
Workshop track - ICLR 2017

GENERATIVE ADVERSARIAL LEARNING
OF MARKOV CHAINS

Jiaming Song, Shengjia Zhao & Stefano Ermon
Computer Science Department
Stanford University
{tsong,zhaosj12,ermon}@cs.stanford.edu

ABSTRACT

We investigate generative adversarial training methods to learn a transition op-
erator for a Markov chain, where the goal is to match its stationary distribution
to a target data distribution. We propose a novel training procedure that avoids
sampling directly from the stationary distribution, while still capable of reaching
the target distribution asymptotically. The model can start from random noise, is
likelihood free, and is able to generate multiple distinct samples during a single
run. Preliminary experiment results show the chain can generate high quality sam-
ples when it approaches its stationary, even with smaller architectures traditionally
considered for Generative Adversarial Nets.

1 INTRODUCTION

A large number of deep generative models are implicit models, where a stochastic procedure is
used to directly generate data without having to define a tractable likelihood function (Mohamed
& Lakshminarayanan, 2016). There are two popular ways of sampling from implicit models: an-
cestral and iterative sampling. Ancestral sampling involves a single pass over all the variables in
the model: each variable is sampled conditionally on its predecessors, based on an ordering speci-
fied by a directed model. Popular frameworks include the Variational Autoencoder (VAE, Kingma
& Welling (2013); Rezende et al. (2014)) and Generative Adversarial Network (GAN, Goodfellow
et al. (2014)). Alternatively, iterative sampling involves multiple passes over all the variables, it-
eratively improving the quality of the sample. Typically, the process involves simulating a Markov
chain over the entire state space, and is often the method of choice for undirected models (Hast-
ings, 1970). Several recent works (Bengio et al., 2013; 2014; Sohl-Dickstein et al., 2015; Bordes
et al., 2017) have discussed procedures for learning iterative models, where samples are obtained
by iterating over a neural network; iterative sampling, however, has generally received less attention
compared to ancestral sampling.

In this work, we consider the general case of iterative sampling in which we train a Markov chain
to mix quickly towards a given stationary distribution, starting from random noise. We utilize gen-
erative adversarial training (Goodfellow et al., 2014), which only requires samples from the chain,
allowing for a likelihood-free approach. Empirical results show that we are able to train fast mixing
Markov Chains with a stationary distribution close to the desired one.

2 PROBLEM SETUP

Let S be the state space for the sequence of random variables X = {Xt}t=∞t=0 , Xt ∈ S . Let π0

be an initial probability distribution for X0, and Tθ(·|x) be a transition kernel parameterized by
θ, e.g., using a neural network. We assume Tθ is easy to sample from, and is a valid transition
kernel for any choice of θ, i.e., it satisfies

∫
S Tθ(x

′|x)dx′ = 1 for all x ∈ S . Therefore, every
Tθ defines a time-homogeneous Markov chain over X . We denote πtθ(x) the resulting probability
distribution at time step t. If we assume that Tθ(xt|xt−1) > 0 for all xt,xt−1 ∈ S, then the Markov
chain defined by Tθ is both irreducible and positive recurrent, and hence has a unique stationary

1

Workshop track - ICLR 2017

distribution πθ = lim
t→∞ π

t
θ. For all x ∈ S, πθ satisfies

πθ(x) =

∫
S
Tθ(x|x′)πθ(x′)dx′ (1)

Suppose there is an unknown distribution pd(x) from which we can obtain samples from, e.g., a
data distribution. Our goal here is twofold: we want to find a θ such that 1) πθ is close to pd(x), and
2) the corresponding Markov Chain mixes quickly.

3 ADVERSARIAL TRAINING OF MARKOV CHAINS

Although πθ exists for any θ due to the uniqueness of the stationary distribution, calculating the
actual likelihood of x under that distribution is intractable in most cases. However, it is straightfor-
ward to obtain samples from πtθ, which will be close to πθ if t is large enough. This aligns well with
the framework of GANs, which only requires the ability to sample from the model.

Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is a framework for training deep
generative models using a two player minimax game. GANs train a generator networkG to generate
samples by transforming a noise variable z ∼ p(z) into G(z). A discriminator network D(x)
is trained to distinguish between samples from the generator and true samples from a given data
distribution pd. Formally, this defines the following objective

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pd [logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (2)

In our setting, we could choose z ∼ π0 and let Gθ(z) be the state of the Markov Chain after t steps,
which is a good approximation of πθ if t is large enough. However, we would run into optimization
problems, because the gradient is required to back propagate through the entire chain, resulting in an
expensive gradient step update, while having slow convergence due to high variance in the estimated
gradients. Therefore, we propose a more efficient approximation, with the following objective:

min
θ

max
D

Ex∼pd [logD(x)] + Ex∼πt̄θ
[log(1−D(x))] + Exd∼pd,x∼T t̂θ (x|xd)[log(1−D(x))] (3)

where T t̂θ(x|xd) denotes the distribution of x when the transition kernel is applied t̂ times, starting
from xd. We use two types of samples from the generator for training, optimizing θ such that the
samples will fool the discriminator:

1. Sample in t̄ steps, given an initial sample x0 ∼ π0.
2. Sample in t̂ steps, given a data sample x ∼ pd with some small random perturbation.

