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ABSTRACT

Recent literature has demonstrated promising results on the training of Generative
Adversarial Networks by employing a set of discriminators, as opposed to the
traditional game involving one generator against a single adversary. Those methods
perform single-objective optimization on some simple consolidation of the losses,
e.g. an average. In this work, we revisit the multiple-discriminator approach by
framing the simultaneous minimization of losses provided by different models as a
multi-objective optimization problem. Specifically, we evaluate the performance
of multiple gradient descent and the hypervolume maximization algorithm on a
number of different datasets. Moreover, we argue that the previously proposed
methods and hypervolume maximization can all be seen as variations of multiple
gradient descent in which the update direction computation can be done efficiently.
Our results indicate that hypervolume maximization presents a better compro-
mise between sample quality and diversity, and computational cost than previous
methods.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) offer a new approach to generative
modeling, using game-theoretic training schemes to implicitly learn a given probability density. Prior
to the emergence of GAN architectures, realistic generative modeling remained elusive. When
offering unparalleled realism, GAN training remains fraught with stability issues. Commonly
reported shortcomings involved in the GAN game are the lack of useful gradients provided by the
discriminator, and mode collapse, i.e. lack of diversity in the generator’s samples.

Considerable research effort has been devoted in recent literature in order to overcome training
instability 1 within the GAN framework. Some architectures such as BEGAN (Berthelot et al., 2017)
have applied auto-encoders as discriminators and proposed a new loss to help stabilize training.
Methods such as TTUR (Heusel et al., 2017), in turn, have attempted to define schedules for updating
the generator and discriminator differently. The PacGAN algorithm (Lin et al., 2017) proposes to
modify the discriminator’s architecture which will receive m concatenated samples as input, while
modifications to alternate updates in SGD were introduced in (Yadav et al., 2017). These samples are
jointly classified as either real or generated, and authors show that this enforces sample diversity. In
SNGAN (Miyato et al., 2018), authors introduce spectral normalization on the discriminator aiming
to ensure Lipschitz continuity, which is empirically shown to consistently yield high quality samples
when different sets of hyperparameters are used.

Recent works have proposed to tackle GANs instability issues using multiple discriminators.
Neyshabur et al. (2017) propose a GAN variation in which one generator is trained against a set of
discriminators, where each discriminator sees a fixed random projection of the inputs. Prior work,
including GMAN (Durugkar et al., 2016) has also explored training against multiple discriminators.

1Instability in the sense commonly used in GANs literature, i.e. divergence and mode-collapse of the
generator when the discriminator is able to easily distinguish real and fake samples during training (Neyshabur
et al., 2017; Arjovsky et al., 2017; Berthelot et al., 2017).
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In this paper, we build upon Neyshabur et al.’s introduced framework and propose reformulating the
average loss minimization aiming to further stabilize GAN training. Specifically, we propose treating
the loss signal provided by each discriminator as an independent objective function. To achieve this,
we simultaneously minimize the losses using multi-objective optimization techniques. Namely, we
exploit previously introduced methods in literature such as the multiple gradient descent algorithm
(MGD) (Désidéri, 2012). However, due to MGD’s prohibitively high cost in the case of large neural
networks, we propose the use of more efficient alternatives such as maximization of the hypervolume
of the region defined between a fixed, shared upper bound on those losses, which we will refer to as
the nadir point η∗, and each of the component losses.

In contrast to Neyshabur et al. (2017)’s approach, where the average loss is minimized when training
the generator, hypervolume maximization (HV) optimizes a weighted loss, and the generator’s
training will adaptively assign greater importance to feedback from discriminators against which it
performs poorly.

Experiments performed on MNIST show that HV presents a good compromise in the computational
cost-samples quality trade-off, when compared to average loss minimization or GMAN’s approach
(low quality and cost), and MGD (high quality and cost). Also, the sensitivity to introduced hyperpa-
rameters is studied and results indicate that increasing the number of discriminators consequently
increases the generator’s robustness along with sample quality and diversity. Experiments on CIFAR-
10 indicate the method described produces higher quality generator samples in terms of quantitative
evaluation. Moreover, image quality and sample diversity are once more shown to consistently
improve as we increase the number of discriminators.

In summary, our main contributions are the following:

1. We offer a new perspective on multiple-discriminator GAN training by framing it in the
context of multi-objective optimization, and draw similarities between previous research in
GANs variations and MGD, commonly employed as a general solver for multi-objective
optimization.

2. We propose a new method for training multiple-discriminator GANs: Hypervolume maxi-
mization, which weighs the gradient contributions of each discriminator by its loss.

The remainder of this document is organized as follows: Section 2 introduces definitions on multi-
objective optimization and MGD. In Section 3 we describe prior relevant literature. Hypervolume
maximization is detailed in Section 4, with experiments and results presented in Section 5. Conclu-
sions and directions for future work are drawn in Section 6.

2 PRELIMINARIES

In this section we provide some definitions regarding multi-objective optimization literature which
will be useful in the next sections. Henceforth, the boldface notation will be used to indicate
vector-valued variables.

Multi-objective optimization. A multi-objective optimization problem is defined as (Deb, 2001):

min F(x) = [f1(x), f2(x), ..., fK(x)]T ,

x ∈ Ω,
(1)

where K is the number of objectives, Ω is the variables space and x = [x1, x2, ..., xn]T ∈ Ω is a
decision vector or possible solution to the problem. F : Ω→ RK is a set of K-objective functions
that maps the n-dimensional variables space to the K-dimensional objective space.

