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Abstract
Neural machine translation (NMT) models learn representations containing sub-1

stantial linguistic information. However, it is not clear if such information is fully2

distributed or if some of it can be attributed to individual neurons. We develop3

unsupervised methods for discovering important neurons in NMT models. Our4

methods rely on the intuition that different models learn similar properties, and do5

not require any costly external supervision. We show experimentally that trans-6

lation quality depends on the discovered neurons, and find that many of them7

capture common linguistic phenomena. Finally, we show how to control NMT8

translations in predictable ways, by modifying activations of individual neurons.9

1 Introduction10

Neural machine translation (NMT) systems achieve state-of-the-art results by learning from large11

amounts of example translations, typically without additional linguistic information. Recent studies12

have shown that representations learned by NMT models contain a non-trivial amount of linguistic13

information on multiple levels: morphological (Belinkov et al., 2017), syntactic (Shi et al., 2016b),14

and semantic (Hill et al., 2017). These studies use trained NMT models to generate feature rep-15

resentations for words, and use these representations to predict certain linguistic properties. This16

approach has two main limitations. First, it targets the whole vector representation and fails to17

analyze individual dimensions in the vector space. In contrast, previous work found meaningful18

individual neurons in computer vision (Zeiler & Fergus, 2014; Zhou et al., 2016; Bau et al., 2017,19

among others) and in a few NLP tasks (Karpathy et al., 2015; Radford et al., 2017; Qian et al.,20

2016a). Second, these methods require external supervision in the form of linguistic annotations.21

They are therefore limited by available annotated data and tools.22

In this work, we make initial progress towards addressing these limitations by developing unsuper-23

vised methods for analyzing the contribution of individual neurons to NMT models. We aim to24

answer the following questions:25

• How important are individual neurons for obtaining high-quality translations?26

• Do individual neurons in NMT models contain interpretable linguistic information?27

• Can we control MT output by intervening in the representation at the individual neuron level?28

To answer these questions, we develop several unsupervised methods for ranking neurons according29

to their importance to an NMT model. Inspired by work in machine vision (Li et al., 2016b), we30

hypothesize that different NMT models learn similar properties, and therefore similar important31

neurons should emerge in different models. To test this hypothesis, we map neurons between pairs of32

trained NMT models using several methods: correlation analysis, regression analysis, and SVCCA,33

a recent method combining singular vectors and canonical correlation analysis (Raghu et al., 2017).34

Our mappings yield lists of candidate neurons containing shared information across models. We35

then evaluate whether these neurons carry important information to the NMT model by masking36

their activations during testing. We find that highly-shared neurons impact translation quality much37

more than unshared neurons, affirming our hypothesis that shared information matters.38
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Given the list of important neurons, we then investigate what linguistic properties they capture,39

both qualitatively by visualizing neuron activations and quantitatively by performing supervised40

classification experiments. We were able to identify neurons corresponding to several linguistic41

phenomena, including morphological and syntactic properties.42

Finally, we test whether intervening in the representation at the individual neuron level can help43

control the translation. We demonstrate the ability to control NMT translations on three linguistic44

properties—tense, number, and gender—to varying degrees of success. This sets the ground for45

controlling NMT in desirable ways, potentially reducing system bias to properties like gender.46

Our work indicates that not all information is distributed in NMT models, and that many human-47

interpretable grammatical and structural properties are captured by individual neurons. Moreover,48

modifying the activations of individual neurons allows controlling the translation output according49

to specified linguistic properties. The methods we develop here are task-independent and can be50

used for analyzing neural networks in other tasks. More broadly, our work contributes to the lo-51

calist/distributed debate in artificial intelligence and cognitive science (Gayler & Levy, 2011) by52

investigating the important case of neural machine translation.53

2 Related Work54

Much recent work has been concerned with analyzing neural representations of linguistic units,55

such as word embeddings (Köhn, 2015; Qian et al., 2016b), sentence embeddings (Adi et al., 2016;56

