mechanistic understanding of these transformations is essential for
evaluating the robustness and functional alignment of student models.

We apply techniques from mechanistic interpretability (MI) to analyze how knowledge distillation restructures
internal circuits, representations, and activation patterns, and propose a metric for use in automatically
quantifying the functional alignment between teacher and student. Our analysis centers on GPT2 (Radford
et al., 2019) as the teacher and DistilGPT2 (HuggingFace, 2019b) as the student. Here, the student (6 layers,
12 heads, 82M parameters) has around two-thirds of the parameters of the teacher (12 layers, 12 heads, 124M
parameters). We chose a relatively smaller model pair to focus our study on because larger models introduce
complications when it comes to extracting and comparing full circuits, a granularity that we wished to look
at in this work. In addition to our primary analysis on the GPT2 and DistilGPT2 pair, we replicate our
methodology on BERT (Devlin et al., 2019) and DistilBERT (Sanh et al., 2020) as well as Llama-3.1-8B
(Dubey et al., 2024) (Llama) and Llama-3.1-Minitron-4B-Depth-Base (Sreenivas et al., 2024) (Minitron) to
assess generalization of our methodology and findings to both architectural and model size changes. These
secondary studies reveal consistent restructuring patterns and changes in robustness, suggesting that the

1

Under review as submission to TMLR

internal transformations produced by distillation reflect broader trends not limited to a single model family.
Through this investigation, we ask the following questions:

• How do the internal representations and circuits that emerge in the student differ from those in the
teacher during KD?

• What effect does KD have on the robustness of the internal mechanisms and components in the
student model?

• How accurately can an alignment metric quantify functional alignment in internal computation
between a teacher and student model?

By providing a mechanistic understanding of the changes that take place during KD, this research aims to
enhance confidence in the use of distilled models. Understanding how internal computation is restructured
during the KD process will help in designing reliable student models and mitigating potential failure cases.
Full code implementation for all experiments is visible in the supplied repository 1.

2 Background and related work

2.1 Knowledge distillation

Knowledge distillation (KD) compresses neural models by transferring knowledge from a larger teacher
model to a smaller student model. This is typically done by softening the teacher and student logits via a
temperature-scaled softmax (Hinton et al., 2015):

pT
i (x) = exp(fi(x)/T)∑K

j=1 exp(fj(x)/T)
(1)

to produce probability distributions over the output classes. These softened distributions are then used in
the distillation loss, which minimizes the Kullback-Leibler (KL) divergence between the teacher and student
outputs over a dataset Ddistill:

LKD = Ex∼Ddistill

[
DKL

(
pT

t (x) ∥ pT
s (x)

)]
(2)

Higher values of T reveal finer-grained similarity between logits.

Recent work has investigated what is learned during KD, revealing both behavioral and representational gaps
between teachers and students. Wu et al. (2024) show that standard distillation often promotes simplicity
bias, leading students to rely on spurious correlations rather than faithfully replicating teacher reasoning
mechanisms. Techniques like Jacobian matching (Srinivas & Fleuret, 2018) and contrastive representation
distillation (Tian et al., 2020) help reduce this bias but still do not guarantee full mechanism transfer.
While Wu et al. (2024) evaluate knowledge transfer through behavioral counterfactual evaluations, a deeper
mechanistic understanding of internal model computations remains open.

Several factors such as model capacity and output structure have been shown to play a critical role in shaping
distillation outcomes (Cho & Hariharan, 2019; Phuong & Lampert, 2019; Stanton et al., 2021). Cho &
Hariharan (2019) show that overly complex teachers may hinder student learning due to representational
bottlenecks, and propose early stopping to produce “softer” outputs. Optimization challenges further
complicate distillation. Stanton et al. (2021) find that even with sufficient capacity, students may struggle
to match teacher distributions due to hard-to-optimize objectives. This suggests that distillation often acts
more as implicit regularization than exact imitation. Complementing these empirical findings, theoretical
work by Phuong & Lampert (2019) identifies class separability, optimization bias, and strong monotonicity as
key factors explaining why soft labels aid distillation.

1https://anonymous.4open.science/r/distilled_circuits-B1EC/

2

https://anonymous.4open.science/r/distilled_circuits-B1EC/

Under review as submission to TMLR

From a geometric view, Baek & Tegmark (2025) use sparse crosscoders (Lindsey, 2024) to demonstrate
that KD reshapes large language model (LLM) feature spaces, leading to specialized reasoning mechanisms.
This finding aligns closely with our mechanistic focus by demonstrating that a student may reproduce
teacher predictions while relying on different underlying mechanisms, potentially undermining robustness and
generalization. Understanding these internal shifts is critical for assessing the out-of-distribution behavior
of distilled models and for improving evaluation techniques, such as performance difference analysis (Sanh
et al., 2020; Jiao et al., 2020), neural model search algorithms (Trivedi et al., 2023), and unified performance
benchmarks (Yang et al., 2024).

2.2 Mechanistic interpretability

Mechanistic interpretability (MI) aims to reverse-engineer neural networks by identifying how they compute
and represent information (Bereska & Gavves, 2024; Olah et al., 2020). In transformer models, attention
heads often specialize in modeling syntactic or semantic relationships between tokens, whereas the multi-layer
perceptrons (MLPs) tend to capture higher-level, abstract features, often acting as implicit detectors of
specific concepts or patterns (Templeton et al., 2024; Bereska & Gavves, 2024). These components interact
in structured circuits, analyzable via causal interventions, ablation studies, and activation analysis (Conmy
et al., 2023; Meng et al., 2022).

MI has successfully uncovered complex functional circuits within language models. For instance, Wang et al.
(2023) identified a 26-head circuit in GPT2 for the indirect object identification (IOI) task, decomposing
its functional roles. To address the scalability challenge of discovering such circuits, Conmy et al. (2023)
introduced Automatic Circuit DisCovery (ACDC), a pruning-based method that automatically recovers
important subgraphs by measuring the impact of edge ablations on output logits.

MI has also been applied to understand how circuits evolve over time. Wang et al. (2025) show that fine-tuning
alters edge connectivity while preserving node identity, proposing a circuit-aware low-rank adaptation (LoRA)
method to improve the fine-tuning process. Notably, their focus is structural, emphasizing edge changes
rather than functional shifts in circuit roles. Similarly, Nanda et al. (2023) study circuit emergence during
grokking, a phenomenon where models initially memorize before abruptly generalizing (Power et al., 2022).
Proposing metrics to track the stabilization of mechanistic structure over training, they demonstrate that
internal computation evolves through measurable stages.

Causal tracing (Meng et al., 2022) and causal scrubbing (Chan et al., 2022) offer hypothesis-driven validation
of circuit functions within a single model but require manual design and lack scalability across tasks and
architectures. In contrast, our proposed alignment metric (Section 4) provides an automated, influence-
weighted comparison of functional components between models, capturing task-relevant differences without
relying on hand-crafted hypotheses. This makes it more practical for cross-model analyses such as those
within KD.

Collectively, these studies show that KD reshapes both outputs and internal dynamics, and that MI can reveal
these changes. Our work addresses the gap in mechanistic understanding of the KD process by applying
mechanistic tools to the domain of KD, tracing computational transformations and representation changes
during distillation.

2.3 Tasks

Below, we describe the tasks studied in this paper, all of which were introduced in prior work. Performance
of each model on each tested task is reported in Appendix B.

2.3.1 Sequence completion

Numeral sequence completion Lan et al. (2024) introduce a task involving a sequence of four monotoni-
cally increasing numeral elements (e.g., 1, 2, 3, 4), with each numeral prepended with non-sequence tokens
(“Van done in 1. Hat done in 2 ...”). This is done to encourage the identification of a circuit representation
that can also achieve the subtask of selecting sequence members from non-sequence members. Each example

3

Under review as submission to TMLR

ends with non-sequence members, such that the next token to be predicted will be the final sequence element.
Thus, the model must output a single token to complete the sequence.

Word sequence completion Similarly, Lan et al. (2024) produce a variant of the numeral sequence
completion task that uses number words in place of digits (e.g., “four, five, six, seven” instead of “4, 5, 6, 7”).
This serves as a robustness check that components implementing certain roles, for example the successor
operation, generalize and are not reliant on digit-specific tokenization artifacts or memorized numeral strings.

2.3.2 Indirect object identification

Wang et al. (2023) produce a dataset alongside their analysis of the indirect object identification (IOI)
problem, in which the model is tasked with identifying the indirect object in a sentence. An example here is
the sentence “When Mary and John went to the store, John gave a bottle of milk to ”, where the following
correct token would be “Mary” due to the given context.

2.3.3 Question answering

For the question answering task, we make use of the SimpleQA dataset (Wei et al., 2024). This dataset
involves short, fact-seeking questions and corresponding answers sourced from around the internet. Categories
include science and technology, geography, sports, history, and more. An example from this dataset is the
query “Who received the IEEE Frank Rosenblatt Award in 2010?”, with the answer being “Michio Sugeno”.

3 Case study: Numeral sequence completion

In this section, we perform a case study analyzing the degree of transfer of internal mechanisms, including
circuits and representations, between a teacher (GPT2, 124M parameters) and student model (DistilGPT2,
82M parameters) on the numeral sequence completion task (Lan et al., 2024). To test whether our findings
extend across architectures, we also study BERT and DistilBERT (referred to collectively as BERT models),
as well as Llama and Minitron (Llama models) on the same task, with further details in Appendices I and H,
respectively. See Appendix A for details of the training process used to produce these student models. Across
model families, we observe consistent trends, where students place greater reliance on fewer components,
compress multiple functions into single heads or MLPs, and omit less critical functionalities. While some
architecture-specific differences exist (e.g., no first-token divergence in the BERT models’ MLPs), the core
restructuring behaviors remain consistent. This suggests that the transformations induced by KD are not
generally model-specific. To further support this, we include a complementary case study on the IOI task in
Appendix G, where similar patterns of transfer are again observed on the GPT model pair.