Intuitively, the first condition encourages the Markov Chain to converge towards pd over relatively
short runs (of length t). If we only consider this requirement, the approach would correspond to
ancestral sampling in a latent variable model, as in the cases of Sohl-Dickstein et al. (2015), Salimans
et al. (2015) and Bordes et al. (2017). However, in contrast with these models, our goal is train an
iterative procedure, where the quality of the samples can be improved by increasing the number
of simulation steps, and multiple samples can be cheaply generated after the burn-in period of the
chain. This is accomplished by the second condition, which enforces convergence to the stationary,
where each point from pd has to transition to another point on the data manifold. 1

The objective in Equation 3 is much easier to optimize than Equation 2 for the stationary distribution.
Instead of sampling the chain until convergence, which will be especially time-consuming if the
initial Markov chain takes many steps to mix, the generator would run only (t̄ + t̂)/2 steps on
average, with the advantage of estimating gradients with lower variance.

4 EXPERIMENTS

We train our model on the MNIST dataset, where the goal is to match the data generating distribution
with πθ, and we prefer fitting complex distributions with simple transition operators. We consider

1We provide a more rigorous justification in Appendix A.

2

Workshop track - ICLR 2017

Figure 1: Samples from a chain with the mlp architecture. From top left to bottom right, each
subplot are samples from π1

θ , π2
θ , π5

θ , π10
θ , π20

θ , π50
θ , respectively. The figure is generated by starting

with a batch of 100 initial samples from x0, and repeatedly applying the transition operator to it.

three types of architectures for our transition operator Tθ(·|x). Each has a symmetric encoder-
decoder architecture where we inject factored Gaussian noise into the latent code. The decoder
architectures are respectively:

1. The generative network architecture for DCGAN (Radford et al., 2015), which has two
fully connected layers followed by two transposed convolutions. This model is powerful
enough to generate sharp images in one step. (dcgan)

2. A weaker DCGAN, with a fully connected layer and a transposed convolution. (conv)
3. A MLP composed of two fully connected layers, which is the weakest model. (mlp)

To see whether the stationary distribution closely matches the data distribution, we visualize samples
of πt at different time steps t for the models in Figure 1 for mlp, Figure 2 for conv and Figure 3
for dcgan2. π0 is a factored Gaussian distribution with mean and standard deviation being the mean
and standard deviation of the training set.

In the case of conv and mlp, where it is difficult to generate clear images in one step, the model
is able to generate sharp images by running the chain. Remarkably, the model is able to generalize
to longer runs (such as 10, 20 and 50), even if the operator was trained for shorter simulations. In
addition, running the chain from a single sample in π0 will not result in convergence to a particular
sample. At each step the class distribution is relatively balanced, without indication of missing
particular modes.

5 CONCLUSION AND FUTURE WORK

We presented an efficient generative adversarial training method for learning the transition operator
in a Markov chain, with few conditions enforced on the model. In extension, we are interested in
applying this method to larger datasets, as well as performing detailed analysis over the effect of
hyperparameters. It is also interesting to consider chains with certain desirable properties, such as
detailed balance.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.
2Figures 2 and 3 are in Appendix C.

3

Workshop track - ICLR 2017

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders
as generative models. In Advances in Neural Information Processing Systems, pp. 899–907, 2013.

Yoshua Bengio, Eric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski. Deep generative
stochastic networks trainable by backprop. 2014.

Floria Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from noise through
infusion training. ICLR, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Tim Salimans, Diederik P Kingma, Max Welling, et al. Markov chain monte carlo and variational
inference: Bridging the gap. In ICML, volume 37, pp. 1218–1226, 2015.

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. arXiv preprint arXiv:1503.03585, 2015.

4

Workshop track - ICLR 2017

A JUSTIFICATION FOR OBJECTIVE IN EQUATION 3

We consider two necessary conditions for pd to be the stationary distribution of the Markov chain,
which can be translated into a new algorithm with better optimization properties.
Proposition 1. Consider a sequence of ergodic Markov chains over state space S. Define πn as the
stationary distribution for the n-th Markov chain, and πtn as the probability distribution at time step
t for the n-th chain. If the following two conditions hold:

1. ∃t̄ > 0 such that the sequence {πt̄n}∞n=1 converges to pd in total variation;

2. ∃ε > 0, such that if ‖πt − pd‖TV< ε, then ‖πt+1 − pd‖TV< ρ‖πt − pd‖TV for some ρ < 1;

then the sequence of stationary distributions {πn}∞n=1 converges to pd in total variation.