Ganesh et al., 2017; Brunner et al., 2018), and NMT representations at different linguistic levels:57

morphological (Belinkov et al., 2017), syntactic (Shi et al., 2016b), and semantic (Hill et al., 2017).58

These studies follow a common methodology of evaluating learned representations on external su-59

pervision by training classifiers or measuring other kinds of correlations. Thus they are limited to60

the available supervised annotation. In addition, these studies also do not typically consider indi-61

vidual dimensions. In contrast, we propose intrinsic unsupervised methods for detecting important62

neurons based on correlations between independently trained models. A similar approach was used63

to analyze vision networks (Li et al., 2016b), but to the best of our knowledge these ideas were not64

used to study NMT or other NLP models before.65

In computer vision, individual neurons were shown to capture meaningful information (Zeiler &66

Fergus, 2014; Zhou et al., 2016; Bau et al., 2017). Even though some doubts were cast on the impor-67

tance of individual units (Morcos et al., 2018), recent work stressed their contribution to predicting68

specific object classes via masking experiments similar to ours (Zhou et al., 2018). A few studies69

analyzed individual neurons in NLP. For instance, neural language models learn specific neurons70

that activate on brackets (Karpathy et al., 2015), sentiment (Radford et al., 2017), and length (Qian71

et al., 2016a). Length-specific neurons were also found in NMT (Shi et al., 2016a), but generally not72

much work has been devoted to analyzing individual neurons in NMT. We aim to address this gap.73

3 Methodology74

Much recent work on analyzing NMT relies on supervised learning, where NMT representations75

are used as features for predicting linguistic annotations (see Section 2). However, such annotations76

may not be available, or constrain the analysis to a particular scheme.77

Instead, we propose to use different kinds of correlations between neurons from different models as78

a measure of their importance. Suppose we have M such models and let hm
t [i] denote the activation79

of the i-th neuron in the encoder of the m-th model for the t-th word.1 These may be models80

from different training epochs, trained with different random initializations or datasets, or even81

different architectures—all realistic scenarios that researchers often experiment with. Let xmi denote82

a random variable corresponding to the i-th neuron in the m-th model. xmi maps words to their83

neuron activations: xmi : t 7→ hm
t [i]. Similarly, let xm denote a random vector corresponding to the84

activations of all neurons in the m-th model: xm : t 7→ hm
t .85

We consider four methods for ranking neurons, based on correlations between pairs of models. Our86

hypothesis is that different NMT models learn similar properties, and therefore similar important87

neurons emerge in different models, akin to neural vision models (Li et al., 2016b). Our methods88

capture different levels of localization/distributivity, as described next. See Figure 1 for illustration.89

1 We only consider neurons from the top layer, although the approach can also be applied to other layers.
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Figure 1: An illustration of the correlation methods, showing how to compute the score for one
neuron using each of the methods. Here the number of models is M = 3, each having four neurons.

3.1 Unsupervised correlation Methods90

Maximum correlation The maximum correlation (MaxCorr) of neuron xm
i looks for the highest91

correlation with any neuron in all other models:92

MaxCorr(xmi ) = max
j,m′ 6=m

|ρ(xmi , xm
′

j )| (1)

where ρ(x, y) is the Pearson correlation coefficient between x and y. We then rank the neurons in93

model m according to their MaxCorr score. We repeat this procedure for every model m. This94

score looks for neurons that capture properties that emerge strongly in two separate models.95

Minimum correlation The minimum correlation (MinCorr) of neuron xm
i looks for the neurons96

most correlated withXm
i in each of the other models, but selects the one with the lowest correlation:97

MinCorr(xmi ) = min
m′ 6=m

max
j
|ρ(xm

i , x
m′

j )| (2)

Neurons in model m are ranked according to their MinCorr score. This tries to find neurons that98

are well correlated with many other models, even if they are not the overall most correlated ones.99

Regression ranking We perform linear regression (LinReg) from the full representation of an-100

other model xm′
to the neuron xm

i . Then we rank neurons by the regression mean squared error.101

This attempts to find neurons whose information might be distributed in other models.102

