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ABSTRACT

A bottleneck problem in machine learning-based relationship extraction (RE)
algorithms, and particularly of deep learning-based ones, is the availability of
training data in the form of annotated corpora. For specific domains, such as
biomedicine, the long time and high expertise required for the development of
manually annotated corpora explain that most of the existing one are relatively
small (i.e., hundreds of sentences). Beside, larger corpora focusing on general
or domain-specific relationships (such as citizenship or drug-drug interactions)
have been developed. In this paper, we study how large annotated corpora devel-
oped for alternative tasks may improve the performances on biomedicine related
tasks, for which few annotated resources are available. We experiment two deep
learning-based models to extract relationships from biomedical texts with high
performance. The first one combine locally extracted features using a Convolu-
tional Neural Network (CNN) model, while the second exploit the syntactic struc-
ture of sentences using a Recursive Neural Network (RNN) architecture. Our ex-
periments show that, contrary to the former, the latter benefits from a cross-corpus
learning strategy to improve the performance of relationship extraction tasks. In-
deed our approach leads to the best published performances for two biomedical
RE tasks, and to state-of-the-art results for two other biomedical RE tasks, for
which few annotated resources are available (less than 400 manually annotated
sentences). This may be particularly impactful in specialized domains in which
training resources are scarce, because they would benefit from the training data of
other domains for which large annotated corpora does exist.

1 INTRODUCTION

Relationship Extraction (RE) from text is a Natural Language Processing (NLP) task that aims at
extracting automatically and summarizing in a structured form the unstructured information of texts.
A relationships takes the form of a labeled link between two named entities as illustrated in Figure
1. Given two identified entities, the RE extraction task consists in predicting whether their is a
relation between them and if so, the type of the relation. It can be seen as a classification task by
computing a score for each possible relation type, given a sentence and two identified entities. Deep
learning methods have demonstrated good ability for such tasks Zeng et al. (2014), but one of their
drawbacks is that they generally require a large amount of training data, i.e., text corpora where
entities and relationships between them are annotated, in order to obtain reasonable performances.
The building of such a corpus for a specific task, such as those of interest in biomedicine, is time
consuming and expensive because it implies complex entities (e.g., genomic variations, complex
symptoms), complex relationships (which may be hypothetical, contextualized, negated, n-ary) and
requires trained annotators. This explain why only few and relatively small (i.e., few hundreds of
sentences) corpora are available, making these resources particularly valuable. Among these tasks,
one can mention the extraction of genomic variations-phenotype relationships for which only a
manually annotated corpus of 362 sentences, named SNPPhena exists (Bokharaeian et al., 2017).
Beside, several larger corpora have been manually annotated with biomedical or general-domain
relationships and made available (Hachey et al., 2012; Herrero-Zazo et al., 2013; Gurulingappa
et al., 2012). Because these corpora share the same language (i.e., English) and thus a common
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Figure 1: Example of a relation labeled Weak Confidence association between two named entities:
a single nucleotide polymorphism (SNP) and a phenotype, from the corpus SNPPhenA.

syntax, we wonder if these resources, developed for slightly different tasks, may be reused for
extracting relationships in domain with scarce resources. Several multi-task learning approaches
have been proposed to improve performance for a given task using corpus developed for related tasks
Collobert et al. (2011). In this paper, we investigate a cross-corpus strategy to improve performances
for biomedical RE tasks for which few training data are available, using larger additional corpora
developed for other specific RE tasks. This is done by jointly training deep learning-based models
while sharing some of the parameters.

Before or beside deep learning methods, other approaches for RE have been proposed. Co-
occurrence-based methods for instance assumes that two entities mentioned frequently in the same
unit of text (such as a sentence or a paragraph) are related (Garten & Altman, 2009). Rule-based
methods use manually designed, or learned, rules consisting of word morphosyntactic features or
sentence-level syntactic features (Fundel et al., 2007). These methods have the advantage of requir-
ing few or no annotated data.