Pareto-dominance. Let x1 and x2 be two decision vectors. x1 is said to dominate x2 (denoted by
x1 ≺ x2) if and only if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, . . . ,K} and fj(x1) < fj(x2) for some
j ∈ {1, 2, . . . ,K}. If a decision vector x is dominated by no other vector in Ω, x is said to be
non-dominated.

Pareto-optimality. A decision vector x∗ ∈ Ω is said to be Pareto-optimal if and only if there is
no x ∈ Ω such that x ≺ x∗, i.e. x∗ is a non-dominated solution. The Pareto-optimal Set (PS) is
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defined as the set of all Pareto-optimal solutions x ∈ Ω, i.e., PS = {x ∈ Ω|x is Pareto optimal}.
The set of all objective vectors F(x) such that x is Pareto-optimal is called Pareto front (PF), that is
PF = {F(x) ∈ RK |x ∈ PS}.
Pareto-stationarity. Pareto-stationarity is a necessary condition for Pareto-optimality. For fk
differentiable everywhere for all k, F is said to be Pareto-stationary at the point x if there exists a set
of scalars αk, k ∈ {1, . . . ,K}, such that:

K∑
k=1

αk∇fk = 0,
K∑
k=1

αk = 1, αk ≥ 0 ∀k. (2)

Multiple Gradient Descent. Multiple gradient descent (Désidéri, 2012; Schäffler et al., 2002; Peitz
& Dellnitz, 2018) was proposed for the unconstrained case of multi-objective optimization of F(x)
assuming a convex, continuously differentiable and smooth fk(x) for all k. MGD finds a common
descent direction for all fk by defining the convex hull of all ∇fk(x) and finding the minimum norm
element within it. Consider w∗ given by:

w∗ = argmin||w||, w =

K∑
k=1

αk∇fk(x), s.t.
K∑
k=1

αk = 1, αk ≥ 0 ∀k. (3)

w∗ will be either 0 in which case x is a Pareto-stationary point, or w∗ 6= 0 and then w∗ is a descent
direction for all fi(x). Similar to gradient descent, MGD consists in finding the common steepest
descent direction w∗t at each iteration t, and then updating parameters with a learning rate λ according
to xt+1 = xt − λ w∗t

||w∗t ||
.

3 RELATED WORK

3.1 TRAINING GANS WITH MULTIPLE DISCRIMINATORS

While we would prefer to always have strong gradients from the discriminator during training, the
vanilla GAN makes this difficult to ensure, as the discriminator quickly learns to distinguish real and
generated samples (Goodfellow, 2016), thus providing no meaningful error signal to improve the
generator thereafter. Durugkar et al. (2016) proposed the Generative Multi-Adversarial Networks
(GMAN) which consist in training the generator against a softmax weighted arithmetic average of K
different discriminators, according to Eq. 4.

LG =

K∑
k=1

αkLDk , (4)

where αk = e
βLDk∑K

j=1 e
βLDj

, β ≥ 0, and LDk is the loss of discriminator k and defined as

LDk = −Ex∼pdata logDk(x)− Ez∼pz log(1−Dk(G(z))), (5)

where Dk(x) and G(z) are the outputs of the k-th discriminator and the generator, respectively. The
goal of using the proposed averaging scheme is to privilege worse discriminators and thus providing
more useful gradients to the generator during training. Experiments were performed with β = 0
(equal weights), β → ∞ (only worst discriminator is taken into account), β = 1, and β learned
by the generator. Models with K = {2, 5} were tested and evaluated using a proposed metric and
the Inception score (Salimans et al., 2016). However, results showed that the simple average of
discriminator’s losses provided the best values for both metrics in most of the considered cases.

Opposed to GMAN, Neyshabur et al. (2017) proposed training a GAN with K discriminators using
the same architecture. Each discriminator Dk sees a different randomly projected lower-dimensional
version of the input image. Random projections are defined by a randomly initialized matrix Wk,
which remains fixed during training. Theoretical results provided show that the distribution induced
by the generator G will converge to the real data distribution pdata, as long as there is a sufficient
number of discriminators. Moreover, discriminative tasks in the projected space are harder, i.e. real
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and fake samples are more alike, thus avoiding early convergence of discriminators, which leads to
common stability issues in GAN training such as mode-collapse (Goodfellow, 2016). Essentially,
the authors trade one hard problem for K easier subproblems. The losses of each discriminator LDk
are the same as shown in Eq. 5. However, the generator loss LG is defined as simply the sum of
the losses provided by each discriminator, as shown in Eq. 6. This choice of LG does not exploit
available information such as the performance of the generator with respect to each discriminator.

LG = −
K∑
k=1

Ez∼pz logDk(G(z)). (6)

3.2 HYPERVOLUME MAXIMIZATION

Consider a set of solutions S for a multi-objective optimization problem. The hypervolumeH of S is
defined as (Fleischer, 2003): H(S) = µ(∪x∈S [F(x),η∗]), where µ is the Lebesgue measure and η∗
is a point dominated by all x ∈ S (i.e. fi(x) is upper-bounded by η), referred to as nadir point. H(S)
can be understood as the size of the space covered by {F(x)|x ∈ S} (Bader & Zitzler, 2011).