SVCCA Singular vector canonical correlation analysis (SVCCA) is a recent method for analyzing103

neural networks (Raghu et al., 2017). In our implementation, we perform PCA on each model’s104

representations xm and take enough dimensions to account for 99% of the variance. For each pair105

of models, we obtain the canonically correlated basis, and rank the basis directions by their CCA106

coefficients. This attempts to capture information that may be distributed in less dimensions than107

the whole representation. In this case we get a ranking of directions, rather than individual neurons.108

3.2 Verifying Detected Neurons109

We want to verify that neurons ranked highly by the unsupervised methods are indeed important for110

the NMT models. We consider quantitative and qualitative techniques for verifying their importance.111

Erasing Neurons We test importance of neurons by erasing some of them during translation.112

Erasure is a useful technique for analyzing neural networks (Li et al., 2016a). Given a ranked list of113

neurons π, where π(i) is the rank of neuron xi, we zero-out increasingly more neurons according to114

the ranking π, starting from either the top or the bottom of the list. Our hypothesis is that erasing115

neurons from the top would hurt translation performance more than erasing from the bottom.116

Concretely, we first run the entire encoder as usual, then zero out specific neurons from all source117

hidden states {h1, . . . ,hn} before running the decoder. For MaxCorr, MinCorr, and LinReg,118

we zero out individual neurons. To erase k directions found by SVCCA, we instead project the119

embedding E (corresponding to all activations of a given model over a dataset) onto the space120

spanned by the non-erased directions: E′ = E(C(CTC)−1CT ), where C is the CCA projection121

matrix with the first or last k columns removed. This corresponds to erasing from the top or bottom.122

Supervised Verification While our focus is on unsupervised methods for finding important neu-123

rons, we also utilize supervision to verify our results. Since training a supervised classifier on every124

neuron is costly, we instead report simple metrics that can be easily computed. Specifically, we125
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(a) MaxCorr (b) MinCorr (c) LinReg (d) SVCCA

Figure 2: Erasing neurons (or SVCCA directions) from the top and bottom of the list of most impor-
tant neurons (directions) ranked by different unsupervised methods, in an English-Spanish model.

sometimes report the expected conditional variance of neuron activations conditioned on some prop-126

erty. In other cases we found it useful to estimate a Gaussian mixture model (GMM) for predicting127

a label and measure its prediction quality. We obtain linguistic annotations with Spacy: spacy.io.128

Visualization Interpretability of machine learning models remains elusive (Lipton, 2016), but vi-129

sualizing can be an instructive technique. Similar to previous work analyzing neural networks in130

NLP (Elman, 1991; Karpathy et al., 2015; Kádár et al., 2016), we visualize activations of neurons131

and observe interpretable behavior. We will illustrate this with example heatmaps below.132

4 Experimental Setup133

Data We use the United Nations (UN) parallel corpus (Ziemski et al., 2016) for all experiments.134

We train models from English to 5 languages: Arabic, Chinese, French, Russian, and Spanish, as135

well as an English-English auto-encoder. For each target language, we train 3 models on different136

parts of the training set, each with 500K sentences. In total, we have 18 models. This setting allows137

us to compare models trained on the same language pairs but different training data, as well as138

models trained on different language pairs. We evaluate on the official test set.139

MT training We train 500 dimensional 2-layer LSTM encoder-decoder models with atten-140

tion Bahdanau et al. (2014). In order to study both word and sub-word properties, we use a word141

representation based on a character convolutional neural network (charCNN) as input to both en-142

coder and decoder, which was shown to learn morphology in language modeling and NMT (Kim143

et al., 2015; Belinkov et al., 2017).2 While we focus here on recurrent NMT, our approach can be144

applied to other models like the Transformer (Vaswani et al., 2017), which we leave for future work.145

5 Results146

5.1 Erasure Experiments147

Figure 2 shows erasure results using the methods from Section 3.1, on an English-Spanish model.148

