
Pruning at a Glance: A Structured Class-Blind
Pruning Technique for Model Compression

Abdullah Salama, Oleksiy Ostapenko, Moin Nabi, Tassilo Klein
SAP Machine Learning Research

{abdullah.salama, oleksiy.ostapenko, m.nabi, tassilo.klein}@sap.com

Abstract

High performance of deep learning models typically comes at cost of considerable
model size and computation time. These factors limit applicability for deployment
on memory and battery constraint devices such as mobile phones or embedded
systems. In this work we propose a novel pruning technique that eliminates entire
filters and neurons according to their relative L1-norm as compared to the rest of the
network, yielding more compression and decreased redundancy in the parameters.
The resulting network is non-sparse, however, much more compact and requires
no special infrastructure for its deployment. We prove the viability of our method
by achieving 97.4%, 47.8% and 53% compression of LeNet-5, ResNet-56 and
ResNet-110 respectively, exceeding state-of-the-art compression results reported
on ResNet without losing any performance compared to the baseline. Our approach
does not only exhibit good performance, but is also easy to implement on many
architectures.

1 Introduction

While deep learning models have become the method of choice for a multitude of applications, their
training requires a large number of parameters and extensive computational costs (energy, memory
footprint, inference time). This limits their deployment on storage and battery constraint devices,
such as mobile phones and embedded systems. To compress deep learning models without loss in
accuracy, previous work proposed pruning weights by optimizing network’s complexity using second
order derivative information [2, 5]. While second order derivative introduces a high computational
overhead, [8, 10] explored low rank approximations to reduce the size of the weight tensors.

Another line of work [4, 15], proposed to prune individual layer weights with the lowest absolute value
(nonstructural sparsification of layer weights). [3] followed the same strategy while incorporating
quantization and Huffman coding to further boost compression. While the aforementioned methods
considered every layer independently, [13] proposed to prune the network weights in a class-blind
manner, e.g. individual layer weights are pruned according to their magnitude as compared to all
weights in the network.

Noteworthy, all approaches that prune weights non-structurally, generally result in high sparsity
models that require dedicated hardware and software. Structured pruning alleviates this by removing
whole filters or neurons, producing a non-sparse compressed model. In this regard, [12] proposed
channel-wise pruning according to the L1-norm of the corresponding filter. [16] learned a compact
model based on learning structured sparsity of different parameters. A data-free algorithm was
implemented to remove redundant neurons iteratively on fully connected layers in [14]. In [7],
connections leading to weak activations were pruned. Finally, [17] pruned neurons by measuring
their importance with respect to the penultimate layer. Generally, in structured pruning, each layer is
pruned separately, which requires calculation of layer importance before training.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

This work features two key components: a) Blindness: all layers are considered simultaneously;
blind pruning was first introduced by [13] to prune individual weights; b) Structured Pruning:
removal of entire filters instead of individual weights. To the best of our knowledge, we are the first
to use these two components together to prune filters based on their relative L1-norm compared to the
sum of all filters’ L1-norms across the network, instead of pruning filters according to their L1-norm
within the layer [12], inducing a global importance score for each filter. The contribution of this
paper is two-fold: i) Proposing a structured class-blind pruning technique to compress the network by
removing whole filters and neurons, which results in a compact non-sparse network with the same
baseline performance. ii) Introducing a visualization of global filter importance to devise the pruning
percentage of each layer.

As a result, the proposed approach achieves higher compression gains with higher accuracy compared
to the state-of-the-art results reported on ResNet-56 and ResNet-110 on the CIFAR10 dataset [9].

2 Structured class-blind pruning

Consider a network with a convolutional (conv) layer and a fully connected (fc) layer. We denote
each filter Filteri, where i ∈ [1, F], and F is the total number of filters in the conv layer. Each filter
is a 3D kernel space consisting of channels, where each channel contains 2D kernel weights. For the
fc layer, we denote Wm, a 1-D feature space containing all the weights connected to certain neuron
Neuronm, with m ∈ [1, N] and N denoting the number of neurons. It should be noted that We do
not prune the classification layer.