3.1 Methodology

The numeral sequence completion task requires predicting the next token given a sequence x1, . . . , xt, i.e.,
learning the conditional probability distribution P (xt+1 | x1, . . . , xt). Following Lan et al. (2024) and Conmy
et al. (2023), we identify circuits via iterative pruning and path patching, using a corrupted dataset (Meng
et al., 2022) to isolate each component’s influence on the task. After identifying the circuit components
for the task, we determine their roles through query-key attention analysis for heads and representation
analysis for MLPs, enabling a detailed comparison of how teacher and student networks perform the task.
Experiments here used 100 examples and were run on a single NVIDIA A100 GPU in under one hour, with
data obtained from Lan et al. (2024).

Compute/scaling. Let N be the number of examples in our dataset, C the number of components (heads
and MLPs), and E the number of candidate edges tested. Component (node) ablations scale O(C · N), while
edge/path-patching can scale up to O(E · N), where E is O(C2) in the dense fully-connected case.

4

Under review as submission to TMLR

3.1.1 Circuit discovery

For both node and edge discovery, we follow prior work and quantify performance shifts using the logit
difference, defined as the difference between the pre-softmax scores (logits) of the correct token and a
designated distractor (incorrect) token. In our experiments, the distractor is the final element of the input
sequence:

∆ℓ = ℓcorrect − ℓincorrect = log(pcorrect

pincorrect
) (3)

where ptoken denotes the model’s predicted probability for the token. A larger ∆ℓ indicates a stronger
preference for the correct token, reflecting high confidence in the task. A negative value instead indicates
that the model prefers the incorrect token to the correct one. It is worthwhile to note here that, due to the
logits being pre-softmax scores, a logit difference of x implies the correct token is ex times as likely as the
incorrect one.

Circuit nodes (defined as MLPs and attention heads) are ablated by replacing their activations with corrupted
means, preventing downstream use. Iteratively ablating MLPs and attention heads layer-by-layer (backward
then forward), we retain components whose ablation causes a performance drop exceeding a threshold
Tn = 0.20, i.e., a drop of at least 20% of the original logit difference, forming the final set C of important
nodes (see Appendix N for a sweep of threshold values and impacts on circuit size and interpretability metrics
to address robustness of our subsequent findings). To capture critical interactions between nodes, we extend
activation patching with path-patching: ablating outgoing edges to isolate those that significantly contribute
to task performance (where performance drops below Tn), following approaches similar to Hanna et al. (2023)
and Lan et al. (2024).

Interpretability metrics: completeness, faithfulness, minimality. Beyond recovering a performant
subgraph, this procedure enforces standard interpretability essentials by design, by retaining only components
whose ablation causes a ≥ 20% drop in logit difference for the task. On the numeral sequence task, retaining
only the extracted circuit and ablating the rest of the GPT2 / DistilGPT2 models reduces mean logit
difference by just 18.99% (teacher) and 19.88% (student), indicating completeness with respect to our chosen
threshold of 20.00%.

Conversely, ablating the circuit while leaving the remainder intact causes a catastrophic drop in logit difference,
from 6.12 to -0.28 in the teacher and from 3.75 to -0.31 in the student, demonstrating faithfulness (i.e., the
circuit is necessary for the model’s behavior on this task).

Finally, minimality follows from the pruning rule, where every retained component individually passes the
≥ 20% ablation threshold; removing any one element therefore drops the circuit below the faithfulness
criterion.

3.1.2 Component comparison

We manually compare the functionality of in-circuit components (attention heads and MLPs) across models.
For attention heads, we compute and inspect the query–key (QK) matrices, which reveal token-level self-
attention patterns and information flow throughout the task (Vaswani et al., 2017). After identifying the role
of each head, we match and contrast key heads between the teacher and student models based on functional
similarity.

For MLPs, we apply residual-stream decomposition to attribute changes in logit difference to the MLP at each
token (Appendix F). To identify teacher–student matches, we summarize each layer’s activations with PCA
(Appendix D, Figure 7): from the centered activation matrix (tokens × features), we compute the SVD of its
covariance and retain the top three principal components. This captures the dominant directions of variance
while suppressing irrelevant cross-model noise. We then compute the mean absolute cosine similarity between
corresponding components. The resulting score is a compact, noise-robust proxy for functional overlap, where
values near 1 indicate closely aligned dominant computations and values near 0 indicate orthogonal roles.

5

Under review as submission to TMLR

3.1.3 Role validation

Beyond attention-pattern and representation analyses, we validate component roles using two complementary
techniques that test causality and linear accessibility:

Activation patching (causal test): We construct corrupted prompts by randomizing the numeral
sequence while preserving the token distribution, then pass both corrupted and clean prompts through the
model. We patch clean activations back into the corrupted run at a fine granularity (component × token),
and measure logit-difference recovery for the correct next token. This isolates which components and tokens
are causally sufficient for the behavior. We use both whole-block patching and path-specific patching (e.g.,
QK vs. OV) to localize effects to particular attention head subcircuits, with all recoveries being normalized
within each layer.

Linear probing (representational test): We fit simple, regularized linear probes on the residual stream
at each layer to predict task-relevant variables (e.g., the i-th numeral or next numeral) from position-specific
activations. Probes are trained with held-out validation, balanced class sampling, and permutation controls
to guard against frequency and leakage artifacts. A sharp increase in probe accuracy at a given layer indicates
that the information has become linearly decodable there, consistent with proximal upstream components
writing that signal into the residual stream.

Together, activation patching and probing provide more quantitative and causal evidence about which
components perform certain tasks and where it becomes accessible to downstream computation to confirm
inferred component roles. We provide further head-specific results and probe training details in Appendix J.

3.2 Findings

We successfully identify circuits for the numeral sequence completion task across both the teacher and student
networks. We wish to note here that the below specific component roles and restructuring effects observed
serve as an exemplified mechanistic decomposition for this specific task and model pair, which may not
generalize exactly to other tasks or models. However, we do observe similar (but not exact) effects in a
different, natural-language based task (Appendix G) as well as on different model pairs (Appendices I and H).
Full circuit diagrams are provided in Appendix E.

3.2.1 Attention analysis

Analyzing query-key attention matrices reveals significant changes in how the student model performs sequence
completion. We organize our analysis by key attention head functionalities. Note that an attention head from
layer x, head y is denoted as Lx-Hy, prefixed by ‘T-’ (teacher) or ‘S-’ (student). We follow Lan et al. (2024)
and report ablation-induced performance change percentage, defined as the logit difference in the ablated
model relative to the unablated model:

∆P% = 100 · ∆ℓablated − ∆ℓbase

|∆ℓbase|
(4)

Where a negative value corresponds with performance worse than baseline, e.g. a performance change of
-50.00% corresponds with half of the original logit difference.

Similar member detection (T-L1-H5). We identify a head in the first layer of the teacher (T-L1-H5)
that detects repeated elements by attending to past mentions (Appendix C, Figure 4). No corresponding
behavior is observed in the student head, suggesting a loss of this inductive bias during distillation. One
possible explanation for this discrepancy is that the component does not play a crucial role across many tasks
and was therefore removed as part of the trade-off between functionality and parameter efficiency. Similar
behavior was observed between the BERT models (Appendix I), further suggesting that this functionality is
not crucial and is favoured to be omitted by student models. It is worth noting that, although often described

6

Under review as submission to TMLR

(a) Teacher (T-L9-H1) (b) Student (S-L4-H1)

Figure 1: Teacher (left) and student (right) QK attention matrices for the successor head functionality

as “similar member detection” in prior work, our probes indicate it primarily encodes the previous numeral,
and similar members are a secondary function (see Appendix Section J.4.1).

Numeral detection (T-L4-H4 / S-L2-H4). Both teacher (T-L4-H4) and student (S-L2-H4) were seen
to detect and encode the numeral sequence via high self-attention between numerals and their predecessors
(Appendix C, Figure 5). However, the student relies more heavily on a single head for this behavior
(performance change: -87.73% vs. teacher’s -33.18%), indicating compressed reliance due to parameter
constraints and potential for less robust behavior in the case of distributional shifts.

Numeral mover (T-L7-H11 / S-L3-H11). Numeral mover heads were found across both models, which
transfer numeral information to the final token (Appendix C, Figure 6). The student was seen to replicate this
behavior accurately, ensuring numerals are encoded into the head’s output and propagated via the residual
stream. However, the student again shows significantly higher reliance (performance change: -72.83% vs.
teacher’s -41.64%). This finding reinforces the fact that the student lacks backup heads (Wang et al., 2023),
relying more heavily on single components due to its reduced parameters. Further decomposition reveals
both networks use these heads primarily for their OV-circuits, which are responsible for determining what
information to move to the residual stream (Nanda et al., 2023).

Successor computation (T-L9-H1 / S-L4-H1). Heads attending from the final token to the last numeral
in the teacher are preserved well in the student (Figure 1), but with a stronger self-attention score between
the final token and the numeral in the student (0.71 vs. 0.55) and again greater reliance (performance
change: -77.57% vs. teacher’s -34.94%). This pattern of increased attention and reliance further supports our
hypothesis that the student model is less robust due to its reduced parameter capacity.

3.2.2 MLP analysis

Layer-wise attribution, where differences in adjacent residual streams between layers are computed, reveals
only a few MLPs significantly impact performance on this task across both models (Appendix F). Cosine
similarities and PCA are used to identify MLP pairs with shared functionality, as well as some teacher MLPs
with no apparent counterpart in the student. Note that we refer to the x-th MLP in the teacher as ‘MLP-T-x’,
and likewise we use ‘MLP-S-x’ when referring to the student.

MLP-T-8. This MLP component was seen to steer the teacher’s output toward the last given element
rather than the correct next one (increasing the logit difference by 0.146 when ablated). This behavior

7

Under review as submission to TMLR

is absent in the student, as indicated by cosine similarities with MLP-S-3 and MLP-S-4 being low (0.240
and 0.360, respectively). This omission of counterproductive behavior, which improves performance in this
case, is consistent with previous findings that KD can act as an implicit regularizer by filtering out noisy or
suboptimal behaviors learned by the teacher. (Jooste et al., 2022).