Within machine learning methods, deep learning ones enable to model complex structures such as
natural language and successfully applied to various NLP tasks. In particular, it as been successfully
applied to RE by training from annotated corpora (Zeng et al., 2014) While other methods mainly
depend on the quality of extracted features derived from preexisting NLP systems (e.g., POS tagger,
stemmer, lemmatizer or syntactic parser), deep learning models automatically learn lexical features
using continuous word vector representations, usually named word embeddings, and sentence level
features using deep neural network such as Convolutional Neural Network (CNN) (LeCun et al.,
1998) or Recursive Neural Networks (RNN) (Pollack, 1990).These models achieve good perfor-
mances, but strongly depend on the existence of large training corpora, which make them difficult
to use for tasks associated with scarce resources.

In this paper investigate within four specific RE tasks, for which only few training data are available,
how large annotated corpora can be used to improve performances of deep neural networks. We
experiment two different deep learning approaches that have been previously used for RE. The first
is a Multi-Channel CNN (MCCNN)-based model used in (Quan et al., 2016) for biomedical RE and
the second is the tree-structured Long Short Term Memory (TreeLSTM) model (Tai et al., 2015),
which have been adapted with success for RE (Miwa & Bansal, 2016). The main difference between
these two models is the ability of the latter to exploit the syntax of the language by including a
dependency tree structure in the vector representation of sentences.

We conduct our experiments using two relatively small biomedical corpora, SNPPhenA and EU-
ADR. Both contains less than 400 manually annotated sentences for each task, but note that EU-
ADR focus on three different tasks. As supplementary data, we used three larger corpora: SemEval
2013 DDI, ADE and reACE. Details on these five corpora are provided Section 4. Our experiments
show that contrary to the MCCNN model, the TreeLSTM model benefit from a cross-corpus learning
strategy to improve the RE performances for tasks associated with scarce resources. This is done
by training a model with data from two distinct corpora, one small and one large, while sharing
the model parameters. In addition, our approach led to state-of-the-art performances for the four
biomedical tasks associated with scarce resources.

Section 2 review various deep learning methods used for RE and previous multi-task learning ap-
proaches. Section 3 details the MCCNN and TreeLSTM models we use. Section 4 describes corpora
used in this study and Section 5 presents our experiments and results. We then conclude with a short
discussion section.
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2 RELATED WORK

2.1 DEEP LEARNING-BASE RELATION EXTRACTION

Deep learning models, based on continuous word representations have been proposed to overcome
the problem of sparsity inherent to NLP (Huang & Yates, 2009). In Collobert et al. (2011), the
authors proposed an unified CNN architecture to tackle various NLP problems traditionally handle
with statistical approaches. They obtained state-of-the-art performances for several tasks, while
avoiding the hand design of task specific features. These results led to progress on NLP topics such
as machine translation (Cho et al.), question-answering (Bordes et al., 2014) and RE.

In particular, Zeng et al. (2014) showed that CNN models can also be applied to the task of RE. In
this study, they learn a vectorial sentence representation, by applying a CNN model over word and
word position embeddings. This representation is then used to feed a softmax classifier (Bishop,
2006). To improve the performance of the RE, other authors consider elements of syntax within
the embedding provided to the model: Xu et al. (2015) use the path of grammatical dependencies
between two entities, which is provided by a dependency parsing; Yang et al. (2016) include the
relative positions of words in a dependency tree. They also take dependency based context (i.e.,
child and parent nodes) into account during the convolution.

Beside CNN models that incorporate syntactic knowledge in their embeddings, other approaches
go further by proposing neural networks which topology is adapting to the syntactic structure of
the sentence. In particular, RNN have been proposed to adapt to tree structures resulting from
constituency parsing (Socher et al., 2013; Legrand & Collobert, 2014). In that vein, Tai et al. (2015)
introduced a TreeLSTM, a generalization of LSTM for tree-structured network topologies, which
allows to process trees with arbitrary branching factors.

The first model to make use of RNN for a RE task was proposed by Liu et al. (2015). The authors
introduced a CNN-based model applied on the shortest dependency path, augmented with a RNN-
based feature designed to model subtrees attached to the shortest path. Miwa & Bansal (2016)
introduced a variant of the TreeLSTM used to compute bidirectional (bottom-up and top-down)
tree representations for performing relationship classification. Their model uses different weight
matrices depending on whether a node belong to the shortest path or not.