For all four methods, erasing from the top hurts performance much more than erasing from the149

bottom. This confirms our hypothesis that neurons ranked higher by our methods have a larger150

impact on translation quality. Comparing erasure with different rankings, we find similar patterns151

with MaxCorr, MinCorr, and LinReg: erasing the top ranked 10% (50 neurons) degrades BLEU152

by 15-20 points, while erasing the bottom 10% neurons only hurts by 2-3 points. In contrast, erasing153

SVCCA directions results in rapid degradation – 15 BLEU point drop when erasing 1% (5) of the top154

directions, and poor performance when erasing 10% (50). This indicates that top SVCCA directions155

capture very important information in the model. We analyze these top neurons and directions in the156

next section, finding that top SVCCA directions focus mostly on identifying specific words.157

Figure 3 shows the results of MaxCorr when erasing neurons from top and bottom, using models158

trained on three language pairs. In all cases, erasing from the top hurts performance more than159

erasing from the bottom. We found similar trends with other language pairs and ranking methods.160

5.2 Evaluating Top Neurons161

What kind of information is captured by the neurons ranked highly by each of our ranking methods?162

Previous work found specific neurons in NMT that capture position of words in the sentence (Shi163

2We used this representation rather than BPE sub-word units (Sennrich et al., 2016) to facilitate interpretabil-
ity with respect to specific words. In the experiments, we report word-based results unless noted otherwise.
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(a) English-Spanish (b) English-French (c) English-Chinese

Figure 3: Erasing neurons from the top or bottom of the MaxCorr ranking in three language pairs.

Table 1: Top 10 neurons (or SVCCA directions) in an English-Spanish model according to the four
methods, and the percentage of explained variance by conditioning on position or token identity.

MaxCorr MinCorr LinReg SVCCA

ID Pos Tok ID Pos Tok ID Pos Tok Pos Tok

464 92% 10% 342 88% 7.9% 464 92% 10% 86% 26%
342 88% 7.9% 464 92% 10% 260 0.71% 94% 1.6% 90%
260 0.71% 94% 260 0.71% 94% 139 0.86% 93% 7.5% 85%
49 11% 6.1% 383 67% 6.5% 494 3.5% 96% 20% 79%
124 77% 48% 250 63% 6.8% 342 88% 7.9% 1.1% 89%
394 0.38% 22% 124 77% 47% 228 0.38% 96% 10% 76%
228 0.38% 96% 485 64% 10% 317 1.5% 83% 30% 57%
133 0.14% 87% 480 70% 12% 367 0.44% 89% 24% 55%
221 1% 30% 154 63% 15% 106 0.25% 92% 23% 60%
90 0.49% 28% 139 0.86% 93% 383 67% 6.5% 18% 63%

et al., 2016a). Do our methods capture similar properties? Indeed, we found that many of the top164

neurons capture position. For instance, Table 1 shows the top 10 ranked neurons from an English-165

Spanish model according to each of the methods. The table shows the percent of variance in neuron166

activation that is eliminated by conditioning on position in the sentence, calculated over the test set.167

Similarly, it shows the percent of explained variance by conditioning on the current token identity.168

We observe an interesting difference between the ranking methods. LinReg and especially SVCCA,169

which are both computed by using multiple neurons, tend to find information determined by the170

identity of the current token. MaxCorr and (especially) MinCorr tend to find position information.171

This suggests that information about the current token is often distributed in multiple neurons, which172

can be explained by the fact that tokens carry multiple kinds of linguistic information. In contrast,173

position is a fairly simple property that the NMT encoder can represent in a small number of neurons.174

5.3 Linguistically Interpretable Neurons175

Neurons that activate on specific tokens or capture position in the sentence are important, as shown176

in the previous section. But they are less interesting from the perspective of capturing language177

information. In this section, we investigate several linguistic properties by measuring predictive178

capacity and visualizing neuron activations.179

Parentheses Table 2 shows top neurons from each model for predicting that tokens are in-180

side/outside of parentheses, quotes, or brackets, estimated by a GMM model. Often, the parentheses181

neuron is unique (low scores for the 2nd best neuron), suggesting that this property tends to be rel-182

atively localized. Generally, neurons that detect parentheses were ranked highly in most models by183

the MaxCorr method, indicating that they capture important patterns in multiple networks.184