MLP-T-9 / MLP-T-10 / MLP-S-4. MLP-S-4 merges the functionality of MLP-T-9 and -10 (cosine
similarity: 0.634 and 0.687). PCA and unembedding of the residual stream (logit lens) reveal clear structural
similarities and emergence of correct predictions at layer 9/10 in the teacher and layer 4 in the student (Figure
2a). This evidence confirms that both MLP-T-9 / MLP-T-10 and MLP-S-4 are responsible for computing the
next numeral in the sequence. These MLPs share a layer with corresponding successor heads (T-L9-H1 /
S-L4-H1), indicating they likely use the final numeral and increment it to generate the next. Together, these
findings suggest that the student has effectively merged the functionality of MLP-T-9 and MLP-T-10 into
MLP-S-4, learning a more efficient representation in terms of parameter count. This observed compression
supports the hypothesis that KD can compress redundant computations while preserving functionality (Jooste
et al., 2022; Wu et al., 2024).

MLP-T-11 / MLP-S-5. These components show a representational divergence for the first token, with
a cosine similarity of -0.302, while other tokens remain similar (mean cosine similarity 0.721). This late-
stage divergence suggests the student optimizes its representation under parameter constraints, potentially
impacting performance on tasks where the initial token contributes disproportionately to the output (Ferrando
et al., 2022; Vaswani et al., 2017). PCA captures this difference effectively, as the first token’s embeddings
are positioned at opposite corners in PCA space (Figure 2b), while other tokens cluster closely.

(a) PCA projection of MLP activations within MLP-T-9
and MLP-S-4, showing structural similarity

(b) PCA projection of MLP activations within MLP-T-11
and MLP-S-5, with highlighted first token

Figure 2: Comparison of PCA projections across different teacher-student MLP pairs.

3.2.3 Robustness to component ablation

Table 1 shows that the student model is more vulnerable to key attention head ablations (where the activations
are corrupted as per the methodology outlined in Subsection 3.1), due to its higher reliance on a smaller set
of critical components compared to the teacher. This trend holds beyond this circuit and model pair, where
we see that across other pairs, the student consistently sees a significantly larger mean drop in performance
under component ablation (See Table 2 and Appendix K). While the teacher distributes functionality across
multiple heads, the student’s brittle reliance aligns with observations by Hendrycks et al. (2020) that distilled
models, although often matching in-distribution accuracy, often exhibit significantly reduced robustness
and increased vulnerability to distribution shifts and input corruptions. This fragility arises from the lower
parameter count, which limits availability of fallback mechanisms.

8

Under review as submission to TMLR

Table 1: Comparison of performance changes caused by ablating highly-influential attention heads across
teacher and student models.

Functionality Teacher Student
Similar member detection head −27.83% –
Numeral detection heads −33.18% −87.73%
Numeral mover heads −41.64% −72.83%
Successor heads −34.94% −77.57%

Table 2: Mean ablation-induced drops in performance across model pairs with 95% bootstrap CIs on the
numeral sequence completion task across 384 random examples. Larger values = less robustness to ablation

Pair Teacher Student Difference Alignment Score
Llama 0.8395 [0.5943, 1.1553] 2.2014 [1.5841, 2.9286] 1.3619 0.9778
GPT 3.0561 [1.7097, 4.6601] 12.2401 [6.4496, 18.8281] 9.1840 0.9452
BERT 6.2644 [3.4185, 9.5738] 16.8856 [10.7452, 23.5468] 10.6212 0.8872

4 Alignment metric

In the previous section, we have shown that the KD process can produce students with significant internal
differences to their teacher and decreased robustness to component ablation. However, this style of analysis
is extremely time-consuming and intractable for larger models and/or more complex circuitry. Motivated
by this, we now focus on automating the comparison of functional alignment (i.e., similarity in the internal
behaviors that support task performance) by proposing an alignment metric that quantifies the extent to
which functionally important components in both models behave similarly in their contribution to the task.
This enables a scalable evaluation of how KD restructures computation, helping assess trade-offs between
parameter efficiency and the preservation of functional behavior.

4.1 Methodology

The metric is computed in three steps. First, we assign influence scores to each component (attention
heads and MLPs). Next, we match components between teacher and student via representational similarity.
Lastly, alignment is computed by summing similarity-weighted influence agreement across matched pairs,
weighted by similarity. This effectively penalizes functional divergence while tolerating unmatched, low-impact
components.

Scalability. Influence computation requires one ablation per component, i.e. O(C · N) patched forward
passes. Matching requires O(C · N) work to compute dataset-aggregated activation summaries (e.g., mean
activations), followed by O(C2) pairwise cosine-similarity comparisons (for CT × CS teacher-student pairs).

4.1.1 Calculating component influence

For each component, c ∈ {attention head, MLP} within each model, we calculate an influence score, reflecting
the component’s contribution to task performance. To determine this, we measure the change in the model’s
logit difference that results from ablating the component, using the path patching technique described earlier.
We then normalize these scores by dividing each component’s change in logit difference by the largest change
observed across the model, so that all influence scores fall between 0 and 1. In the (rarely observed) case of a
component improving the logit difference under ablation, we clamp these negative values to 0. Note that this
not only serves as a measure of component importance, but also in measuring the similarity of robustness
distributions between models, an important measure if the goal of KD is to produce reliable students. Formally,
let m ∈ {T, S} denote a model, D = {x(n)}N

n=1 the dataset, and ∆̄ℓ(m) := 1
N

∑N
n=1 ∆ℓm(x(n)) the model’s

average logit difference on D. For a component c ∈ Cm (attention head or MLP), let m \ c denote the model

9

Under review as submission to TMLR

with c ablated via path patching. Then the (normalized) influence score is

Im(c) =
max

(
0, ∆̄ℓ(m) − ∆̄ℓ(m \ c)

)
maxc′∈Cm max

(
0, ∆̄ℓ(m) − ∆̄ℓ(m \ c′)

) . (5)

4.1.2 Matching components

To align teacher and student components, we define a component similarity score and match each teacher
component to its nearest neighbor in the student (within the same component type), allowing many-to-one
matches. We compute similarity S from dataset-mean activations for attention heads, and from the leading
eigenvectors of the activation covariance for MLPs (computed via SVD).

Formally, for a component c ∈ Cm, let am,c(x) ∈ RL×d denote its token-wise matrix of d-dimensional
activations on input example x, and define the dataset-mean activation ām,c := 1

N

∑N
n=1 am,c(x(n)). For

MLPs, let um,c[k] be the k-th leading eigenvector from the covariance matrix of the centered activations of c
(over all tokens and all x(n) ∈ D). We define the similarity between a teacher component cT and student
component cS by

S(cT , cS) =
{

cos
(
vec(āT,cT

), vec(āS,cS
)
)
, cT ∈ Chead

T , cS ∈ Chead
S ,

1
3

∑3
k=1

∣∣ cos
(
uT,cT

[k], uS,cS
[k]

)∣∣, cT ∈ Cmlp
T , cS ∈ Cmlp

S .
(6)

The teacher-to-student matching is then

π(cT) = arg max
cS∈CS

S(cT , cS), M = {(cT , π(cT)) | cT ∈ CT }, (7)

where matching is performed within each component type.

4.1.3 Calculating model alignment

Once we have obtained influence scores and similarity values for matched components, we compute an overall
alignment score, A, to quantify how closely the student replicates the teacher’s internal functional behavior
on a task. A is defined as the similarity-weighted average influence agreement across all matched components
M , emphasizing functional alignment where both representational similarity and task-specific influence agree.
Components with low similarity contribute less to the numerator but still count in the denominator, meaning
that poorly aligned pairs reduce the overall score. This focuses the metric on functional consistency in shared
mechanisms, while implicitly discouraging representational mismatches. Formally:

AT,S = 1
|M |

∑
(cT ,cS)∈M

S(cT , cS) · (1 − |IT (cT) − IS(cS)|). (8)

Where Si is the similarity between student and teacher component activations, and |IT (cT) − IS(cS)| is the
absolute difference between their normalized influence scores. Subtracting the influence difference from one
transforms it into a similarity measure, rewarding closer functional alignment with a higher score. Because
influence scores are normalized, A captures relative computational alignment and remains robust across
differences in model size and architecture. Unlike alternative model comparison methods such as CKA
(Kornblith et al., 2019) or SVCCA (Raghu et al., 2017), which measure global representational similarity, our
metric accounts for task-specific functional importance. This allows it to detect changes in critical circuits
that those methods may miss, providing a more targeted measure of mechanistic alignment.

This metric is grounded in the principle that a student trained to replicate a teacher’s capabilities should
internalize and reproduce the teacher’s internal computations (Aguilar et al., 2020). Misalignments in influence
among functionally similar components indicate deviations in behavior, potentially impacting generalizability
and reliability. By rewarding functional agreement, the alignment score effectively captures the degree of
task-specific circuit replication between models. See Appendix M for sensitivity analyses of the key design
choices underlying the alignment metric.

10

Under review as submission to TMLR

Figure 3: Results of our activation noise-injection experiment on our proposed alignment metric for the
numeral sequence completion task on GPT2, with error bars shown in red.

4.2 Findings

To validate our metric and hypotheses, we conduct two experiments:

• Ablation experiment: We simulate a series of student models with varying degrees of functional
alignment to the teacher by introducing Gaussian noise to the student’s activations during numeral
sequence completion, verifying that our alignment score decreases as functional divergence increases.

• Cross-task comparison: We compare teacher-student alignment scores across a variety of tasks and
assess their correlation with performance gaps. This tests whether functional alignment tracks
real-world task performance.

4.2.1 Ablation experiment

To validate the alignment metric, we run an ablation experiment by injecting Gaussian noise into the
student model’s activations on the numeral sequence completion task (data obtained from Lan et al. (2024)),
simulating increasing functional misalignment. Noise is drawn from a zero-mean distribution with standard
deviation from 0.0 to 2.0 in increments of 0.05. Each noise sample is evaluated across five random seeds, and
we report error bars indicating one standard deviation across these seeds.

We observe an inverse-logarithmic relationship between our metric and the standard deviation of injected
noise (Figure 3). This is expected, as greater noise leads to lower alignment, confirming the metric’s sensitivity
to misalignment and its utility in comparing student models. The plateau in alignment score around 0.2
suggests that beyond a certain noise level, the student behaves randomly, and further perturbations have
little effect. Remaining alignment likely stems from residual structure or token-level priors.