In this paper, we use two deep-learning strategies to address the problem of RE. The first one is
a MultiChannel Convolutional Neural Network (MCCNN) introduced in Quan et al. (2016) for
biomedical RE. Inspired by the three-channel RGB image processing models, it consider different
embedding channels (i.e., different word embeddings versions for each word), allowing to capture
different aspects of input words. The second model we used is the TreeLSTM model described in
Tai et al. (2015) and more specifically its Child-Sum version. This model is suitable for process-
ing dependency trees since it handles trees with arbitrary branching factors and no order between
children of a node.

2.2 MULTI-TASK LEARNING

Machine learning methods and particularly deep learning ones usually require lots of annotated data
in order to obtain reasonable performances. For certain tasks that does not require expert knowledge,
such as the recognition of simple objects in an image, gathering lots of annotated data is relatively,
easy using for instance crowd-sourcing. Some tasks, such as recognizing a relationship between
complex entities that is mentioned in a biomedical scientific publication, are more complex, and the
obtention of large corpora in this case can be expensive and time consuming. Several methods have
been explored to deal with the lack of training data, such as bootstrapping (Jones et al., 1999), which
allows accurate training from a small amount of labeled data, along with a large amount of unlabeled
data; or self-training approaches McClosky et al. (2006) that artificially augment the labeled training
set with examples from unlabeled datasets, using labels predicted by the model itself.

Beside, several studies have focused on transferring knowledge acquired from related tasks to help
perform a new related task. For instance, Fei-fei et al. (2006) proposed a Bayesian approach to
perform one shot learning, (i.e., learning to categorize objects from a single example) that takes
advantage of knowledge coming from previously learned categories.
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Multi-task Learning is a learning approach in which performances on a given task are improved
using information contained in the training signals of auxiliary related tasks Caruana (1997). It is
a form of inductive transfer where the auxiliary task introduce an inductive bias during training.
This is usually done by training tasks in parallel while using a shared representation (Sutton et al.,
2007; Ando & Zhang, 2005). In Collobert et al. (2011), the authors jointly trained a CNN on
various natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. They showed that sharing a portion of the network weights
during training led to better performances for all the individual tasks.

3 MODELS

We consider in this article MCCNN and TreeLSTM models that both compute a fixed-size vector
representation for the whole sentence by composing input embeddings. A score is then computed
for each possible type or relationship (e.g., negative, positive or speculative) between two identified
entities. The number of possible relationship types depends on the task (see Section 4).

In this section, we first introduce the embedding input layer, which in common to both approaches
(i.e., MCCNN and TreeLSTM); Then, we detail how each approach composes sequences of embed-
ding in order to compute an unique vectorial sentence representation; Finally, we present the scoring
layer, which is common to both approaches.

3.1 INPUT LAYER

Both models are fed with word embeddings (i.e., continuous vectors) of dimension dw, along with
extra entity embeddings of size de, which are concatenated to word embeddings. Formally, given a
sentence of N words, w1, w2, . . . , wN , each word wi ∈ W is first embedded in a dw-dimensional
vector space by applying a lookup-table operation:

LTW (wi) =Wwi
,

where the matrix W ∈ Rdw×|W | represents the parameters to be trained in this lookup layer. Each
column Wwi

∈ Rdw corresponds to the vector embedding of the wi
th word in our dictionary W .

Three entity embeddings (coming from a simple 3-elements dictionary) enable to distinguish be-
tween words which compose either the first entity, the second entity or are not part of any entity in
a sentence. They are respectively called first entity, second entity and other embeddings. Finally,
word and entity embeddings are concatenated to form the input corresponding to a given word. Let’s
denote xi the concatenated input corresponding to the ith word.

3.2 COMPOSITION LAYERS

Both models take the embeddings as input and output a fixed-size representation rs of size ds. This
section details the two models used in this study.