The hypervolume was originally introduced as a quantitative metric for coverage and convergence of
Pareto-optimal fronts obtained through population based algorithms (Beume et al., 2007). Methods
based on direct maximization of H exhibit favorable convergence even in challenging scenarios,
such as simultaneous minimization of 50 objectives (Bader & Zitzler, 2011). In the context of
Machine Learning, a single-solution hypervolume maximization has been applied to neural networks
as a surrogate loss for mean squared error (Miranda & Zuben, 2016), i.e. the loss provided by
each example in a training batch is treated as a single cost and the multi-objective approach aims
to minimize costs over all examples. Authors show that such method provides an inexpensive
boosting-like training.

4 MULTI-OBJECTIVE TRAINING OF GANS WITH MULTIPLE DISCRIMINATORS

We introduce a variation of the GAN game such that the generator solves the following multi-objective
problem:

minLG(x) = [l1(z), l2(z), ..., lK(z)]T , (7)

where each lk = −Ez∼pz logDk(G(z)), k ∈ {1, ...,K}, is the loss provided by the k-th discrim-
inator. Training proceeds as the usual formulation (Goodfellow et al., 2014), i.e. with alternate
updates between the discriminators and the generator. Updates of each discriminator are performed
to minimize the loss described in Eq. 5.

A natural choice for generator’s updates is the MGD algorithm, described in Section 2. However,
computing the direction of steepest descent w∗ before every parameter update step, as required in
MGD, can be prohibitively expensive for large neural networks. Therefore, we propose an alternative
scheme for multi-objective optimization and argue that both our proposal and previously published
methods can all be viewed as performing computationally more efficient versions of MGD update
rule without the burden of having to solve a quadratric program, i.e. computing w∗, every iteration.

4.1 HYPERVOLUME MAXIMIZATION FOR TRAINING GANS

Fleischer (Fleischer, 2003) has shown that maximizing H yields Pareto-optimal solutions. Since
MGD converges to a set of Pareto-stationary points, i.e. a super-set of the Pareto-optimal solutions,
hypervolume maximization yields a sub-set of the solutions obtained using MGD.

We exploit the above mentioned property and define the generator loss as the negative log-
hypervolume, as defined in Eq. 8:

LG = −V = −
K∑
k=1

log(η − lk), (8)
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where the nadir point coordinate η is an upper bound for all lk. In Fig. 1 we provide an illustrative
example for the case where K = 2. The highlighted region corresponds to eV . Since the nadir point
η∗ is fixed, V will only be maximized, and consequently LG minimized, if each lk is minimized.

D1

D2

l1

l2

η∗

l

η

η

eV

Figure 1: 2D example of the objective space
where the generator loss is being optimized.

Moreover, by adapting the results shown in (Mi-
randa & Zuben, 2016), the gradient of LG with
respect to any generator’s parameter θ is given by:

∂LG
∂θ

=

K∑
k=1

1

η − lk
∂lk
∂θ

. (9)

In other words, the gradient can be obtained by com-
puting a weighted sum of the gradients of the losses
provided by each discriminator, whose weights are
defined as the inverse distance to the nadir point
components. This formulation will naturally as-
sign more importance to higher losses in the final
gradient, which is another useful property of hyper-
volume maximization.

Nadir point selection. It is evident from Eq. 9 that the selection of η directly affects the impor-
tance assignment of gradients provided by different discriminators. Particularly, as the quantity
mink{η − lk} grows, the multi-objective GAN game approaches the one defined by the simple
average of lk. Previous literature has discussed in depth the effects of the selection of η in the case
of population-based methods (Auger et al., 2009; 2012). However, those results are not readily
applicable for the single-solution case. As will be shown in Section 5, our experiments indicate
that the choice of η plays an important role in the final quality of samples. Nevertheless, this effect
becomes less relevant as the number of discriminators increases.

Nadir point adaptation. Similarly to (Miranda & Zuben, 2016), we propose an adaptive scheme
for η such that at iteration t: ηt = δmaxk{lk,t}, where δ > 1 is a user-defined parameter which
will be referred to as slack. This enforces mink{η − lk} to be higher when maxk{lk,t} is high
and low otherwise, which induces a similar behavior as an average loss when training begins and
automatically places more importance on the discriminators in which performance is worse as training
progresses. Extra discussion and an illustrative example of the adaptation scheme adopted is presented
in Appendix G.

Comparison to average loss minimization. The upper bound proven by Neyshabur et al. (2017)
assumes that the marginals of the real and generated distributions are identical along all random
projections. Average loss minimization does not ensure equally good approximation between the
marginals along all directions. In case of a trade-off between discriminators, i.e. if decreasing the
loss on a given projection increases the loss with respect to another one, the distribution of losses can
be uneven. With HV on the other hand, especially when η is reduced throughout training, overall loss
will be kept high as long as there are discriminators with high loss. This objective tends to prefer
central regions of a trade-off, in which all discriminators present a roughly equally low loss.