4.2.2 Cross-task comparison

We evaluate alignment across four tasks using GPT2 and DistilGPT2 as the primary teacher–student pair,
and include both BERT / DistilBERT and Llama / Minitron (see Appendix H) results on select tasks to assess
architectural generalization. Full results are shown in Table 3. For numeral and word sequence completion,
we use data from Lan et al. (2024) containing both digit- and word-based sequences, with 384 examples. For
indirect object identification (IOI), we follow Wang et al. (2023) and use 500 randomly-sampled examples
requiring the identification of indirect objects in sentences. For question answering, we use SimpleQA (Wei
et al., 2024) across 200 random samples (see Appendix H.2 for more detailed findings).

11

Under review as submission to TMLR

Table 3: Alignment and logit-difference metrics across tasks. Parentheses show 95% CIs.

Task Model pair Alignment ∆ℓ Mean ℓ

Question answering Llama / Minitron 0.9812
(0.9790, 0.9832)

0.7157
(0.1324, 1.2991)

2.8848
(2.5931, 3.1765)

Numeral sequence comple-
tion

Llama / Minitron 0.9778
(0.9761, 0.9784)

0.6943
(0.6188, 0.7674)

4.5233
(4.4345, 4.6116)

Numeral sequence comple-
tion

GPT2 / DistilGPT2 0.9452
(0.9445, 0.9457)

2.2019
(2.0702, 2.3341)

5.0220
(4.9523, 5.0895)

Word sequence completion GPT2 / DistilGPT2 0.9404
(0.9355, 0.9422)

5.5281
(5.4153, 5.6476)

1.0869
(1.0169, 1.1546)

Indirect object identifica-
tion

GPT2 / DistilGPT2 0.9182
(0.9163, 0.9186)

3.6974
(3.5593, 3.8389)

1.3129
(1.2301, 1.3958)

Numeral sequence comple-
tion

BERT / DistilBERT 0.8872
(0.8814, 0.8917)

0.8824
(0.8229, 0.9415)

0.2761
(0.2227, 0.3301)

Indirect object identifica-
tion

BERT / DistilBERT 0.8803
(0.8761, 0.8807)

1.8022
(1.5674, 2.0214)

2.2498
(2.1357, 2.3639)

Word sequence completion BERT / DistilBERT 0.8413
(0.8412, 0.8415)

0.6555
(0.5623, 0.7540)

-0.4068
(-0.4560, -0.3602)

Numeral sequence comple-
tion

GPT2 / DistilBERT 0.7654
(0.7629, 0.7677)

6.2880
(6.2079, 6.3683)

2.9789
(2.9344, 3.0207)

Mean ℓ is the average of the mean teacher and student logit differences across the dataset.

These results demonstrate that performance gaps (∆ℓ) are not reliable indicators of functional alignment
between models by themselves. For example, on the numeral sequence completion task between GPT2 and
DistilGPT2, we observed a high alignment score of 0.95, while the ∆ℓ was 2.20 (with both models being
able to solve the task confidently, GPT2: 6.12, DistilGPT2 3.92). On the same task between BERT and
DistilBERT, we see a lower ∆ℓ of 0.88 (BERT: 0.71, DistilBERT: -0.17), despite the fact that the alignment
score is significantly lower at 0.89. In this case, we attribute this lowered alignment score in the BERT pair
due to the greater levels of noise and less distinct specialization in student components (see Appendix I
for more details). This reveals that alignment is more tightly linked to internal computation patterns and
representations than surface-level behavioral performance, and thus commonly used methods for assessing
similarity between teacher and student via performance differences alone across some dataset (Sanh et al.,
2020; Jiao et al., 2020; Yang et al., 2024) may yield misleading conclusions for OOD cases. Similarly, on the
word sequence completion task, the BERT pair score much lower in alignment than the GPT2 pair (0.84 vs.
0.94), despite performance being closer within the BERT pair (∆ℓ = 0.66 vs. 5.53). This provides further
evidence that the output behavior can conceal significant internal differences in computation.

Alignment between a mismatched pair. Alignment between GPT2 and DistilBERT is substantially
lower on the numeral sequence completion task (0.7654), consistent with their architectural differences
(autoregressive vs. bidirectional). These structural mismatches, in addition to the fact that they do not
form a teacher-student pair (and hence DistilBERT was not optimized to produce GPT2’s logit distribution),
naturally lead to differing implementations of functionality, as discussed in Appendix I.

Alignment between a larger pair. On the Llama (8B parameters) / Minitron (4B parameters) model
pair, we observe the highest alignment scores of 0.9778 (numeral sequence completion, AppendixH.1) and
0.9812 (SimpleQA, AppendixH.2), which correspond with some of the lowest ∆ℓ across all pairs and tasks,
suggesting more similar internal computations. It is also worth noting here that this model pair shows the
smallest difference in mean ablation-induced drops in performance on the numeral sequence completion task
(Table 2), which naturally increases their alignment score due to the (1 − |IT (cT) − IS(cS)|) term.

12

Under review as submission to TMLR

One likely explanation for this is that, for such a simple task, increasing parameters above 4B may not lead
to a benefit in terms of capacity for implementation of needed functionality. Looking at studying distilled
students of larger parameter counts across more diverse and complex tasks is a valuable direction for future
work here. Across these examples, the metric’s sensitivity to alignment loss across a variety of architectures
and its capability to reflect expected similarities and differences in computation, e.g. in the case of the
diverging architecture of GPT2 / DistilBERT, supports its use across model families. Note that the procedure
is model-agnostic, but the resulting alignment score is task-conditioned because influence is defined with
respect to a task.

4.3 Using the alignment metric in practice

Given a teacher T and one or more candidate students Sj of potentially differing parameter size / architecture
/ training style, one may wish to know which student’s internal task-specific computational pathways best
approximate the teacher. As demonstrated in Section 4.2, comparison of task accuracy between models alone
is not always an effective predictor of similar internal computation. For this reason, we recommend computing
alignment between the teacher and each candidate student model on the intended deployment-relevant task(s),
and using this as an additional selection signal. We expect this to be particularly useful when accuracy
between candidates is similar, as the alignment metric in this case would be primarily measuring the degree
of unfaithful computational shortcuts induced in the student.

In practice, this process yields a per-task alignment score A(T, Sj) that is comparable across model sizes due
to influence normalization. When selecting among candidate students with comparable task performance,
prefer higher A to prioritize preservation of task-relevant internal computation. We also recommend reporting
A alongside a robustness summary, such as mean component ablation-induced performance drop (Table 2),
since students often rely more heavily on a smaller set of components.

Because the matching step requires pairwise comparisons between components (O(C2)), applying the alignment
metric to larger models can become cumbersome. In practice, it may be useful to restrict matching to the
top-K most influential components, reducing the matching cost to O(K2), while still providing a practical
first-pass estimate.

5 Conclusion

We applied mechanistic interpretability methods to study how internal computation changes during knowledge
distillation (KD) across different tasks, focusing on GPT2 and DistilGPT2 and extending findings to both
bidirectional architectures (BERT) and larger models (Llama) to show generalizability of findings. While
student models were seen to generally preserve broad functional behavior from their teacher, they can
significantly restructure internal circuits by compressing, reorganizing, and discarding components. This often
leads to increased reliance on fewer critical components, reducing robustness to ablation and distributional
shifts.

To quantify these changes, we introduced an alignment metric that captures functional similarity beyond
output behavior, validated through controlled experiments. Our findings show that performance similarity
alone is not a reliable indicator for similarity of internal computation, and that circuit-level analysis is
essential for understanding functional alignment in distilled models. This metric can support safer use
of compressed models in low-resource settings, and our findings also highlight the risk of brittle internal
mechanisms causing failures in high-stakes applications without rigorous evaluation. The specific circuit
decompositions and internal restructuring deep dives should be read as task- and model-specific case studies,
whereas the compression/reliance/omission trends are the aspects we expect to transfer more broadly.

5.1 Future work and limitations

Our findings open several avenues for future research while also highlighting current limitations. We selected
models strategically to maximize inter-model differences and thereby improve generalizability of our findings,
but our study remains constrained by the relatively small set of models evaluated (6). A natural extension is

13

Under review as submission to TMLR

to apply our methodology and alignment metric to a broader, more diverse collection of models that vary in
architecture, training regime (e.g. dataset), and parameter scale. In particular, clarifying the relationships
between alignment and robustness and parameter count on a wider range of complex tasks and across differing
distillation datasets may reveal more information about whether there exist reliable scaling laws here. We
believe this would be useful to inform practitioners and researchers when choosing or configuring student
models for particular domains.

Automation of the component role attribution procedure discussed in Section 3.1.2 would also be a valuable
direction to investigate, as it would allow for more practical reproduction of our model comparison methodology
on a broader set of models and analyses. We believe the use of interpretability agents (Schwettmann et al.,
2023; Shaham et al., 2024) would be valuable for this direction.

Additionally, although our alignment metric was shown to capture broad functional similarity effectively,
increasing its granularity and interpretability would improve its usefulness for selecting and tuning distilled
models to meet specific deployment requirements. Future work could also explore ways to incorporate model
diffing techniques such as the Sparse Crosscoder (Lindsey, 2024), which has shown promise for producing
shared sets of features across models. Exploring ways to incorporate the metric during the distillation process
(e.g., as a loss term to discourage the student learning computational shortcuts) may also be fruitful.

Lastly, our findings motivate future work developing theoretical accounts of when and why knowledge
distillation preserves, merges, or re-routes internal computations, and how these capacity-driven changes
relate to redundancy and robustness. This direction could yield clearer conditions and predictions for when
the phenomena we observe should persist (or fail) in more complex and realistic settings.

References
Wikipedia. URL https://www.wikipedia.org/. Accessed: 2026-01-14.

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge distillation
from internal representations. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 7350–7357, 2020.

David D. Baek and Max Tegmark. Towards understanding distilled reasoning models: A representational
approach. In Proceedings of the Building Trust Workshop at ICLR 2025, 2025. URL https://arxiv.org/
abs/2503.03730.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for AI safety–a review. TMLR, 2024.
URL https://arxiv.org/abs/2404.14082.

Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, ryan_greenblatt, jenny, Ansh Radhakrishnan,
Buck, and Nate Thomas. Causal scrubbing: A method for rigorously testing interpretability hypotheses.
AI Alignment Forum, December 2022. https://www.alignmentforum.org/posts/vJFdjigzmcxm6zKdo/
causal-scrubbing-a-method-for-rigorously-testing.

Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4794–4802, 2019.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-Alonso.
Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information
Processing Systems, 36:16318–16352, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

14

https://www.wikipedia.org/
https://arxiv.org/abs/2503.03730
https://arxiv.org/abs/2503.03730
https://arxiv.org/abs/2404.14082
https://www.alignmentforum.org/posts/vJFdjigzmcxm6zKdo/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/vJFdjigzmcxm6zKdo/causal-scrubbing-a-method-for-rigorously-testing
https://arxiv.org/abs/1810.04805

Under review as submission to TMLR

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-jussà. Measuring the mixing of contextual information
in the transformer. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 8698–8714, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
595. URL https://aclanthology.org/2022.emnlp-main.595/.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, interpretable
attention heads in the wild. In The Twelfth International Conference on Learning Representations, 2024.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=p4PckNQR8k.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song. Pretrained
transformers improve out-of-distribution robustness. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 2744–2751, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
https://arxiv.org/abs/1503.02531.

HuggingFace. Distilbert, 2019a. URL https://huggingface.co/distilbert/distilbert-base-uncased.

HuggingFace. Distilgpt2, 2019b. URL https://huggingface.co/distilgpt2.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for natural language understanding. In Trevor Cohn, Yulan He, and Yang Liu
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 4163–4174, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.372.
URL https://aclanthology.org/2020.findings-emnlp.372/.

Wandri Jooste, Rejwanul Haque, and Andy Way. Knowledge distillation: A method for making neural
machine translation more efficient. Information, 13:88, 02 2022. doi: 10.3390/info13020088.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited. In International conference on machine learning, pp. 3519–3529. PMLR, 2019.

Michael Lan, Philip Torr, and Fazl Barez. Towards interpretable sequence continuation: Analyzing shared
circuits in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 12576–12601,
Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.699. URL https://aclanthology.org/2024.emnlp-main.699/.

A. T. Jack Lindsey. Sparse crosscoders for cross-layer features and model diffing. Transformer Circuits
(online), 2024. URL https://transformer-circuits.pub/2024/crosscoders/index.html.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in
GPT. Advances in Neural Information Processing Systems, 36, 2022. arXiv:2202.05262.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking
via mechanistic interpretability. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in:
An introduction to circuits. Distill, 5(3):e00024–001, 2020.

15

https://aclanthology.org/2022.emnlp-main.595/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=p4PckNQR8k
https://arxiv.org/abs/1503.02531
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilgpt2
https://aclanthology.org/2020.findings-emnlp.372/
https://aclanthology.org/2024.emnlp-main.699/
https://transformer-circuits.pub/2024/crosscoders/index.html
https://openreview.net/forum?id=9XFSbDPmdW

Under review as submission to TMLR

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian, Dan
Su, Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, Vibhu Jawa, Jiwei Liu,
Ameya Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, James Maki, Miguel Martinez, Jiaxuan
You, John Kamalu, Patrick LeGresley, Denys Fridman, Jared Casper, Ashwath Aithal, Oleksii Kuchaiev,
Mohammad Shoeybi, Jonathan Cohen, and Bryan Catanzaro. Nemotron-4 15b technical report, 2024.
URL https://arxiv.org/abs/2402.16819.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In International
conference on machine learning, pp. 5142–5151. PMLR, 2019.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. Technical report, OpenAI, 2019. URL https://cdn.openai.com/
better-language-models/language_models_are_unsupervised_multitask_learners.pdf. Technical
report.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector canonical
correlation analysis for deep learning dynamics and interpretability. Advances in neural information
processing systems, 30, 2017.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.01108.

Sarah Schwettmann, Tamar Shaham, Joanna Materzynska, Neil Chowdhury, Shuang Li, Jacob Andreas,
David Bau, and Antonio Torralba. Find: A function description benchmark for evaluating interpretability
methods. Advances in Neural Information Processing Systems, 36:75688–75715, 2023.

Tamar Rott Shaham, Sarah Schwettmann, Franklin Wang, Achyuta Rajaram, Evan Hernandez, Jacob
Andreas, and Antonio Torralba. A multimodal automated interpretability agent. In Forty-first International
Conference on Machine Learning, 2024.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. Llm pruning
and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796, 2024.

Suraj Srinivas and François Fleuret. Knowledge transfer with Jacobian matching. In International Conference
on Machine Learning, pp. 4723–4731. PMLR, 2018.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson. Does
knowledge distillation really work? Advances in neural information processing systems, 34:6906–6919, 2021.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Extracting interpretable features
from Claude 3 Sonnet. Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/
2024/scaling-monosemanticity/index.html.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=SkgpBJrtvS.

Aashka Trivedi, Takuma Udagawa, Michele Merler, Rameswar Panda, Yousef El-Kurdi, and Bishwaranjan
Bhattacharjee. Neural architecture search for effective teacher-student knowledge transfer in language
models, 2023. URL https://arxiv.org/abs/2303.09639.

16

https://arxiv.org/abs/2402.16819
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1910.01108
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=SkgpBJrtvS
https://arxiv.org/abs/2303.09639

Under review as submission to TMLR

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL https://arxiv.org/abs/1706.03762.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability
in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=NpsVSN6o4ul.

Xu Wang, Yan Hu, Wenyu Du, Reynold Cheng, Benyou Wang, and Difan Zou. Towards understanding
fine-tuning mechanisms of LLMs via circuit analysis. In ICLR 2025 Workshop on Building Trust in
Language Models and Applications, 2025. URL https://openreview.net/forum?id=Z9qzta1yiK.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John
Schulman, and William Fedus. Measuring short-form factuality in large language models. arXiv preprint
arXiv:2411.04368, 2024.

Cindy Wu, Ekdeep Singh Lubana, Bruno Kacper Mlodozeniec, Robert Kirk, and David Krueger. What
mechanisms does knowledge distillation distill? In Proceedings of UniReps: the First Workshop on Unifying
Representations in Neural Models, pp. 60–75. PMLR, 2024.

Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and Yiqiang
Chen. Survey on knowledge distillation for large language models: methods, evaluation, and application.
ACM Transactions on Intelligent Systems and Technology, 2024.

Songming Zhang, Yunlong Liang, Shuaibo Wang, Yufeng Chen, Wenjuan Han, Jian Liu, and Jinan Xu.
Towards understanding and improving knowledge distillation for neural machine translation. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8062–8079, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.448. URL https:
//aclanthology.org/2023.acl-long.448/.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading
books. In Proceedings of the IEEE international conference on computer vision, pp. 19–27, 2015.

A Student model training details

Our experiments analyze teacher-student pairs using publicly released student checkpoints. Because the
datasets and loss terms used during distillation training can influence which computational mechanisms are
preserved or discarded, we document below the details of each student model used in this work.

A.1 DistilGPT2

We use the publicly released DistilGPT2 checkpoint (HuggingFace, 2019b) as our primary student model.
The model card reports training on the same corpus as GPT-2, OpenWebTextCorpus (Gokaslan & Cohen,
2019), using the GPT-2 tokenizer, with a standard knowledge distillation process as described in Section 2.1,
alongside the standard LM loss

A.2 DistilBERT

For our BERT replication study, we use a publicly released DistilBERT checkpoint (HuggingFace, 2019a).
The DistilBERT report indicates distillation on the same corpus as BERT (English Wikipedia (wik) and
Toronto BookCorpus (Zhu et al., 2015)) with dynamic masking and without the next-sentence prediction
objective, alongside a standard distillation-based training loss.

17

https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=Z9qzta1yiK
https://aclanthology.org/2023.acl-long.448/
https://aclanthology.org/2023.acl-long.448/

Under review as submission to TMLR

Table 4: Baseline performance (logit difference) of each studied model across tasks (N=100).

Model Numeral Seq. Word Seq. IOI Question Answering
GPT2 6.1127 3.8077 3.2645 -
DistilGPT2 3.7530 -1.6371 -0.2888 -
BERT 1.1650 -0.1295 5.2709 -
DistilBERT 0.4904 -1.3064 3.6949 -
Llama-3.1-8B 3.5375 - - 3.4218
Llama-3.1-Minitron-4B 3.9062 - - 2.6686

A.3 Llama-3.1-Minitron-4B-Depth-Base

For our Llama replication study, we use Llama-3.1-Minitron-4B-Depth-Base (Sreenivas et al., 2024). The
model card describes this model as produced by pruning Llama-3.1-8B (Dubey et al., 2024) (depth pruning)
followed by continued training with standard logit-based distillation over 94B tokens using the Nemotron-4
15B continuous pretraining data corpus (Parmar et al., 2024).

B Model performance

In Table 4, we report observed performance across all model, task pairs studied in our work, across 100
randomly-sampled examples from their respective datasets. Performance is reported as the logit difference
between the correct and incorrect tokens, consistent with all other reportings of performance in this paper.

C Attention head visualizations

C.1 QK attention matrix for T-L1-H5 (similar member detector)

Figure 4: Query-key attention matrix for T-L1-H5 (similar member detection)

The QK attention matrix for T-L1-H5 can be seen in Figure 4. Note the high self-attention activations
between each numeral and the previous numeral in the sequence, as well as duplicates of words such as ‘in’.

18

Under review as submission to TMLR

(a) Teacher (T-L4-H4) (b) Student (S-L2-H4)

Figure 5: Teacher (left) and student (right) QK attention matrices for the numeral detection functionality

(a) Teacher (T-L7-H11) (b) Student (S-L3-H11)

Figure 6: Teacher (left) and student (right) QK attention matrices for the numeral mover functionality

C.2 QK attention matrices for T-L4-H4 / S-L2-H4 (numeral detectors)

Numeral detectors were found across both models, which are responsible for tracking numerals (Figure 5).
This manifests as a high self-attention between each numeral in the sequence and the previous numeral.

C.3 QK attention matrices for T-L7-H11 / S-L3-H11 (numeral movers)

The numeral mover functionality can be seen in more detail in Figure 6. These heads are responsible for
aggregating information about the numerals of the sequence into the final token, for use in downstream tasks.