3.2.1 MCCNN

The MCCNN models applies a variable kernel size CNN to multiple input channels of word embed-
dings. More formally, given an input sequence x1, . . . , xN , applying a kernel of size k to the ith
window is done using the following formula:

C = h(

c∑
j=1

W [x i−1
2
, . . . , xi, . . . , x i+1

2
]j + b)

where [ ]j denotes the concatenation of inputs from channel j, W ∈ R(dw+de)×dh and b ∈ Rdh

are the parameters , h is a pointwise non-linear function such as the hyperbolic tangent and c is the
number of input channels. Inputs with indices exceeding the input boundaries ( i−12 < 1 or i+1

2 > N )
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Figure 2: Visualization of the MCCNN
model with three channels and two CNN with
kernels of size 2 and 3 respectively. CNNi

denotes a CNN with a kernel size i. Red
words correspond to the entities.
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Figure 3: Visualization of the TreeLSTM
model. Red words correspond to the entities.

are mapped to a special padding vector (which is also learned). A fixed size representation rh ∈ Rdh

is then obtain by applying a max-pooling over time:

rh = maxC

We denote K the number of kernel with different sizes. A sentence representation rs ∈ Rds (with
ds = K ∗ dh) is finally obtained by concatenating the output corresponding to the K kernels

rs = [r1h, . . . , r
k
h] ,

where rkh correspond to the output of the kth kernel. Figure 2 illustrates the structure of a two-
channel CNN, with two kernels of size 2 and 3, on a four-words sentence.

3.2.2 TREELSTM

The TreeLSTM model (Tai et al., 2015) processes the dependency tree associated with an input
sentence in a bottom-up manner. This is done by recursively processing the nodes of the tree, using
their child representations as input. The transition function for a node j and a set of children C(j)
is given by the following set of equations:

h̃t =
∑

k∈C(j)

hk

ij = σ(W (i)xj + U (i)h̃j + b(i))

fjk = σ(W (f)xj + U (f)hk + b(f))

oj = σ(W (o)xj + U (o)h̃j + b(o))

uj = tanh(W (u)xj + U (u)h̃j + b(u))

cj = ij � uj +
∑

k∈C(j)

fjk � ck

hj = oj � tanh(cj),

where σ denotes the logistic function, � the element-wise multiplication, xj ∈ Rdw+de is the input
for node j, hk ∈ Rdh is the hidden state of the kth child. Each TreeLSTM unit is a collection of
vectors: an input gate ij , a forget gate fjk, an output gate oj , a memory cell cj and and hidden
state hj . The matrices W and U and the vectors b are the weight and bias parameters to train. The
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TreeLSTM outputs a sentence representation rs ∈ Rds corresponding to the output state oj of the
top tree node (i.e., the root node of the dependency tree that spans all the others). Figure 3 illustrates
the structure of the TreeLSTM computed for a four-words sentence.

3.3 SCORING LAYER

Both the MCCNN and the TreeLSTM models output an unique vector representation rs ∈ Rds that
takes the entire sentence into account. This representation is used to feed a single layer neural net-
work classifier, which outputs a score vector with one score for each possible type of relationships.
This vector of scores is obtained using the following formula:

s(rs) =W (s)rs + b(s) ,

whereW (s) ∈ Rds×|S| and b(s) ∈ R|S| are the trained parameters of the scorer, |S| is the number of
possible relations. The scores are interpreted as probabilities using a softmax layer (Bishop, 2006).

4 DATASETS

We explore how RE tasks that focus on a type of relationship associated with scarce resources may
take advantage from existing corpora, in other words how completing a small training corpus with a
larger one may help the RE task when the latter is annotated with a different type of relationships.
For this purpose, we selected (i) two small biomedical corpora, SNPPhenA and the EU-ADR corpus
and (ii) three larger corpora, the SemEval 2013 DDI corpus, the ADE corpus and the reACE corpus.
These corpora are publicly available and detailed in the following section. Table 4.2 summarizes the
main characteristics of these five corpora and the following section details them.

4.1 SMALL CORPORA

• SNPPhenA (Bokharaeian et al., 2017) is a corpus of abstracts of biomedical publications,
obtained from PubMed1, annotated with two types of entities: single nucleotide polymor-
phisms (SNPs) and phenotypes. Relationships between these entities are annotated and
classified in 3 categories: positive, negative and neutral relationships. The neutral relation-
ship type is used when no relationship is mentioned in the sentence between two annotated
entities.