The next figure visualizes the most predictive neuron in an English-Spanish model. It activates pos-185

itively (red) inside parentheses and negatively (blue) outside. Similar neurons were found in RNN186

language models (Karpathy et al., 2015). Next we consider more complicated linguistic properties.187

Tense We annotated the test data for verb tense (with Spacy) and trained a GMM model to predict188

tense from neuron activations. The following figure shows activations of a top-scoring neuron (0.56189

F1) from the English-Arabic model on the first 5 test sentences. It tends to activate positively (red190

color) on present tense (“recognizes”, “recalls”, “commemorate”) and negatively (blue color) on past191
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Table 2: F1 scores of the top two neurons from each network for detecting tokens inside parentheses,
and the ranks of the top neuron according to our intrinsic unsupervised methods.

Neuron 1st 2nd Max Min Reg Neuron 1st 2nd Max Min Reg

en-es-1:232 0.59 0.3 14 44 26 en-ar-3:331 0.59 0.35 17 92 49
en-es-2:208 0.72 0.26 8 43 21 en-ru-1:259 0.64 0.33 10 47 44
en-es-3:47 0.57 0.29 11 34 23 en-ru-2:23 0.71 0.26 10 72 31
en-fr-1:499 0.6 0.27 37 41 14 en-ru-3:214 0.65 0.32 25 67 114
en-fr-2:361 0.61 0.35 28 44 60 en-zh-1:49 0.58 0.44 5 85 63
en-fr-3:253 0.37 0.35 140 122 68 en-zh-2:159 0.76 0.38 5 47 37
en-ar-1:383 0.38 0.36 119 195 228 en-zh-3:467 0.54 0.32 5 59 47
en-ar-2:166 0.63 0.25 4 117 67

Table 3: Strongest correlations in all models relative to a tense neuron in an English-Arabic model.
Arabic 0.66, 0.57 French -0.69, -0.58, -0.48 Chinese -0.51, -0.30, -0.18
Spanish 0.56, 0.36, 0.22 Russian -0.50, -0.39, -0.29 English -0.33, -0.19, -0.03

tense (“published”, “disbursed”, “held”). These results are obtained with a charCNN representation,192

which is sensitive to common suffixes like “-ed”, “-es”. However, this neuron also detects irregular193

past tense verbs like “held”, suggesting that it captures context in addition to sub-word information.194

The neuron also makes some mistakes by activating weakly positively on nouns ending with “s”195

(“videos”, “punishments”), presumably because it gets confused with the 3rd person present tense.196

Table 3 shows correlations of neurons most correlated with this tense neuron, according to197

MaxCorr. All these neurons are highly predictive of tense: all are in the top 5 and 9 out of 15198

(non-auto-encoder) neurons have the highest F1 score for predicting tense. The auto-encoder En-199

glish models are an exception, exhibiting much lower correlations with the English-Arabic tense200

neuron. This suggests that tense emerges in a “real” NMT model, but not in an auto-encoder that201

only learns to copy. Interestingly, English-Chinese models have somewhat lower correlated neurons202

with the tense neuron, possibly due to the lack of explicit tense marking in Chinese. The encoder203

does not need to pay as much attention to tense when generating representations for the decoder.204

Other Properties We found many more linguistic properties by visualizing top neurons ranked205

by our methods, especially with MaxCorr. We found neurons that activate on numbers, dates,206

adjectives, plural nouns, auxiliary verbs, prepositions, and more. We do not include a detailed207

discussion for lack of space, and instead briefly discuss noun phrase segmentation, a compositional208

property above the word level. We obtained noun phrase segmentation (using Spacy) and classified209

tokens as inside, outside, or beginning of a noun phrase (IOB scheme), and found high-scoring210

neurons (60-80% accuracy) in every network. Many of these neurons were ranked highly by the211