19

Under review as submission to TMLR

Figure 7: Mean cosine similarities of MLP activations between teacher and student networks, with pair
similarities above 0.6 highlighted

D MLP comparisons

D.1 Mean cosine similarity between MLPs

Figure 7 shows the cosine similarities between various components of the teacher and student MLPs. The plot
reveals multiple high-similarity pairs, particularly in the mid-to-late layers of the two networks. Additionally,
the degree of similarity appears to correlate with the depth of the MLP layers across networks, suggesting
similar levels of computation abstraction progression.

E Numeral sequence completion circuits

Figures 8 and 9 show the full identified circuits (including head decompositions into query (q), key (k),
and value (v) components) for the GPT2 and DistilGPT2 teacher-student pair on the numeral sequence
completion task. Notably, the student’s circuit is much smaller, with significantly fewer components than the
teacher’s. These figures were obtained using code supplied by Lan et al. (2024)

F MLP layer-wise residual stream analysis

Here, we present Figures 10 and 11, which illustrate how we determined token-level importance of MLP
components across teacher and student models. Notably, MLP-0 exhibits a significant influence on the
residual stream in both models, primarily due to its role in transforming token embeddings before attention
mechanisms are applied. However, we exclude MLP-0 from further analysis in this case, as its contribution
is largely tied to input representation rather than task-specific computation, which is the focus of our
investigation. In the figures, MLPs 9 and 10 in the teacher and MLP 4 in the student show high residual
stream contribution on the final token, reflecting importance for the task.

G Complementary case study: Indirect object identification

Here we present our methodology and findings of our complementary case study on the indirect object
identification (IOI) task in more detail. We follow the same methodology as defined in the numeral sequence

20

Under review as submission to TMLR

Figure 8: Complete identified circuit for the teacher network. Attention heads are denoted as either query,
key, or value components.

Figure 9: Complete identified circuit for the student network. Attention heads are denoted as either query,
key, or value components.

21

Under review as submission to TMLR

Figure 10: Teacher’s layer-wise residual stream contribution per MLP

Figure 11: Student’s layer-wise residual stream contribution per MLP

completion task case study (Section 3), making use of GPT2 as the teacher and DistilGPT2 as the student.
Due to the low utilization of MLPs by either model for this task, we focus our study on attention head
components. We identify various attention heads present in the student model which appear to copy across
functionality effectively from the teacher model (originally identified by Wang et al. (2023)), although with
similar differences to those seen in the numeral sequence completion case study. We outline each functionality
in more detail below.

For the purposes of this case study, we choose a critical subset of those functionalities identified by Wang
et al. (2023), and choose a single representative head from the teacher for each task, chosen by taking the
head responsible for the largest contribution to its functionality.

Performance differences. We measure a large discrepancy in IOI task performance between the teacher
and student, with the teacher achieving a logit difference of 3.26 and the student achieving -0.29, suggesting
that the teacher can perform the task reliably, while the student cannot.

Duplicate token heads (T-L0-H1 / S-L0-H5). This head serves to pay strong self-attention between
each token and itself. Note that the student has roughly copied this across, but shows greater self-attention
between duplicate tokens than the teacher does, along with more noise in the activations (Figure 12). This
finding is consistent with those in the numeral sequence completion case study, showing evidence that the
student often relies more heavily on fewer parameters for the task.

Name mover heads (T-L9-H9 / S-L5-H2). We find loose matches for the name mover head in the
student, a crucial functionality identified by Wang et al. for the IOI task. This head is responsible for
copying across the indirect object name to the final token, resulting in prediction of the correct answer. The
QK matrices (Figure 13) show that the activation patterns are structurally similar in the student for this
head, but the student has significantly lower attention values on the indirect object, suggesting less-confident
predictions. This discrepancy in the functionality of a core head is likely a source of the lower performance
on this task from the student when compared to the teacher.

Previous token heads (T-L4-H11 / S-L2-H11). The previous token head is responsible for paying
high self-attention from each token to the previous token. Wang et al. suggest that this head helps the model

22

Under review as submission to TMLR

(a) Duplicate token head (teacher) (b) Duplicate token head (student)

Figure 12: Duplicate token head QK matrices across teacher (left) and student (right)

(a) Name mover head (teacher) (b) Name mover head (student)

Figure 13: Name mover head QK matrices across teacher (left) and student (right)

23

Under review as submission to TMLR

(a) Previous token head (teacher) (b) Previous token head (student)

Figure 14: Previous token head QK matrices across teacher (left) and student (right)

to maintain and propagate model information through the network early in processing. We find a strong
presence of this functionality in the student model, shown through almost identical activation structure and
values (Figure 14).

Induction heads (T-L5-H5 / S-L3-H10). The induction head was seen to attend to the earlier occurrence
of the name token if it occurs twice, creating a shortcut path allowing downstream heads (e.g name mover
head) to access information from the first appearance of the correct name. For our analysis of this head in
the student, we find a similar pattern to that seen in the name mover head, with the student copying across
the broad structure of the induction head from the teacher, but with significantly smaller activation values.
This suggests that the student has again failed to copy across the functionality with high confidence, likely
degrading performance in the IOI task.

Ablation performance drop per component. Here, we show the performance drop (as a percentage of
the unablated performance) caused by ablating different attention heads across the two models for the IOI
task in Figure 15. Notably, the student contains numerous components which cause performance to drop
significantly when ablated, while most components do not cause a notable performance drop when ablated in
the teacher. This supports our findings from the numeral sequence completion task (Section 3) and BERT /
DistilBERT study (Appendix I), where we saw that the student generally puts significantly higher reliance
on individual components than the teacher.

H Llama-3.1-8B and Llama-3.1-Minitron-4B-Depth-Base replication study

H.1 Numeral sequence completion

To assess the external validity of our robustness and alignment findings on more modern, higher-parameter
transformers, we partially replicate the numeral-sequence case study on larger models. A full case-study
replication is out of scope here because identifying and comparing the complete circuit becomes substantially
more complex with the increased number of components and layers. We study Llama-3.1-8B (teacher; (Dubey
et al., 2024)) and Llama-3.1-Minitron-4B-Depth-Base (student; (Sreenivas et al., 2024)). Minitron is a
depth-pruned, distilled derivative of Llama-3.1-8B, where the number of layers is reduced from 32 to 16 by
selecting an optimal subset that minimizes accuracy loss on the WinoGrande benchmark (Sakaguchi et al.,
2021). Hidden dimensionality and the number of attention heads per layer are held constant with the teacher,
as in the other model pairs in this study.

24

Under review as submission to TMLR

(a) Teacher (b) Student

Figure 15: Distribution of performance drops caused by ablation across attention heads in both the teacher
(left) and student (right) BERT models

(a) Teacher (b) Student

Figure 16: Distribution of performance drops caused by ablation across components in both the teacher (left)
and student (right) Llama models

Interestingly, we observe a slightly higher logit difference in the student (4.87) than in the teacher (4.18). In
all other pairs we examined, the teacher exhibited the larger logit difference. These values are similar, which
may reflect convergence of higher-parameter models on a simple task such as numeral-sequence completion.

Within this parameter range, we again find strong evidence that distilled student models are less robust than
their teachers under component ablation. The student exhibits larger performance drops from individual
component ablations than the teacher (Figure 16). Across all components, the mean ablation-induced
performance drop in the teacher is 0.84 [0.59, 1.15], while in the student it is 2.20 [1.58, 2.93] (95% CIs),
where the non-overlapping CIs indicate a clear between-model difference. Additionally, eight components
in the student cause a drop of at least 20%, compared with just two in the teacher. The two components
that produce total (100%) performance collapse in both models are the MLPs at layers 0 and 1, suggesting
these early-layer MLPs are critical for the task (consistent with early feature formation). Other student
components producing declines > 20% are MLPs 13 (−35.30%), 14 (−47.06%), and 15 (−80.61%), together
with attention heads L14H1 (−45.64%), L13H27 (−64.48%), and L15H22 (−74.35%). No other components
in the teacher cause a drop exceeding 20%.

Although the student’s reduced ablation robustness is statistically significant, the effect size is smaller than
in other pairs (Appendix K). The student’s average ablation drop exceeds the teacher’s by 9.18 percentage
points in the GPT2 pair and by 10.62 in the BERT pair, but by only 1.36 in the Llama pair. This contrast
is consistent with the higher alignment score for the Llama pair (0.98) relative to GPT2 (0.95) and BERT
(0.89): by construction, our alignment metric increases with the similarity of influence distributions. We view

25

Under review as submission to TMLR

testing the relationship between parameter count and robustness / alignment in more depth as a valuable
direction for future work.

Overall, the Llama model pair results reinforce the pattern seen in the case study and the BERT replication,
where distilled students are significantly less robust to component ablation than their teachers, even at
substantially larger model sizes. Moreover, the smaller teacher–student robustness gap in this pair helps
explain its higher alignment score (Section 4), consistent with the view that more similar influence distributions
yield higher alignment under our metric.

H.2 Question answering: SimpleQA

We additionally extend our analysis to a more complex and realistic downstream NLP task, involving question
answering: SimpleQA (Wei et al., 2024). SimpleQA involves the model answering short fact-seeking questions,
where there is just one correct answer. This task is effective as it contains significantly less structure than the
numeral sequence completion and indirect object identification tasks, which rely on syntactic patterns to
obtain the correct answer. We again focus on reproducing our robustness and alignment metric findings, due
to the complexity of identifying and verifying individual component differences in this larger model pair. We
study 200 randomly sampled examples from the dataset.

In this task, we observe high confidence in the correct answer across the teacher and student models (logit
difference: 3.24 and 2.53, respectively), with a relatively high alignment score of 0.9812, consistent with
the pattern we observed of similar and high performance coupled with a high alignment score (0.9778)
between this model pair in the numeral sequence completion task. We additionally successfully replicate our
findings of lowered robustness to component ablation in the student, with 1.89% of components resulting in
a performance drop of more than 10% in the student, compared with 0.66% in the teacher (mirroring the
numeral sequence task, where we saw 2.27% in the student and 0.95% in the teacher). This provides further
evidence that, even on more complex downstream tasks, the trend of the student undergoing shifts towards
decreased robustness to component ablation persists.