Each pruning iteration in our algorithm is structured as follows:

Algorithm 1 Pruning procedure
1: for i← 1 to F do . loop over filters of a conv layer
2: L1_conv(i)← sum(|Filteri|) . calculate L1-norm of all channels’ kernel weights
3: norm_conv(i)← L1_conv(i)/size(Filteri) . normalize by filter weights count
4: for m← 1 to N do . loop over Neurons of a fc layer
5: L1_fc(m)← sum(|Wm|) . for each Neuron, calculate L1-norm of incoming weights
6: norm_fc(m)← L1_fc(m)/size(Wm) . normalize by number of weights connected
7: norms← stack(norm_conv, norm_fc) . stack all normalized norms from all layers
8: sorted← sort(norms) . sort ascendingly
9: threshold← perc(sorted, p) . threshold based on a percentage p of sorted norms values

10: for i← 1 to F do
11: if norm_conv(i) < threshold then
12: prune(Filteri) . remove filter if its normalized norm is less than threshold
13: for m← 1 to N do
14: if norm_fc(m) < threshold then
15: prune(Neuronm) . remove neuron if its normalized norm is less than threshold

Importance calculation. Although pre-calculation of filters or layers’ sensitivity to be pruned is not
needed in our method, it can be visualized as part of the pruning criteria. In our algorithm, blindness
implies constructing a hidden importance score, which corresponds to the relative normalized L1-
norm. For instance, the relevant importance for a certain filter in a conv layer w.r.t. all other filters
in all layers is the ratio between the filter’s normalized norm and the sum of all filters’ normalized
norms across the network.

Normalization. As each layer’s filters have different number of kernel weights, we normalize filters’
L1-norms by dividing each over the number of kernel weights corresponding to the filter (Line 3
and 6 as indicated in Algorithm 1). Alternatively without normalization, filters with a higher number
of kernel weights would have higher probabilities of higher L1-norms, hence lower probability to get
pruned.

Retraining process. Pruning without further adaption, results in performance loss. Therefore, in
order to regain base performance, it is necessary for the model to be retrained. To this end, we apply
an iterative pruning schedule that alternates between pruning and retraining. This is conducted until a
maximum compression is reached without losing the base accuracy.

2

Method Error% Par.%

R
es

N
et

-5
6 Baseline 6.96

Li et al. [12]-A 6.90 9.40
Li et al. [12]-B 6.94 13.70
NISP[17] 6.99 42.60
Ours 6.88 47.86

R
es

N
et

-1
10 Baseline 6.47

Li et al. [12]-A 6.45 2.30
Li et al. [12]-B 6.70 32.40
NISP[17] 6.65 43.25
Ours 6.44 53.06

Table 1: Compression Benchmark Results. Er-
ror% percentage for different percentage of pa-
rameters pruned (Par.%)

Method Error% Par.% E.Par.%
Baseline 0.80

Non-Structured 0.77 93.04 86.08
Non-Blind 0.76 89.80 89.80

Ours-Oneshot 0.80 96.06 96.06
Ours 0.75 97.40 97.40

Han et al. [4] 0.77 92.00 84.00
Srinivas et al. [15] 0.81 95.84 91.68

Han et al. [3] 0.74 97.45 -

.

Table 2: Results on LeNet-5. Error% percentage for differ-
ent percentage of parameters pruned (Par.%); "E.Par%" is the
effective pruning percentage after adding the extra indices’
storage for non-structured pruning as studied by [1]

3 Experiment

In order to assess the efficacy of the proposed method, we evaluate the performance of our technique
on a set of different networks: first, LeNet-5 on MNIST [11]; second, ResNet-56 and ResNet-110
([6]) on CIFAR-10 [9]. We use identical training settings as [6], after pruning we retrain with learning
rate of 0.05.

For ResNet, when a filter is pruned, the corresponding batch-normalization weight and bias applied
on that filter are pruned accordingly. After all pruning iterations are finished, a new model with the
remaining number of parameters is created.

We report compression results on the existing benchmark [12, 17]. As shown in Table 1, we
outperform the state-of-the-art compression results reported by [17] on both ResNet-56 and ResNet-
110 with a lower classification error even compared to the baseline.