• EU-ADR (van Mulligen et al., 2012) is a corpus of abstracts obtained from PubMed and an-
notated with drugs, disorders and drug targets (proteins/genes or gene variants) entities. It
is composed of 3 subcorpora, focusing either on target-disease, target-drug or drug-disease
relationships. Each of them consist of 100 abstracts. Annotated relationships are classified
in 3 categories: positive, speculative and negative associations (PA, SA and NA respec-
tively). In Bravo et al. (2015), performances are assessed over the TRUE class, which is
composed of the classes PA, SA and NA, in contrast with the FALSE class composed of
sentences where two entities are co-occurring, but without relationship annotated between
them.

4.2 LARGE CORPORA

• SemEval 2013 DDI (Herrero-Zazo et al., 2013) consists of texts from DrugBank and MED-
LINE and is annotated with drugs. Drug mentions are categorized in several types: drug,
brand, group and drug_n (i.e., active substances not approved for human use). Relation-
ships between two drug mentions are annotated and classified in 4 categories: mechanism,
effect, advice and int. int is the broader and default category for DDI, when no more detail
can be provided.

• ADE-EXT (Adverse Drug Effect corpus, extended) (Gurulingappa et al., 2012) consists
of MEDLINE case reports, annotated with drug and conditions (e.g., diseases, signs and
symptoms) along with untyped relationships between them, when one is mentioned.

1https://www.ncbi.nlm.nih.gov/pubmed/
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• reACE (Edinburgh Regularized Automatic Content Extraction) (Hachey et al., 2012) con-
sists of English broadcast news and newswire annotated with organization, person, fvw
(facility, vehicle or weapon) and gpl (geographical, political or location) entities along
with relationships between them. Relationships are classified in five categories (general-
affiliation, organisation-affiliation, part-whole, personal-social and agent-artifact).

Corpus Subcorpus Train Size Test Size #Entity #Relation
sent. rel. sent. rel. Types Types

SNPPhenA – 362 935 121 365 2 3
drug-disease 244 176 4 3

EU-ADR drug-target 247 310 – – 4 3
target-disease 355 262 4 3

SemEval DrugBank 5,675 3,805 973 889 4 4
2013 DDI MEDLINE 1,301 232 326 95 4 4
ADE-EXT – 5,939 6,701 – – 2 1
reACE – 5,984 2,486 – – 4 5

Table 1: Main characteristics of the corpora. Two corpora are divided in subcorpora. The sizes of
the training and test corpora are reported in term of number of sentences (sent.) and relationships
(rel.). EU-ADR, ADR-EXT and reACE have no proper test corpus.

5 EXPERIMENTS

5.1 TRAINING AND EXPERIMENTAL SETTINGS

Our models are trained by minimizing a log-likelihood function over the training data. All parame-
ters, including weights, biases and embeddings were updated via Backpropagation for the MCCNN
and Backpropagation through Structure (BPTS) (Goller & Kuchler, 1996) for the TreeLSTM.

All the hyper-parameters were tuned using a 10 fold cross-validation by selecting the values leading
to the best averaged performance, and fixed for the rest of the experiments. Word embeddings
were pre-trained PubMed abstracts using the method described in Lebret & Collobert (2013). These
abstracts correspond to all the abstracts published between January 1, 2014 and December 31, 2016,
and available on Pubmed (around 3.4 million).

MCCNN model. Following Kim (2014) both channels are initialized with pre-trained word embed-
dings but gradients were back-propagated only through one of the channels. Hyper-parameters were
fixed to dw = 100, de = 10, dh = 100 and ds = 200. We applied a dropout regularization after the
embedding layers.

TreeLSTM model. Dependency trees were obtained using the Stanford Parser (Chen & Manning,
2014). Hyper-parameters were fixed to dw = 100, de = 10, dh = 200 and ds = 200. We applied a
dropout regularization (Srivastava et al., 2014) after every TreeLSTM unit and after the embedding
layers. The drop probability for each connexion was fixed to 0.25. All the parameters are initialized
randomly except the word embeddings.