I BERT and DistilBERT replication study (numeral sequence completion)

In this section, we provide details of a complementary study using BERT (Devlin et al., 2019) as the teacher
model (12 layers, 12 heads, 109M parameters) and DistilBERT (Sanh et al., 2020) as the student (6 layers, 12
heads, 66M parameters) on the numeral sequence completion task (using 100 randomly-sampled examples).
The aim of this study is to evaluate the generalizability of our findings on the GPT2 pair. We do not conduct
as thorough of an analysis here, solely focusing on a few key attention heads and MLPs with the same
methodology as outlined in Section 3.1.

These BERT models differ from the GPT2 model pair in that they are bidirectional encoder-only architectures
rather than autoregressive decoder-only models. This distinction results in different attention patterns, where
BERT models attend to both past and future tokens simultaneously, unlike the GPT2 models, which use
causal attention to prevent future token leakage. As a result, we expect the internal circuits and restructuring
behaviors during distillation to show both parallels and architecture-specific differences to the GPT2 variants.

The BERT model pair also achieves significantly worse performance on the task than the GPT2 models,
with the teacher achieving a logit difference of 1.17 and the student achieving 0.49, compared with GPT2
achieving 6.11 and DistilGPT2 achieving 3.75. Naturally, as a result of this performance discrepancy between
the two pairs, certain component functionalities in the BERT pair are less-defined and more noisy.

We find that, despite architectural differences, the BERT and DistilBERT models show highly-similar
patterns of computational restructuring during distillation to those observed in the GPT2 pair. In particular,
DistilBERT tends to compress multiple functionalities into fewer components and shows increased reliance on
individual attention heads and MLPs, often resulting in brittle behavior when these are ablated. Additionally,
both DistilBERT and DistilGPT2 were observed to discard the “similar member detection” functionality
present in their respective teachers, suggesting that such functional deletions may be semi-universal across
architectures. However, we also note greater noisiness and less distinct specialization in some components,

26

Under review as submission to TMLR

Figure 17: Teacher (T-L1-H11) QK attention matrix for the similar member head functionality

particularly in the student model, likely reflecting the lower overall performance of the BERT models on
this task. These findings indicate that the mechanistic trends identified in our main study generalize beyond
autoregressive models and specific architectures.

I.1 Component comparisons

I.1.1 Attention heads

Similar member detection (T-L1-H11). An attention head was found in the teacher model which pays
strong attention between each token and previous mentions of that same token (Figure 17). This functionality
serves to detect repeated elements, which was also a highly-influential functionality in the GPT2 teacher
model, although it was not seen in the DistilGPT2 student model. Interestingly, we could not identify this
functionality in DistilBERT either, suggesting that this functionality is not considered a crucial one by student
models. Further work looking into the universality of student-discarded functionalities would be interesting
here.

Numeral detection (T-L4-H2 / S-L1-H9). This functionality is responsible for encoding the numeral
sequence through high self-attention between each numeral and its predecessors. The student model is seen
to partially copy this functionality across, where there is high self-attention between every numeral and its
immediate predecessor, but the range of this self attention does not extend past the previous numeral. In
the teacher, high self-attention is seen between each numeral and all predecessors (Figure 18). This partial
implementation by the student is likely to be a contributing factor towards the lower task performance seen
by the student in the numeral sequence completion task.

When ablated, this head causes a performance change of -6.57% in the teacher, and -100.00% in the student,
completely erasing the student’s ability to perform this task. The reason for such a high dependence on
this head by the student could be due to the fact that it seems to implement a secondary functionality
concurrently, where there are diagonals in the QK-matrix of high similarity, potentially indicating encoding

27

Under review as submission to TMLR

(a) Teacher (T-L4-H2) (b) Student (S-L1-H9)

Figure 18: Teacher (left) and student (right) QK attention matrices for the numeral detection head functionality

(a) Teacher (T-L4-H0) (b) Student (S-L0-H0)

Figure 19: Teacher (left) and student (right) QK attention matrices for the numeral mover head functionality

of local context into each token. The teacher head appears much more specialized on the numeral detection
task. This compression of multiple functionalities into a single component was also observed in the GPT2
pair, where two MLP components from the teacher were effectively compressed into a single MLP component
in the student (Section 3.2.2).

Numeral mover (T-L4-H0 / S-L0-H0). We observe that both models contain distinct attention heads
responsible for transferring numeral information to the final token’s representation (Figure 19). These
“numeral mover” heads operate by assigning strong attention from the final token to positions immediately
surrounding each numeral, typically the two neighboring tokens. This attention pattern enables the final
token to aggregate contextual signals that encode numerical content, effectively integrating that information
into its own representation. Notably, the student model closely matches the teacher’s QK matrix structure
on the final row of this head, indicating a strong replication of this functionality. Ablating this head leads to
a performance drop of -10.83% in the teacher and -44.34% in the student, again consistent with the GPT2
study, reinforcing the observation that student models tend to over-rely on retained functional components.

28

Under review as submission to TMLR

Figure 20: PCA projection of mean token MLP activations within MLP-T-6 and MLP-S-2 for BERT models

I.1.2 MLPs

MLP-T-6 / MLP-S-2. We identify a pair of MLPs that are highly important for the numeral sequence
completion task in both models, with ablation leading to a performance change of -84.35% in the teacher and
-100.00% in the student (Figure 20). The two MLPs are structurally similar, with a cosine similarity of 0.842
between their token activations, suggesting that they perform the same function across models. Both models
appear to rely on these MLPs in similar ways, though the student again shows a higher ablation-induced
performance change.

MLP-T-11 / MLP-S-5. This MLP pair is anomalous as it indicates the first observed case where the
ablation-induced performance change is greater in the teacher (-76.68%) than the student (-4.98%), despite
the fact that the activation structure is highly similar (cosine similarity: 0.928) (Figure 21). The large
discrepancy in reliance on this MLP is indicative of a differing underlying algorithm to perform the numeral
sequence task between the two models, with the student placing its reliance on a different set of MLP
functionalities than the teacher.

First token divergence. Notably, we do not find evidence of a significant divergence in first token
activation between any impactful MLP layers across the BERT models, unlike the pronounced difference seen
in the MLP-T-11 / MLP-S-5 pair in the GPT2 study (Section 3). While this does not necessarily imply that
the earlier observation was anomalous, it highlights the need for further investigation into this phenomenon
to assess whether it is a recurring outcome of the KD process or not, and to understand its implications for
model divergence more broadly.

I.2 Ablation performance changes

Our findings on ablation-induced performance changes in the BERT study (where we ablate individual
components and measure the change in logit difference on the numeral sequence completion task relative to
the unablated model) are strongly consistent with those observed in the GPT2 / DistilGPT2 study. Once
again, we find that the student model places significantly greater reliance on individual components than the
teacher, with many ablations leading to complete functional collapse in the student (Figure 22). These results
further support the generalizability across different architectures of the trends identified in our main study.

29

Under review as submission to TMLR

Figure 21: PCA projection of mean token MLP activations within MLP-T-11 and MLP-S-5 for BERT models

(a) Teacher (b) Student

Figure 22: Distribution of performance drops caused by ablation across components in both the teacher (left)
and student (right) BERT models

30

Under review as submission to TMLR

Figure 23: Probe accuracy across layers for GPT2 and DistilGPT2 on prediction of the i-th element of the
numeral sequence

J Role validation details and results

Here, we provide further details regarding the methodology and results of our role validation techniques,
broken down by key attention head components across the GPT2 and DistilGPT2 model pair for the numeral
sequence completion task.

For training of linear probes, we extract token-level feature vectors from the model’s intermediate activations
for each prompt and layer (either the residual stream post-attention, pre-MLP, or the value vectors of a
specified attention head). For classification tasks (e.g., numeral prediction), we train a single linear layer
with cross-entropy using Adam (lr = 1e − 3) for 20 epochs on an 80/20 split; for multi-label tests (e.g.,
position-memory) we use logistic loss and report AUROC. We repeat this per layer to produce layer-wise
curves.

J.1 Numeral detection (T-L4-H4 / S-L2-H4)

J.1.1 Activation patching

We find that logit difference recovery is entirely concentrated in the attention blocks of layer 4 when patching
the numerals of the sequence, yielding a logit difference improvement of 0.411 in the teacher and 0.491 in the
student. This translates to a exp(0.411) ≈ 1.51x and 1.63x increase in the clean prompt’s correct to incorrect
token probability ratio, respectively. This is causal evidence that this layer is solely responsible and sufficient
for encoding the numeral sequence for the remainder of the circuit. To pinpoint which heads are responsible,
we patch the QK circuits of each head in layer 4. We find that recovered performance is heavily concentrated
in TL4H4, TL4H10 (likely a backup), and SL2H4. This provides targeted causal evidence that these heads
actively encode numeral structure, not just attend to it.

J.1.2 Probing

We train single-layer linear probes to predict the i-th numeral in the sequence from the residual stream at
each layer (Figure 23). Accuracy is low across early layers, then jumps to ∼73%/∼95% at layer 5/3, and
reaches perfect decodability by layer 6/4 onwards. This shows that numeral information becomes linearly
accessible in the layer directly after these components, consistent with attention heads in that layer writing
this information into the residual stream.

J.2 Numeral mover (T-L7-H11 / S-L3-H11)

J.2.1 Activation patching

We ran an activation patching experiment to test whether these heads move task-relevant information (the
sequence) to the final token. Patching in clean activations at the final token and measuring logit difference

31

Under review as submission to TMLR

Figure 24: Probe accuracy across layers for GPT2 and DistilGPT2 on prediction of the full numeral sequence

recovery shows peaks in layer 7 (teacher, 3.53× layer mean) and layer 3 (student, 3.42× layer mean). Analyzing
OV circuits, T-L7-H11 achieves a +0.164 margin (z = 3.6), recovering 8.3x more than the next best in its
layer. SL3H11 reaches +0.344 (z = 3.3), with 6.36x more in its layer. These results causally implicate these
heads as key movers of the numeral sequence.