4.2 RELATIONSHIP BETWEEN MULTIPLE DISCRIMINATOR GANS AND MGD

All methods described previously for the solution of GANs with multiple discriminators, i.e. average
loss minimization (Neyshabur et al., 2017), GMAN’s weighted average (Durugkar et al., 2016) and
hypervolume maximization can be defined as MGD-like two-step algorithms consisting of: Step 1 -
consolidating all gradients into a single update direction (compute the set α1,...,K ); Step 2 - updating
parameters in the direction returned in step 1. Definition of Step 1 for the different methods studied
here can be seen in the following:

1. MGD: α1:K = argminα||w||, s.t.
∑K
k=1 αk = 1, αk ≥ 0 ∀k ∈ {1, ...,K}

2. Average loss minimization (Neyshabur et al., 2017): αk = 1
K

3. GMAN (Durugkar et al., 2016): αk = softmax(l1:K)k

4. Hypervolume maximization: αk = 1
T (η−lk) , T =

∑K
k=1

1
η−lk
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5 EXPERIMENTS

We performed three sets of experiments aiming to analyze the following aspects: (i) How alternative
methods for training GANs with multiple discriminators perform in comparison to MGD; (ii) How
alternative methods perform in comparison to each other in terms of sample quality and coverage; and
(iii) Whether the behavior induced by HV improves the results with respect to the baseline methods.

Firstly, we exploited the relatively low dimensionality of MNIST and used it as testbed for a
comparison of MGD with the other approaches, i.e. average loss minimization (AVG), GMAN’s
weighted average loss, and HV, proposed in this work. Moreover, multiple initializations and slack
combinations were evaluated in order to investigate how varying the number of discriminators affects
robustness to those factors.

Then, experiments were performed with CIFAR-10 while increasing the number of discriminators.
We evaluated HV’s performance compared to baseline methods, and the effect in samples quality. We
also analyzed the impact on the diversity of generated samples by using the stacked MNIST dataset
(Srivastava et al., 2017). Samples of generators trained on stacked MNIST, CIFAR-10, CelebA, and
Cats dataset are shown in the Appendix.

In all experiments performed, the same architecture, set of hyperparameters and initialization were
used for both AVG, GMAN and our proposed method. The only different aspect is the generator
loss. Unless stated otherwise, Adam (Kingma & Ba, 2014) was used to train all the models with
learning rate, β1 and β2 set to 0.0002, 0.5 and 0.999, respectively. Mini-batch size was set to 64. The
Fréchet Inception Distance (FID) (Heusel et al., 2017) was employed for comparison. Details on FID
computation can be found in Appendix A.

5.1 MGD COMPARED WITH ALTERNATIVE METHODS

We employed MGD in our experiments with MNIST. In order to do so, a quadratic program has to be
solved prior to every parameters update. For this, we used the Scipy’s implementation of the Serial
Least Square Quadratic Program solver2.

Three and four fully connected layers with LeakyReLU activations were used for the generator
and discriminator, respectively. Dropout was also employed in the discriminator and the random
projection layer was implemented as a randomly initialized norm-1 fully connected layer, reducing
the vectorized dimensionality of MNIST from 784 to 512. A pretrained LeNet (LeCun et al., 1998)
was used for FID computation.

Experiments over 100 epochs with 8 discriminators are reported in Fig. 2 and Fig. 3. In Fig. 2,
box-plots refer to 30 independent computations of FID over 10000 images sampled from the generator
which achieved the minimum FID at train time. FID results are measured at train time over 1000
images and the best values are reported in Fig. 3 along with the necessary time to achieve it.

MGD outperforms all tested methods. However, its cost per iteration does not allow its use in more
relevant datasets other than MNIST. Hypervolume maximization, on the other hand, performs closest
to MGD than the considered baselines, while introducing no relevant extra cost. In Fig. 4, we
analyze convergence in the Pareto-stationarity sense by plotting the norm of the update direction for
each method, given by ||

∑K
k=1 αk∇lk||. All methods converged to similar norms, leading to the

conclusion that different Pareto-stationary solutions will perform differently in terms of quality of
samples. FID as a function of wall-clock time is shown in Figure 22 (Appendix H).

HV sensitivity to initialization and choice of δ. Analysis of the sensitivity of the performance
with the choice of the slack parameter δ and initialization was performed under the following
setting: models were trained for 50 epochs on MNIST with hypervolume maximization using 8,
16, 24 discriminators. Three independent runs (different initializations) were executed with each
δ = {1.05, 1.5, 1.75, 2} and number of discriminators, totalizing 36 final models. Fig. 5 reports
the box-plots obtained for 5 FID independent computations using 10000 images, for each of the 36
models obtained under the setting previously described. Results clearly indicate that increasing the
number of discriminators yields much smaller variation in the FID obtained by the final model.

2https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
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Figure 2: Box-plots corresponding to 30 indepen-
dent FID computations with 10000 images. MGD
performs consistently better than other methods,
followed by hypervolume maximization. Models
that achieved minimum FID at train time were
used. Red and blue dashed lines are the FIDs of a
random generator and real data, respectively.
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Figure 3: Time vs. best FID achieved during train-
ing for each approach. FID values are computed
over 1000 generated images after every epoch.
MGD performs relevantly better than others in
terms of FID, followed by HV. However, MGD
is approximately 7 times slower than HV. HV is
well-placed in the time-quality trade-off.

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

Up
da

te
 d

ire
ct

io
n 

no
rm

 - 
M

NI
ST

HV
GMAN
MGD
AVG

Figure 4: Norm of the update direction over time
for each method. While Pareto-stationarity is
approximately achieved by all methods, perfor-
mance varies relevantly in terms of FID.
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Figure 5: Independent FID evaluations for models
obtained with different runs using distinct slack
parameter δ. Sensitivity reduces as the number of
discriminators increases.