We evaluated performances in terms of precision (P), recall (R) and f-measure (F). For multi-label
classifications, we report the macro-average performance2. Because no proper test corpus is pro-
vided with EU-ADR, we performed a 10 fold cross-validation using 10% of the corpus for the
validation and 10% for the test of our models. For SNPPhenA, we performed a cross-validation
using 10% of the corpus for the validation and the provided test corpus for testing.

5.2 CROSS-CORPUS STUDY

In this subsection, we present our cross-corpus training strategy and its results. For each fold of our
cross-corpus experiments, the same network, initialized with random weight, is used for the differ-
ent corpora (i.e., same embedding layer and TreeLSTM weights), except for the scorer, which is

2The macro-average score is less impacted by the performance for classes whith very few test samples (and
thus a high variance). For that reason, this score is more representatative of the performance of our model.
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different for each corpus as the number and types of relationships may change. During the training
phase, we randomly pick training sentences from the mixed corpora. Table 2 presents the results
of the cross-corpus study. For each of the 10 folds, we performed 10 experiments starting from
different random weight initializations. Thus, each result is an average of 100 experiments. We ob-
serve that for the TreeLSTM model, additional data consistently improved the performances. More
interestingly, this phenomenon occurred even for corpora with different types of entities such as the
combination of SNPPhenA and SemEval 2013 DDI and, to a lesser extend, for a corpus outside of
the biomedical domain (reACE). This phenomenon was not observed for the MCCNN model for
which performance tended to decrease slightly when using the cross-corpus learning strategy.

Test Corpus Model Train corpus P R F σF

SNPPhenA 58.9 73.8 65.5 0.041
TreeLSTM + SemEval 2013 DDI 65.2 71.1 68.0 0.047

+ ADE-EXT 62.8 72.1 67.2 0.034
SNPPhenA + reACE 61.8 74.3 67.1 0.036

SNPPhenA 55.1 75.0 63.3 0.048
MCCNN + SemEval 2013 DDI 55.3 74.4 63.3 0.049

+ ADE-EXT 56.1 73.2 63.2 0.048
+ reACE 53.2 70.9 60.6 0.041

EU-ADR drug-disease 74.8 84.1 79.1 0.123
TreeLSTM + SemEval 2013 DDI 74.8 90.6 82.0 0.131

+ ADE-EXT 73.9 88.2 80.4 0.137
EU-ADR + reACE 74.3 91.1 79.3 0.143
drug-disease EU-ADR drug-disease 73.3 94.7 80.2 0.142

MCCNN + SemEval 2013 DDI 72.6 87.9 76.6 0.143
+ ADE-EXT 73.0 85.5 76.0 0.145
+ reACE 74.1 91.5 79.2 0.138

EU-ADR drug-target 72.4 90.6 80.2 0.109
TreeLSTM + SemEval 2013 DDI 71.9 95.5 82.5 0.085

+ ADE-EXT 70.2 96.7 80.9 0.092
EU-ADR + reACE 70.4 96.5 80.8 0.093
drug-target EU-ADR drug-target 74.5 92.3 81.0 0.093

MCCNN + SemEval 2013 DDI 74.9 88.8 80.0 0.106
+ ADE-EXT 76.3 87.4 80.3 0.101
+ reACE 73.4 92.1 80.5 0.078

EU-ADR target-disease 77.0 89.7 82.7 0.064
TreeLSTM + SemEval 2013 DDI 77.4 91.6 83.9 0.082

+ ADE-EXT 77.7 89.5 83.3 0.069
EU-ADR + reACE 75.9 91.7 83.0 0.077
target-disease EU-ADR target-disease 76.9 91.8 82.6 0.077

MCCNN + SemEval 2013 DDI 77.6 90.6 82.5 0.071
+ ADE-EXT 75.5 87.4 81.8 0.101
+ reACE 77.1 91.2 82.0 0.068

Table 2: Impact of cross-corpus training in terms of precision (P), recall (R) and f-measure (F). σF
is the standard deviation of the f1-score.