MaxCorr method. In contrast, other methods did not rank such neurons very highly.212

We visualize the top scoring neuron (79%) from an English-Spanish model below. Notice how the213

neuron activates positively (red color) on the first word in the noun phrases, but negatively (blue214

color) on the rest of the noun phrase (e.g. “Regional” in “Regional Service Centre”). This neuron is215

the 9th highest ranked neuron in an English-Spanish model according to MaxCorr.216

217
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(a) Tense (b) Number (c) Gender
Figure 4: Success rates and BLEU scores for controlling NMT by modifying neuron activations.

6 Controlling Translations218

In this section, we explore a potential benefit of finding important neurons with linguistically219

meaningful properties: controlling the translation output. This may be important for mitigating220

biases in neural networks. For instance, gender stereotypes are often reflected in automatic221

translations, as the following motivating examples from Google Translate demonstrate.3222

(1) a. o bir doctor
b. he is a doctor

(2) a. o bir hemşire
b. she is a nurse

223

The Turkish sentences (1a, 2a) have no gender information—they can refer to either male or female.224

But the MT system is biased to think that doctors are usually men and nurses are usually women,225

so its generated translations (1b, 2b) represent these biases. If we know the correct gender from226

another source such as metadata, we may want to encourage the system to output a translation with227

the correct gender.228

We conjecture that if a given neuron matters to the model, then we can control the translation by229

modifying its activations. To do this, we first encode the source sentence as usual. Before decoding,230

we set the activation of a particular neuron in the encoder state to a value α (defined below). To231

evaluate our ability to control the translation, we design the following protocol:232

1. Tag the source and target sentences in the development set with a desired property, such as gender233

(masculine/feminine). We use Spacy for these tags.234

2. Obtain word alignments for the development set with using an alignment model trained on 2235

million sentences of the UN data. We use fast align (Dyer et al., 2013) with default settings.236

3. For every neuron in the encoder, predict the target property on the word aligned to its source237

word activations using a supervised GMM model.4238

4. For every word having a desired property, modify the source activations of the top k neurons239

found in step 3, and generate a modified translation. The modification value is defined as240

α = µ1 + β(µ1 − µ2), where µ1 and µ2 are mean activations of the property we modify from and241

to, respectively (e.g. modifying gender from masculine to feminine), and β is a hyper-parameter.242

5. Tag the output translation and word-align it to the source. Declare success if the source word was243

aligned to a target word with the desired property value (e.g. feminine).244

6.1 Results245

Figure 4 shows translation control results in an English-Spanish model. We report success rate—the246

percentage of cases where the word was aligned to a target word with the desired property–and the247

effect on BLEU scores, when varying α. Our tense control results are the most successful, with up248

to 67% success rate for changing past-to-present. Modifications generally degrade BLEU, but the249

loss at the best success rate is not large (2 BLEU points).250

Controlling other properties seems more difficult, with the best success rate for controlling number251

at 37%, using the 5 top number neurons. Gender is the most difficult to control, with a 21% success252

rate using the 5 top neurons. Modifying even more neurons did not help. We conjecture that these253

properties are more distributed than tense, which makes controlling them more difficult. Future254

work can explore more sophisticated methods for controlling multiple neurons simultaneously.255

3For more biased examples, see mashable.com/2017/11/30/google-translate-sexism.
4This is different from our results in the previous section, where we predicted a source-side property, be-

cause here we seek neurons that are predictive of target-side properties to facilitate controlling the translation.
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Table 4: Examples for controlling translation by modifying activations of different neurons on the
italicized source words. α = modification value (–, no modification).

(a) Controlling number when translating “The interested parties” to Spanish.

α Translation Num α Translation Num

-1 abiertas particulares pl. 0.125 La parte interesada sing.
-0.5 Observaciones interesadas pl. 0.25 Cuestion interesada sing.
-0.25, -0.125, 0 Las partes interesadas pl. 0.5, 1 Gran útil sing.