5.2 HV AS AN ALTERNATIVE FOR MGD

We evaluate the performance of HV compared to baseline methods using the CIFAR-10 dataset.
FID was computed with a pretrained ResNet (He et al., 2016). ResNet was trained on the 10-class
classification task of CIFAR-10 up to approximately 95% test accuracy. DCGAN (Radford et al.,
2015) and WGAN-GP (Gulrajani et al., 2017) were included in the experiments for FID reference.
Same architectures as in (Neyshabur et al., 2017) were employed for all multi-discriminators settings.
An increasing number of discriminators was used. Inception score as well as FID computed with
other models are included in Appendix C.

In Fig. 6, we report the box-plots of 15 independent evaluations of FID on 10000 images for the best
model obtained with each method across 3 independent runs. Results once more indicate that HV
outperforms other methods in terms of quality of the generated samples. Moreover, performance
clearly improves as the number of discriminators grows. Fig. 7 shows the FID at train time, i.e.
measured with 1000 generated samples after each epoch, for the best models across runs. Models
trained against more discriminators clearly converge to smaller values. We report the norm of the
update direction ||

∑K
k=1 αk∇lk|| for each method in Fig. 9, Appendix C.
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Figure 6: Box-plots of 15 independent FID com-
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Figure 7: FID estimated over 1000 generated im-
ages at train time. Models trained against more
discriminators achieve lower FID.

Cost under the multiple discriminator setting. We highlight that even though training with multiple
discriminators may be more computationally expensive when compared to conventional approaches,
such framework supports fully parallel training of the discriminators, a feature which is not trivially
possible in other GAN settings. For example in WGAN, the discriminator is serially updated multiple
times for each generator update. In Fig. 10 at Appendix C, we provide a comparison between the
wall-clock time per iteration between all methods evaluated. Serial implementations of discriminators
updates with 8 and 16 discriminators were faster than WGAN-GP.

5.3 EFFECT OF THE NUMBER OF DISCRIMINATORS ON SAMPLE DIVERSITY

We repeat the experiments in (Srivastava et al., 2017) aiming to analyze how the number of dis-
criminators impacts the sample diversity of the corresponding generator when trained using hyper-
volume maximization. The stacked MNIST dataset is employed and results reported in (Lin et al.,
2017) are used for comparison. HV results for 8, 16, and 24 discriminators were obtained with
10k and 26k generator images averaged over 10 runs. The number of covered modes along with
the KL divergence between the generated mode distribution and test data are reported in Table 1.

Test samples Model Modes (Max 1000) KL

26k

DCGAN (Radford et al., 2015) 99.0 3.400
ALI (Dumoulin et al., 2016) 16.0 5.400

Unrolled GAN (Metz et al., 2016) 48.7 4.320
VEEGAN (Srivastava et al., 2017) 150.0 2.950

PacDCGAN2 (Lin et al., 2017) 1000.0± 0.0 0.060± 0.003

10k
HV - 8 disc. 679.2± 5.9 1.139± 0.011

HV - 16 disc. 998.0± 1.8 0.120± 0.004
HV - 24 disc. 998.3± 1.1 0.116± 0.003

26k
HV - 8 disc. 776.8± 6.4 1.115± 0.007

HV - 16 disc. 1000.0± 0.0 0.088± 0.002
HV - 24 disc. 1000.0± 0.0 0.084± 0.002

Table 1: Number of covered modes and reverse
KL divergence for stacked MNIST.

As in previous experiments, results improved
as we increased the number of discriminators.
All evaluated models using HV outperformed
DCGAN, ALI, Unrolled GAN and VEEGAN.
Moreover, HV with 16 and 24 discriminators
achieved state-of-the-art coverage values. Thus,
the increase in models’ capacity via using more
discriminators directly resulted in an improve-
ment in generator’s coverage. Training details as
well as architectures information are presented
in Appendix B.

6 CONCLUSION

In this work we have shown that employing multiple discriminators is a practical approach allowing
us to trade extra capacity, and thereby extra computational cost, for higher quality and diversity of
generated samples. Such an approach is complimentary to other advances in GANs training and can
be easily used together with other methods. We introduced a multi-objective optimization framework
for studying multiple discriminator GANs, and showed strong similarities between previous work
and the multiple gradient descent algorithm. The proposed approach was observed to consistently
yield higher quality samples in terms of FID. Furthermore, increasing the number of discriminators
was shown to increase sample diversity and generator robustness.

Deeper analysis of the quantity ||
∑K
k=1 αk∇lk|| is the subject of future investigation. We hypothesize

that using it as a penalty term might reduce the necessity of a high number of discriminators.
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APPENDIX

A - OBJECTIVE EVALUATION METRIC.

In (Heusel et al., 2017), authors proposed to use as a quality metric the squared Fréchet distance
(Fréchet, 1957) between Gaussians defined by estimates of the first and second order moments of
the outputs obtained through a forward pass in a pretrained classifier of both real and generated
data. They proposed the use of Inception V3 (Szegedy et al., 2016) for computation of the data
representation and called the metric Fréchet Inception Distance (FID), which is defined as:

FID = ||md −mg||2 + Tr(Σd + Σg − 2(ΣdΣg)
1
2 ), (10)

where md,Σd and mg,Σg are estimates of the first and second order moments from the representa-
tions of real data distributions and generated data, respectively.