5.3 COMPARISON WITH THE STATE OF THE ART

Table 3 presents a comparison of performances obtained with our approach versus two state-of-the-
art systems applied to the RE tasks associated respectively with SNPPhenA and EU-ADR, respec-
tively reported in Bokharaeian et al. (2017) and Bravo et al. (2015). Our results are obtained using,
for each fold, an ensemble of the 5 best models (according to the validation) starting from different
random initialization. The ensembling was done by averaging the scores s(rs) of each individual
model, following Legrand & Collobert (2014). We report the 10 folds average performance. Both
state-of-the-art systems use a combination of a shallow linguistic kernel with a kernel that exploits
deep syntactic features. Our approach outperforms the performances reported for SNPPhenA and
for the one EU-ADR subtasks and led to similar performances for the two remaining EU-ADR
subtasks.
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Test corpus Train corpus P R F
Bokharaeian et al. (2017)

SNPPhenA 56.6 59.8 58.2
SNPPhenA This work

SNPPhenA + ADE-EXT 64.5 75.2 69.4
Bravo et al. (2015)

EU-ADR EU-ADR drug-disease 70.2 93.2 79.3
drug-disease This work

EU-ADR drug-disease + SemEval 2013 DDI 74.8 90.6 82.0
Bravo et al. (2015)

EU-ADR EU-ADR drug-target 74.2 97.4 83.0
drug-target This work

EU-ADR drug-target + SemEval 2013 DDI 73.5 95.6 83.1
Bravo et al. (2015)

EU-ADR EU-ADR target-disease 75.1 97.7 84.6
target-disease This work

EU-ADR target-disease + SemEval 2013 DDI 78.7 91.4 84.6

Table 3: Performance comparison with the state of the art in terms of precision (P), recall (R) and
f-measure (F), using ensembles of 5 models.

6 DISCUSSION

Results presented in Table 2 show that, in our settings, the TreeLSTM model benefits from a cross-
corpus learning strategy, while it is useless, or sometimes counterproductive for the MCCNN model.
One may think that the TreeLSTM model, due to its ability to exploit the syntactic structure of the
sentence, is better at understanding the sentences from the small datasets by exploiting the syntactic
patterns observed in the additional data. This idea is reinforced by the fact that even a corpus that
does not share the same entities nor a close vocabulary, such as reACE in which no biomedical vo-
cabulary appear, can be helpful for biomedical RE. This assessment could be interestingly explored
in further work.

Surprisingly, the best results where consistently obtained using the SemEval 2013 DDI corpus as
additional data, even for RE tasks that doesn’t involve drugs like EU-ADR target-disease. Likewise,
one might have thought that the ADE-EXT corpus could have been more suitable for the EU-ADR
drug-disease corpus, since it shares common entities. Several ideas should be explored to better
understand this phenomenon, such as the differences of relation and entity types between the dif-
ferent corpora, as well as the differences of types of texts in sources (e.g., medical case report for
ADE-EXT, news for reACE, research articles for the others). Higher level syntactic analysis (such
as the average distance between the two entities or the nature of the lowest common ancestor in
the dependency graph) could provide insights on this question, and help in characterizing the right
corpus to select for a cross-corpus training.

For the TreeLSTM model, we also tried to train models with multiple additional corpora but did not
obtained better performances. For each of the 4 RE tasks studied, the results were consistently on
par with the performances obtained using only the additional corpus leading the worst cross-corpus
performances. Further work should be done to better understand this phenomenon.

Finally, it would be interesting to enrich our model with additional feature such as POS or morpho-
syntactic ones. More sophisticated TreeLSTM model, taking the dependency tags into account, in
addition to the dependency structure, would also be worth exploring.

9
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7 CONCLUSION

In this paper, we empirically demonstrated that a cross-corpus learning strategy can be beneficial
to tackle biomedical RE tasks for which few annotated resources are available, when using the
TreeLSTM model. Interestingly, we showed that any additional corpus, even when focusing on
unrelated domain can carry useful information and lead to improved performances. Additionally,
the cross-corpus approach led to the best published results for 2 biomedical RE task focusing on
SNP-phenotype and drug-disease and to state-of-the-art result for two others focusing on target-
disease and target-drug. We think that cross-corpus training could be reproduced and thus valuable
in other specialized domains in which training resources are scarce.
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