(b) Controlling gender when translating “The interested parties” (left) and “Questions relating to information”
(right) to Spanish.

α Translation Gen α Translation Gen

-0.5, -0.25 Los partidos interados ms. -1 Temas relativos a la información ms.
0, 0.25 Las partes interesadas fm. -0.5, 0, 0.5 Cuestiones relativas a la información fm.

(c) Controlling tense when translating “The committee supported the efforts of the authorities”.

α Translation Tense

Arabic –/+10 �AWls�� {Ah�@b� ¨t��  wh��A\ wh�} Tn�l�� d§¥�w\�d§�¤ past/present

French –/-20 Le Comité a appuyé/appuie les efforts des autorités past/present

Spanish –/-3/0 El Comité apoyó/apoyaba/apoya los esfuerzos de las autoridades past/impf./present

Russian –/-1 Комитет поддержал/поддерживает усилия властей past/present

Chinese –/-50 委员会支持当局的努力 / 委员会正在支持当局的努力 untensed/present

6.2 Example translations256

We provide examples of controlling translation of number, gender, and tense. While these are cherry-257

picked, they illustrate that the controlling procedure can work in multiple properties and languages.258

Number Table 4a shows translation control results for a number neuron from an English-Spanish259

model, which activates negatively/positively on plural/singular nouns. The translation changes from260

plural to singular as we increase the modification α. We notice that using too high α values yields261

nonsense translations, but with correct number: transitioning from the plural adjective particulares262

(“particular”) to the singular adjective útil (“useful”), with valid translations in between.263

Gender Table 4b shows examples of controlling gender translation for a gender neuron from the264

same model, which activates negatively/positively on masculine/feminine nouns. The translations265

change from masculine to feminine synonyms as we increase the modification α. Generally, we266

found it difficult to control gender, as also suggested by the relatively low success rate.267

Tense Table 4c shows examples of controlling tense when translating from English to five target268

languages. In all language pairs, we are able to change the translation from past to present by269

modifying the activation of the tense neurons from the previous section (Table 3). In Spanish, we270

find a transition from past to imperfect to present. Interestingly, in Chinese, we had to use a fairly271

large α value (in absolute terms), consistent with the fact that tense is not usually marked in Chinese.272

7 Conclusion273

We developed unsupervised methods for finding important neurons in NMT, and evaluated how274

these neurons impact translation quality. We analyzed several linguistic properties that are captured275

by individual neurons using quantitative prediction tasks and qualitative visualizations. We also276

designed a protocol for controlling translations by modifying neurons that capture desired properties.277

Our analysis can be extended to other NMT components (e.g. the decoder) and architec-278

tures (Gehring et al., 2017; Vaswani et al., 2017), as well as other datasets from different domains,279

and even other NLP tasks. We believe that more work should be done to analyze the spectrum of lo-280

calized vs. distributed information in neural language representations. We would also like to develop281

more sophisticated ways to control translation output, for example by modifying representations in282

variational NMT architectures (Zhang et al., 2016; Su et al., 2018).283
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Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi. Representation of linguistic form and function325

in recurrent neural networks. arXiv preprint arXiv:1602.08952, 2016.326

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.327

arXiv preprint arXiv:1506.02078, 2015.328

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware Neural Language329

Models. arXiv preprint arXiv:1508.06615, 2015.330

9

http://www.aclweb.org/anthology/P17-1080
http://www.aclweb.org/anthology/N13-1073
http://www.aclweb.org/anthology/N13-1073
http://www.aclweb.org/anthology/N13-1073
http://doi.acm.org/10.1145/3110025.3110083
http://doi.acm.org/10.1145/3110025.3110083
http://doi.acm.org/10.1145/3110025.3110083
https://doi.org/10.1080/09540091.2011.587505
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1007/s10590-017-9194-2
https://doi.org/10.1007/s10590-017-9194-2
https://doi.org/10.1007/s10590-017-9194-2
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