We employ FID throughout our experiments for comparison of different approaches. However, for
each dataset in which FID was computed, the output layer of a pretrained classifier on that particular
dataset was used instead of Inception. md and Σd were estimated on the complete test partitions,
which are not used during training.

B - EXPERIMENTAL SETUP FOR STACKED MNIST EXPERIMENTS AND
GENERATOR’S SAMPLES

Architectures of the generator and discriminator are detailed in Tables 2 and 3, respectively. Batch
normalization was used in all intermediate convolutional and fully connected layers of both models.
We employed RMSprop to train all the models with learning rate and α set to 0.0001 and 0.9,
respectively. Mini-batch size was set to 64. The setup in (Lin et al., 2017) is employed and we build
128000 and 26000 samples for train and test sets, respectively.

Layer Outputs Kernel size Stride Activation
Input: z ∼ N (0, I100)

Fully connected 2*2*512 4, 4 2, 2 ReLU
Transposed convolution 4*4*256 4, 4 2, 2 ReLU
Transposed convolution 8*8*128 4, 4 2, 2 ReLU
Transposed convolution 14*14*64 4, 4 2, 2 ReLU
Transposed convolution 28*28*3 4, 4 2, 2 Tanh

Table 2: Generator’s architecture.

Layer Outputs Kernel size Stride Activation
Input 28*28*3

Projection 14*14*3 8, 8 2, 2
Convolution 7*7*64 4,4 2, 2 LeakyReLU
Convolution 5*5*128 4, 4 2, 2 LeakyReLU
Convolution 2*2*256 4, 4 2, 2 LeakyReLU
Convolution 1 4, 4 2, 2 Sigmoid

Table 3: Discriminator’s architecture.
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(a) HV - 8 discriminators

(b) HV - 16 discriminators

(c) HV - 24 discriminators

Figure 8: Stacked MNIST samples for HV trained with 8, 16, and 24 discriminators. Samples
diversity increases greatly when more discriminators are employed.
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C - EXTRA RESULTS ON CIFAR-10

C.1 - MULTIPLE DISCRIMINATORS ACROSS DIFFERENT INITIALIZATIONS AND OTHER SCORES

Table 4 presents the best FID (computed with a pretrained ResNet) achieved by each approach at
train time, along with the epoch in which it was achieved, for each of 3 independent runs. Train time
FIDs are computed using 1000 generated images.

#D Method Best FID (epoch)

1 DCGAN 7.09 (68), 9.09 (21), 4.22 (101)
WGAN-GP 5.09 (117), 5.69 (101) 7.13 (71)

8
AVG 3.35 (105), 4.64 (141), 3.00 (76)

GMAN 4.28 (123), 4.24 (129), 3.80 (133)
HV 3.87 (102), 4.54 (82), 3.20 (98)

16
AVG 3.16 (96), 2.50 (91), 2.77 (116)

GMAN 2.69 (129), 2.36 (144), 2.48 (120)
HV 2.56 (85), 2.70 (97), 2.68 (133)

24
AVG 2.10 (94), 2.44 (132), 2.43 (129)

GMAN 2.16 (120), 2.02 (98), 2.13 (130)
HV 2.05 (83), 1.89 (97), 2.23 (130)

Table 4: Best FID obtained for each approach on 3 independent runs. FID is computed on 1000
generated images after every epoch.

In Fig. 9, we report the norm of the update direction ||
∑K
k=1 αk∇lk|| of the best model obtained for

each method. Interestingly, different methods present similar behavior in terms of convergence in the
Pareto-stationarity sense, i.e. the norm upon convergence is lower for models trained against more
discriminators, regardless of the employed method.

0 20 40 60 80 100 120 140
Epochs

0

2

4

6

8

10

12

14

Up
da

te
 d

ire
ct

io
n 

no
rm

 - 
CI

FA
R-

10

GMAN-24
GMAN-8
HV-24
HV-8
AVG-24
AVG-8

Figure 9: Norm of the update direction over time for each method. Higher number of discriminators
yield lower norm upon convergence.

We computed extra scores using 10000 images generated by the best model reported in Table 4, i.e.
the same models utilized to generate the results shown in Fig. 6. Both Inception score and FID were
computed with original implementations, while FID-VGG and FID-ResNet were computed using a
VGG and a ResNet we pretrained. Results are reported with respect to DCGAN’s scores.

WGAN-GP AVG-8 AVG-16 AVG-24 GMAN-8 GMAN-16 GMAN-24 HV-8 HV-16 HV-24
Inception Score 1.08 1.02 1.26 1.36 0.95 1.32 1.42 1.00 1.30 1.44

FID 0.80 0.98 0.76 0.73 0.92 0.79 0.65 0.89 0.77 0.72
FID-VGG 1.29 0.91 1.03 0.85 0.87 0.78 0.73 0.78 0.75 0.64

FID-ResNet 1.64 0.88 0.90 0.62 0.80 0.72 0.73 0.75 0.73 0.51

Table 5: Scores of different methods measure on generated CIFAR-10 samples. DCGAN scores are
used as reference values, and results report are the ratio between given model and DCGAN scores.
Inception score is better when high, whereas FIDs are better when low.
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C.2 - COMPUTATIONAL COST