In Table 2, while using one-shot pruning, the influence of our method’s different components;
structured pruning and blindness, is analyzed by removing a component each test, resulting in:
i) Non-Structured - pruning applied on weights separately. ii) Non-Blind - every layer is pruned
individually. Then, the effect of the pruning strategy on the method with all its components is
analyzed by comparing: i) Ours-Oneshot - using one-shot pruning and ii) Ours - using iterative
pruning.

By comparing the previous versions that are using one-shot pruning, our method has less number of
parameters compared to the other versions; ("Non-Structured" and "Non-Blind").

Finally, applying pruning iteratively is superior to one-shot pruning. We also show that our method per-
forms better than previously mentioned non-structured weight pruning techniques [4, 15]. Proposed
structured class-blind pruning offers comparable performance as [3], without requiring dedicated
hardware and software to realize compression.

4 Conclusion

We presented a novel structured pruning method to compress neural networks without losing accuracy.
By pruning layers simultaneously instead of looking at each layer individually, our method combines
all filters and output features of all layers and prunes them according to a global threshold. We have
surpassed state-of-the-art compression results reported on ResNet-56 and ResNet-110 on CIFAR-10
[17], compressing more than 47% and 53% respectively. Also, we showed that only 11K parameters
are sufficient to exceed the baseline performance on LeNet-5, compressing more than 97%. To realize
the advantages of our method, no customized hardware or libraries are needed. It is worth to say
that due to removing whole filters and neurons, the pruning percentage reflects the effective model
compression percentage. For the future work, we are dedicated to proving the applicability of our
method on several different architectures and datasets. Hence, we plan to experiment on VGG-16,
ResNet on ImageNet and/or other comparable architectures.

3

References
[1] M. D. Collins and P. Kohli. Memory bounded deep convolutional networks. CoRR,

abs/1412.1442, 2014. URL http://arxiv.org/abs/1412.1442.

[2] Y. L. Cun, J. S. Denker, and S. A. Solla. Advances in neural information processing systems
2. chapter Optimal Brain Damage, pages 598–605. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990. ISBN 1-55860-100-7. URL http://dl.acm.org/citation.
cfm?id=109230.109298.

[3] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015. URL
http://arxiv.org/abs/1510.00149.

[4] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient
neural networks. CoRR, abs/1506.02626, 2015. URL http://arxiv.org/abs/1506.02626.

[5] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems 5, [NIPS Conference], pages
164–171, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1-55860-
274-7. URL http://dl.acm.org/citation.cfm?id=645753.668069.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[7] H. Hu, R. Peng, Y. Tai, and C. Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. CoRR, abs/1607.03250, 2016. URL http:
//arxiv.org/abs/1607.03250.

[8] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional
neural networks for fast and low power mobile applications. CoRR, abs/1511.06530, 2015.
URL http://arxiv.org/abs/1511.06530.

[9] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

[10] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. Speeding-up convolu-
tional neural networks using fine-tuned cp-decomposition. CoRR, abs/1412.6553, 2014. URL
http://arxiv.org/abs/1412.6553.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi:
10.1109/5.726791.

[12] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
CoRR, abs/1608.08710, 2017. URL http://arxiv.org/abs/1608.08710.

[13] A. See, M. Luong, and C. D. Manning. Compression of neural machine translation models via
pruning. CoRR, abs/1606.09274, 2016. URL http://arxiv.org/abs/1606.09274.

[14] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. CoRR,
abs/1507.06149, 2015. URL http://arxiv.org/abs/1507.06149.

[15] S. Srinivas, A. Subramanya, and R. V. Babu. Training sparse neural networks. CoRR,
abs/1611.06694, 2016. URL http://arxiv.org/abs/1611.06694.

[16] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural
networks. CoRR, abs/1608.03665, 2016. URL http://arxiv.org/abs/1608.03665.

[17] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, and L. S. Davis. NISP:
pruning networks using neuron importance score propagation. CoRR, abs/1711.05908, 2018.
URL http://arxiv.org/abs/1711.05908.

4

http://arxiv.org/abs/1412.1442
http://dl.acm.org/citation.cfm?id=109230.109298
http://dl.acm.org/citation.cfm?id=109230.109298
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://dl.acm.org/citation.cfm?id=645753.668069
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1606.09274
http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1611.06694
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1711.05908

	Introduction
	Structured class-blind pruning
	Experiment
	Conclusion