J.2.2 Probing

Probing for the full numeral list from the final-token residual stream (Figure 24), we obtain accuracy which
jumps from 7.60% in layer 5 to 41.4% in layer 6 and 70.1% in layer 7 in the teacher, and from 4.7% in layer 2
to 59.9% in layer 3 in the student. These numbers imply that T-L7-H11 and S-L3-H11 are writing information
to the residual stream such that the probe is able to linearly decode the sequence in the subsequent layer.
Accuracy remains high in later layers, suggesting the sequence is preserved for downstream use.

J.3 Successor computation (T-L9-H1 / S-L4-H1)

J.3.1 Activation patching

Following Gould et al. (2024), we project each head’s OV contribution at the final token into vocabulary
space and compute two metrics: (i) a successor score (the percentage of examples where the ground-truth
next token appears in the head’s top-5 logits); and (ii) a copy score (the percentage where the last-given
token reappears in the head’s top-5 logits). We find that T-L9-H1 attains a successor score of 87.37% and
a copy score of 59.27% (vs. a model-wide head average successor score of 3.29%). S-L4-H1 yields 96.64%
successor and 3.61% copy (vs. 4.89% average successor). This sharp specialization, especially in the student,
supports a focused successor head role.

J.3.2 Probing

Probes for predicting the next numeral (Figure 25) show teacher accuracy spikes from 29.4% in layer 7 to
75.3% in layer 8 and 94.3% in layer 9, then drops back down for the remainder of the layers. The student
shows a similar peak in accuracy at layer 4 of 77.6%. These alignments reinforce the role of T-L9-H1 /
S-L4-H1 in encoding the correct successor.

J.4 Similar member detection (T-L1-H5)

J.4.1 Probing

Although this attention head is referred to as the “similar member detection” head in prior work (Lan et al.,
2024), we test whether this component is primarily encoding token repetition, or simply just focusing on
encoding the previous numeral for each point in the sequence. A linear classifier for the previous numeral at

32

Under review as submission to TMLR

Figure 25: Probe accuracy across layers for GPT2 and DistilGPT2 on prediction of the next numeral

Figure 26: Probe accuracy across layers for GPT2 and DistilGPT2 on prediction of the previous element at
each position of the numeral sequence

each position of the sequence (Figure 26) on head values showed peak 18.18% accuracy at T-L1-H5 (vs 5.19%
at L0), dropping to 6.49% in layer 2, with the next-highest peak of 15.58% in layer 11. This was not seen in
the student, with accuracy peaking in the last layers at 16.88% in layer 4. Lower scores are expected here
due to single-head probing.

When instead training a binary probe to predict prior token occurrence, we see low accuracy across layer
1 (56.5%), with performance of the probe peaking at layer 7 (82.2%). This is supporting evidence for the
fact that the primary goal of T-L1-H5 is not to track token repetition, but instead to encode the previous
numeral. We do however keep the same role title throughout the rest of this paper to maintain consistency
and to avoid confusion.

J.4.2 Activation patching

Activation patching over the OV circuit confirmed its causal role, with T-L1-H5 showing the largest recovery
in its layer (2.84x next best; z = 2.93).

K Robustness quantification

To quantify robustness between each studied model on the numeral sequence completion task, we report the
mean (95% bootstrap CIs) values of the component ablation-induced drops in performance in Table 2. This
number captures the degree of which the model’s performance drops under component ablation, where higher
values represent less robustness, and lower values more robustness. We can see that the Llama model pair

33

Under review as submission to TMLR

shows both significantly higher mean robustness than the other smaller pairs, as well as significantly lower
difference in robustness.

L Relationship between model compression and robustness

We provide additional information on quantification of the relationship between model compression (in terms
of parameter count) and robustness (i.e., ablation-induced performance drop). This is an important trade-off
to consider, as it has broad implications for decisions on the parameter count of the student model, which is
often very domain-specific. For example, if aiming to distill a student for low-resource environments, it may
be more acceptable to sacrifice some robustness for higher compression, but this may not be the case for
more critical domains.

To quantify this relationship, we ablate each attention head and MLP across tasks for three teacher–student
pairs (GPT2 124M→82M, BERT 109M→66M, Llama 8B→4B) and measure the resulting drop in logit-
difference between the correct and incorrect token. We find that compression consistently increases component-
level brittleness. For GPT-2 (C = 33.9%), the student exhibits a much larger mean drop than the teacher
(12.24pp vs. 3.06pp; ∆ = 9.18pp). This corresponds to βmean = 26.94pp·C−1, i.e. 2.69pp per 0.1, C (95%
CI: 0.92–4.65 per 0.1, C). BERT shows a similar pattern: at C = 39.4%, the student drop is 16.89pp vs.
6.26pp in the teacher (∆ = 10.62pp), giving βmean = 26.75pp·C−1 (2.68pp per 0.1, C; 95% CI: 0.94–4.56).
Llama (C = 50%) is less dramatic but still consistent with increased brittleness under compression: 2.20pp
vs. 0.84pp (∆ = 1.36pp), with βmean = 2.72pp·C−1 (0.27pp per 0.1, C; 95% CI: 0.14–0.43).

Across architectures, this implies an increase in brittleness of 0.27–2.69pp per 0.1, C, showing that across our
six models, parameter compression provides a clear correlation with decreased ablation-induced robustness. We
highlight confirming these findings across many more diverse teacher-student pairs (e.g., differing distillation
loss functions, architectural differences, parameter sizes, etc.) as an interesting direction for future work.

M Alignment metric design choice sensitivity analysis

We evaluate the sensitivity of the alignment metric (Section 4) to two key design choices: (i) how component
influences are normalized before comparing teacher and student, and (ii) how teacher and student components
are matched. We run a sweep over influence normalization (max-normalization as used in the main text, as
well as ℓ1 and ℓ2 normalization) and over matching (greedy nearest-neighbor baseline, one-to-one Hungarian
matching, and a soft top-k assignment with k=5 and temperature T=1). We conduct this analysis on
the numeral sequence completion task, which is the only task studied across all three model pairs in our
experiments, enabling a consistent model-wise comparison.

Table 5 reports the resulting alignment scores. Across all eight variants, the induced ranking of model-pair
alignment scores is unchanged relative to the original cross-model findings at N=100: The Llama pair
remains highest, GPT remains intermediate, and BERT remains lowest (Spearman ρ ≈ 1.0 and pairwise
order agreement = 1.0 versus baseline for all variants, computed over the three model pairs). Absolute scores
were observed to shift modestly depending on the variant (mean |∆| ≈ 0.02 - 0.05 across variants; worst-case
|∆| ≤ 0.083 in this sweep), but these changes do not affect any ranking-based qualitative conclusions drawn
from the metric.

N Circuit extraction threshold sweep

To address robustness of our findings in Section 3.2, we add a sweep over the circuit extraction threshold
Tn ∈ 0.10,0.15,0.20,0.25,0.30 and report: (i) circuit size (nodes/edges), and (ii) completeness and faithfulness
as functions of Tn. We observe the expected smooth pattern, where circuit size is highly stable (28-30 nodes
total; 18-19 heads and 10-11 MLPs), while completeness decreases monotonically as Tn increases (91.9%,
85.1%, 80.1%, 75.8%, 70.7% of baseline logit-difference retained when keeping only the circuit). Faithfulness
is essentially unchanged across thresholds, as ablating the extracted circuit consistently collapses performance
(faithfulness ≈ 4% of baseline logit-difference for all Tn), indicating that the same core causal mechanism is
captured throughout the sweep.

34

Under review as submission to TMLR

Variant GPT2 & DistilGPT2 BERT & DistilBERT Llama & Minitron

max + greedy (baseline) 0.865 0.809 0.938
max + hungarian 0.893 0.835 0.943
max + soft top-k (k=5, T =1) 0.812 0.756 0.905
ℓ1 + greedy 0.937 0.831 0.966
ℓ1 + hungarian 0.948 0.852 0.966
ℓ1 + soft top-k (k=5, T =1) 0.893 0.769 0.956
ℓ2 + greedy 0.918 0.823 0.960
ℓ2 + hungarian 0.924 0.844 0.955
ℓ2 + soft top-k (k=5, T =1) 0.875 0.764 0.946

Table 5: Sensitivity of alignment scores (N=100) on the numeral sequence completion task to influence
normalization and component matching choices. All variants preserve the same ranking over model pairs.

35

	Introduction
	Background and related work
	Knowledge distillation
	Mechanistic interpretability
	Tasks
	Sequence completion
	Indirect object identification
	Question answering

	Case study: Numeral sequence completion
	Methodology
	Circuit discovery
	Component comparison
	Role validation

	Findings
	Attention analysis
	MLP analysis
	Robustness to component ablation

	Alignment metric
	Methodology
	Calculating component influence
	Matching components
	Calculating model alignment

	Findings
	Ablation experiment
	Cross-task comparison

	Using the alignment metric in practice

	Conclusion
	Future work and limitations

	Student model training details
	DistilGPT2
	DistilBERT
	Llama-3.1-Minitron-4B-Depth-Base

	Model performance
	Attention head visualizations
	QK attention matrix for T-L1-H5 (similar member detector)
	QK attention matrices for T-L4-H4 / S-L2-H4 (numeral detectors)
	QK attention matrices for T-L7-H11 / S-L3-H11 (numeral movers)

	MLP comparisons
	Mean cosine similarity between MLPs

	Numeral sequence completion circuits
	MLP layer-wise residual stream analysis
	Complementary case study: Indirect object identification
	Llama-3.1-8B and Llama-3.1-Minitron-4B-Depth-Base replication study
	Numeral sequence completion
	Question answering: SimpleQA

	BERT and DistilBERT replication study (numeral sequence completion)
	Component comparisons
	Attention heads
	MLPs

	Ablation performance changes

	Role validation details and results
	Numeral detection (T-L4-H4 / S-L2-H4)
	Activation patching
	Probing

	Numeral mover (T-L7-H11 / S-L3-H11)
	Activation patching
	Probing

	Successor computation (T-L9-H1 / S-L4-H1)
	Activation patching
	Probing

	Similar member detection (T-L1-H5)
	Probing
	Activation patching

	Robustness quantification
	Relationship between model compression and robustness
	Alignment metric design choice sensitivity analysis
	Circuit extraction threshold sweep