In Table 6 we present a comparison of minimum FID-ResNet obtained during training, along with
computation cost in terms of time and space for different GANs, with both 1 and 24 discriminators.
The computational cost of training GANs under a multiple discriminator setting is higher by design,
in terms of both FLOPS and memory, if compared with single discriminators settings. However, a
corresponding shift in performance is the result of the additional cost. This effect was consistently
observed considering 4 different well-known approaches, namely DCGAN (Radford et al., 2015),
Least-square GAN (LSGAN) (Mao et al., 2017), and HingeGAN (Miyato et al., 2018). The architec-
tures of all single discriminator models follow the DCGAN, described in (Radford et al., 2015). For
the 24 discriminators models, we used the architecture described in (Neyshabur et al., 2017), which
consists in removing the the normalization layers from DCGAN’s discriminator and further adding
the projection layer, inline with previous experiments reported for CIFAR-10 upscaled to 64x64. All
models were trained with minibatch size of 64 during 150 epochs. Adam (Kingma & Ba, 2014) was
used as the optimizer. Learning rate, β1 and β2 were equal to 0.0002, 0.5 and 0.999, respectively.

# Discriminators FID-ResNet FLOPS (MAC) Memory (Mb)

DCGAN 1 4.22 8e10 1292
24 1.89 5e11 5671

LSGAN 1 4.55 8e10 1303
24 1.91 5e11 5682

HingeGAN 1 6.17 8e10 1303
24 2.25 5e11 5682

Table 6: Comparison between different GANs with 1 and 24 discriminators in terms of minimum
FID-ResNet obtained during training, and FLOPs and memory consumption for a complete train step.

Furthermore, wall-clock time per iteration for different numbers of discriminators is shown in Fig.
10 for experiments with CIFAR-10 with serial updates of discriminators. Notice that while the
increase in cost in terms of FLOPS and memory is unavoidable when multiple discriminators settings
is employed, wall-clock time can be made close to single discriminators cases since training with
respect to different discriminators can be implemented in parallel. On the other hand, extra cost in
time introduced by other frameworks such as WGAN-GP or SNGAN cannot be trivially recovered.

Figure 10: Time in seconds per iteration of each method for serial updates of discriminators. Multiple
discriminators approaches considered do not present relevant difference in time per iteration.
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C.3 - GENERATED SAMPLES

In Figs. 11, 12, and 13 we show random generated samples with 8, 16, and 24 discriminators for
AVG, GMAN, and HV, respectively.

(a) AVG - 8 discriminators (b) AVG - 16 discriminators (c) AVG - 24 discriminators

Figure 11: CIFAR-10 samples for AVG trained with 8, 16, and 24 discriminators.

(a) GMAN - 8 discriminators (b) GMAN - 16 discriminators (c) GMAN - 24 discriminators

Figure 12: CIFAR-10 samples for GMAN trained with 8, 16, and 24 discriminators.

(a) HV - 8 discriminators (b) HV - 16 discriminators (c) HV - 24 discriminators

Figure 13: CIFAR-10 samples for HV trained with 8, 16, and 24 discriminators.
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C.4 - RESULTS CIFAR-10 32X32

All results reported in previous sections using CIFAR-10 were obtained with an upscaled version
of the dataset. Here, we thus run experiments with the dataset in its original resolution aiming to
contextualize our proposed approach with respect to previously introduced methods. To do so, we
repeated similar experiments as reported in Miyato et al. (2018)-Table 2, for the model referred to as
standard CNN. The same architecture is employed and the spectral normalization is removed from
the discriminators. Moreover, the same projection input is added in each of the discriminators.

Results in terms of both FID and Inception score, evaluated on top of 5000 generated images as
in (Miyato et al., 2018) as well as with 10000 images, are reported in Table 7 for our proposed
approach and our implementation of (Miyato et al., 2018), along with the FID measured using a
ResNet classifier trained in advance.

As can be seen, the addition of the multiple discriminators setting along with hypervolume maximiza-
tion yields a relevant shift in performance for the DCGAN-like generator, taking all evaluated metrics
to levels of recently proposed GANs.

FID-ResNet FID (5k) IS (5k) FID (10k) IS (10k)
SNGAN (Miyato et al., 2018) - 25.5 7.58± 0.12 - -
WGAN-GP (Miyato et al., 2018) - 40.2 6.68± 0.06 - -
DCGAN (Miyato et al., 2018) - - 6.64± 0.14 - -
SNGAN (our implementation) 1.55 27.93 7.11± 0.30 25.29 7.26± 0.12
DCGAN + 24 Ds and HV 1.21 27.74 7.32± 0.26 24.90 7.45± 0.17

Table 7: Evaluation of the effect of adding discriminators on a DCGAN-like model trained on
CIFAR-10. Results reach the same level as the best reported for the given architecture when the
multiple-discriminator setting is added and the normalization layers are removed from discriminators.
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D - CELEBA DATASET

D.1 - COMPARING WITH OTHER MULTIPLE-DISCRIMINATORS APPROACHES

Here, we present samples obtained by generators trained against 8, 16, and 24 discriminators using
AVG, GMAN, and HV on the CelebA dataset rescaled to 64x64. Training lasted 100 epochs and
samples are shown in Figs. 14, 15, and 16 for AVG, GMAN and HV, respectively. Same architectures
and hyperparameters used for experiments with CIFAR-10 presented in Section 5 were utilized.