Proof. The goal is to prove that ∀δ > 0, ∃N > 0, T > 0, such that ∀n > N, t > T , ‖πtn−pd‖TV< ε.

According to the first assumption, ∃N > 0, such that ∀n > N , ‖πt̄n − pd‖TV< ε.

Therefore, ∀δ > 0, we are able to propose ∃T = t̄+ max(0, dlogρ δ − logρ εe), such that ∀t > T ,

‖πtn − pd‖TV

< ‖πt̄n − pd‖TV·ρT−t

< ε · δ
ε

= δ (4)

Hence the sequence {πn}∞n=1 converges to pd in total variation.

Moreover, convergence in total variation distance is equivalent to convergence in Jensen-Shannon
(JS) divergence(Arjovsky et al., 2017), which is what GANs try to minimize (Goodfellow et al.,
2014), so we can use GANs to achieve the two conditions in Proposition 1. This suggests a new
optimization criterion, where we look for a θ that satisfies both conditions in Proposition 1, which
translates to Equation 3.

B RELATED WORK

Previous works have considered using Markov chains to represent implicit generative models. Intu-
itively, a Markov Chain can potentially transition between a large number of different modes even
with a simple unimodal transition kernel. Even when the desired target distribution is complex and
has a large number of modes, it might still be representable with a relatively simple Markov Chain,
as mentioned in Bengio et al. (2014).

Generative Stochastic Networks (Bengio et al., 2013; 2014) use transition operators defined by auto-
encoders with a stochastic component, and fit the stationary distribution to training data. However,
it requires the chain to start close to training data points, due to the use of autoencoders. Diffusion
training (Sohl-Dickstein et al., 2015) obtains a Markov chain by inverting a slow, fixed diffusion
process from data to a simple distribution, which may take thousands of tiny steps to mix in the case
of high dimensional images. Infusion training (Bordes et al., 2017) allows progressive stochastic
denoising from random noise to samples, using an infusion process which biases samples to move
towards a specific training data point during training. The goal is to converge to a particular sample
in a finite number of denoising steps.

5

Workshop track - ICLR 2017

Figure 2: Samples from a chain with the conv architecture. Settings are the same as in Figure 1.

Figure 3: Samples from a chain with the dcgan architecture. Settings are the same as in Figure 1.

C ADDITIONAL EXPERIMENTAL DETAILS

All architectures use the DCGAN discriminator as the discriminator. To stabilize training and avoid
missing modes, we consider the Wasserstein GAN (WGAN) framework (Arjovsky et al., 2017),
where the objective approximates the Earth-Mover distance. We briefly tried WGAN over MNIST
without using the chain, and were unable to generate realistic images with conv and mlp architec-
tures.

At each iteration, we obtain t̄ and t̂ by uniformly sampling from {1, 2, . . . , T}, where T is a hyper-
parameter we set to 4 for t̄ and 2 for t̂. We empirically find applying this would improve convergence
speed, whereas the conclusion in Proposition 1 still holds.

To further investigate the frequency of various modes in the stationary distribution, we consider the
class-to-class transition probabilities, to see if Equation 1 holds for our model. We run one step of
the transition operator starting from real data samples, where we have class labels y, and classify
the generated samples using a convolutional network classifier that has 99% test accuracy on the
MNIST test set. Given the labels y, we are thus able to quantify T (yt|yt−1), corresponding to a

6

Workshop track - ICLR 2017

(a) T (yt|yt−1) for dcgan (b) T (yt|yt−1) for conv (c) T (yt|yt−1) for mlp

Figure 4: Example transition matrices T (yt|yt−1), where the x-axis and y-axis denote yt−1 and yt
respectively. We normalize the sum of each column to 1. Each number within grid (a, b) is the
probability of T (b|a). The numbers on the top and right corresponds to the sum of values for each
individual column and row. For visualization purposes, we truncate the values to have two floating
points of precision. Multiple runs over the same architecture will result in different transitions.

Markov Chain with 10 states. Results show that although the stationary is not perfectly uniform
among different classes, class probabilities are fairly uniform and range between 0.09 and 0.11
3. The transition probabilities indicate that detailed balance conditions are not satisfied, which is
reasonable given that we do not pose any restrictions on Tθ to satisfy this condition.

3Given the transition matrix we are able to compute the stationary distribution for each class.

7

	Introduction
	Problem Setup
	Adversarial Training of Markov Chains
	Experiments
	Conclusion and Future Work
	Justification for Objective in Equation 3
	Related Work
	Additional Experimental Details