(a) AVG - 8 discriminators (b) AVG - 16 discriminators (c) AVG - 24 discriminators

Figure 14: CelebA samples for AVG trained with 8, 16, and 24 discriminators.

(a) GMAN - 8 discriminators (b) GMAN - 16 discriminators (c) GMAN - 24 discriminators

Figure 15: CelebA samples for GMAN trained with 8, 16, and 24 discriminators.

(a) HV - 8 discriminators (b) HV - 16 discriminators (c) HV - 24 discriminators

Figure 16: CelebA samples for HV trained with 8, 16, and 24 discriminators.

17



Under review as a conference paper at ICLR 2019

D.2 - GENERATING 128X128 IMAGES

In this experiment, we verify whether the proposed multiple discriminators setting is capable of
generating higher resolution images. For that, we employed the CelebA at a size of 128x128.
We used a similar architecture for both generator and discriminators networks as described in the
previous experiments. A convolutional layer with 2048 feature maps was added to both generator
and discriminators architectures due to the increase in the image size. Adam optimizer with the same
set of hyperparameters as for CIFAR-10 and CelebA 64x64 was employed. We trained models with
6, 8, and 10 discriminators during 24 epochs. Samples from each generator are shown in Figure 17.

(a) HV - 6 discriminators

(b) HV - 8 discriminators

(c) HV - 10 discriminators

Figure 17: 128x128 CelebA samples for HV trained during 24 epochs with 6, 8, and 10 discriminators.
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E - GENERATING 256X256 CATS

We show the proposed multiple-discriminators setting scales to higher resolution even in the small
dataset regime, by reproducing the experiments presented in (Jolicoeur-Martineau, 2018). We used
the same architecture for the generator. For the discriminator, we removed batch normalization from
all layers and used stride equal to 1 at the last convolutional layer, after adding the initial projection
step. The Cats dataset 3 was employed, we followed the same pre-processing steps, which, in our
case, yielded 1740 training samples with resolution of 256x256. Our model is trained using 24
discriminators and Adam optimizer with the same hyperparameters as for CIFAR-10 and CelebA
previously described experiments. In Figure 18 we show generator’s samples after 288 training
epochs. One epoch corresponds to updating over 27 minibatches of size 64.

Figure 18: Cats generated using 24 discriminators after 288 training epochs.

3https://www.kaggle.com/crawford/cat-dataset
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F - INCREASING NUMBER OF RANDOM PROJECTIONS

In this experiment we illustrate and confirm the results introduced in (Neyshabur et al., 2017), showing
the effect of using an increasing number of random projections to train a GAN. We trained models
using average loss minimization with 1 to 6 discriminators on the CelebA dataset for 15 epochs.
Samples from the generator obtained in the last epoch are shown in Fig. 19. Generated samples are
closer to real data as the number of random projections (and discriminators, consequently) increases.

(a) AVG - 1 discriminator

(b) AVG - 2 discriminators

(c) AVG - 3 discriminators

(d) AVG - 4 discriminators

(e) AVG - 5 discriminators

(f) AVG - 6 discriminators

Figure 19: Models trained with AVG during 15 epochs using an increasing number of random
projections and discriminators.
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G - ILLUSTRATION OF INTERACTION BETWEEN HYPERVOLUME AND ADOPTED
NADIR POINT ADAPTATION SCHEME

Consider a two-objectives problem, with lt1 > 0 and lt2 > 0 corresponding to each of the losses we
want to minimize, at iteration t. We present in Figures 20 and 21 an illustrative example of the effect
of the adaptation scheme adopted for η, as described in Section 4.

Figure 20 describes the initialization state. Since lt1 and lt2 will be high at t = 0, and, following
the adaptation rule presented in previous sections, ηt = δmax{lt1, lt2}, for a slack δ > 0, the
difference ηt − max{lt1, lt2} will be high. In contrast, after T updates, as described in Figure 21,
ηt = δmax{lt1, lt2} will be smaller, since losses are now closer to 0.

If no adaptation is performed and η is kept unchanged throughout training, as represented in red in
Figure 21, ηT − lT1 ≈ ηT − lT2 for a large enough T , which will end up assigning similar weights
to gradients provided by the different losses, defeating the purpose of employing hypervolume
maximization rather than optimizing for the average loss.

The employed adaptation scheme thus keeps the gradient weighting relevant even when losses become
low. Moreover, this effect will be more aggressive as training progresses, assigning more gradient
importance to the higher losses, since ηT −max{lT1 , lT2 } < η0 −max{l01, l02}.

l1

l2

l01

l02

η∗

η0

η0

η0 −max{l01, l02}

T

Figure 20: Losses and nadir point at begin-
ning of training.

l1

l2

lT1

lT2

η∗

ηT

ηT

ηT −max{lT1 , lT2 }

η0

η0 η∗

η0 −max{lT1 , l
T
2 }

Figure 21: Losses and nadir point at t = T ,
and nadir point at t = 0 (in red).
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H - WALL-CLOCK TIME FOR REACHING BEST FID DURING TRAINING ON
MNIST
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Figure 22: Minimum FID during training. X-axis is in minutes. The blue dot is intended to highlight
the moment during training when the minimum FID was reached.
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