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Abstract

Deep learning is currently playing a crucial role toward higher levels of artificial
intelligence. This paradigm allows neural networks to learn complex and abstract
representations, that are progressively obtained by combining simpler ones. Nev-
ertheless, the internal "black-box" representations automatically discovered by
current neural architectures often suffer from a lack of interpretability, making of
primary interest the study of explainable machine learning techniques.
This paper summarizes our recent efforts to develop a more interpretable neural
model for directly processing speech from the raw waveform. In particular, we
propose SincNet, a novel Convolutional Neural Network (CNN) that encourages
the first layer to discover more meaningful filters by exploiting parametrized sinc
functions. In contrast to standard CNNs, which learn all the elements of each
filter, only low and high cutoff frequencies of band-pass filters are directly learned
from data. This inductive bias offers a very compact way to derive a customized
filter-bank front-end, that only depends on some parameters with a clear physical
meaning. Our experiments, conducted on both speaker and speech recognition,
show that the proposed architecture converges faster, performs better, and is more
interpretable than standard CNNs.

1 Introduction

Deep learning has recently contributed to achieving unprecedented performance levels in numerous
tasks, mainly thanks to the progressive maturation of supervised learning techniques [1]. The
increased discrimination power of modern neural networks, however, is often obtained at the cost of a
reduced interpretability of the model. Modern end-to-end systems, whose popularity is increasing in
many fields such as speech recognition [2, 3, 4], often discover "black-box" internal representations
that make sense for the machine but are arguably difficult to interpret by humans. The remarkable
sensitivity of current neural networks toward adversarial examples [5], for instance, not only highlights
how superficial the discovered representations could be but also raises crucial concerns about our
capabilities to really interpret neural models. Such a lack of interpretability can be a major bottleneck
for the development of future deep learning techniques. Having more meaningful insights on the
logic behind network predictions and errors, in fact, can help us to better trust, understand, and
diagnose our model, eventually guiding our efforts toward more robust deep learning. In recent years,
a growing interest has been thus devoted to the development of interpretable machine learning [6, 7],
as witnessed by the numerous works in the field, ranging from visualization [8, 9], diagnosis of DNNs
[10], explanatory graphs [11], and explainable models [12], just to name a few.

Interpretability is a major concern for audio and speech applications as well [13]. CNNs and Recurrent
Neural Networks (RNNs) are the most popular architectures nowadays used in speech and speaker
recognition [2]. RNN can be employed to capture the temporal evolution of the speech signal
[14, 15, 16, 17], while CNNs, thanks to their weight sharing, local filters, and pooling networks
are normally employed to extract robust and invariant representations [18]. Even though standard
hand-crafted features such as FBANK and Mel-Frequency Cepstral Coefficients (MFCC) are still
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employed in many state-of-the-art systems [19, 20, 21], directly feeding a CNN with spectrogram
bins [22, 23, 24] or even with raw audio samples [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]
is an approach of increasing popularity. The engineered features, in fact, are originally designed
from perceptual evidence and there are no guarantees that such representations are optimal for all
speech-related tasks. Standard features, for instance, smooth the speech spectrum, possibly hindering
the extraction of crucial narrow-band speaker characteristics such as pitch and formants. Conversely,
directly processing the raw waveform allows the network to learn low-level representations that are
possibly more customized on each specific task.

The downside of raw speech processing lies in the possible lack of interpretability of the filter bank
learned in the first convolutional layer. According to us, the latter layer is arguably the most critical
part of current waveform-based CNNs. This layer deals with high-dimensional inputs and is also
more affected by vanishing gradient problems, especially when employing very deep architectures.
As will be discussed in this paper, the filters learned by CNNs often take noisy and incongruous
multi-band shapes, especially when few training samples are available. These filters certainly make
some sense for the neural network, but they do not appeal to human intuition, nor appear to lead to an
efficient representation of the speech signal.

To help the CNNs discover more meaningful filters, this work proposes to add some constraints on
their shape. Compared to standard CNNs, where the filter-bank characteristics depend on several
parameters (each element of the filter vector is directly learned), SincNet convolves the waveform
with a set of parametrized sinc functions that implement band-pass filters [38]. The low and high
cutoff frequencies are the only parameters of the filter learned from data. This solution still offers
considerable flexibility but forces the network to focus on high-level tunable parameters that have
a clear physical meaning. Our experimental validation has considered both speaker and speech
recognition tasks. Speaker recognition is carried out on TIMIT [39] and Librispeech [40] datasets
under challenging but realistic conditions, characterized by minimal training data (i.e., 12-15 seconds
for each speaker) and short test sentences (lasting from 2 to 6 seconds). With the purpose of validating
SincNet in both clean and noisy conditions, speech recognition experiments are conducted on both
the TIMIT and DIRHA dataset [41, 42]. Results show that the proposed SincNet converges faster,
achieves better performance, and is more interpretable than a more standard CNN.

The remainder of the paper is organized as follows. The SincNet architecture is described in Sec. 2.
Sec. 3 discusses the relation to prior work. The experimental activity on both speaker and speech
recognition is outlined in Sec. 4. Finally, Sec. 5 discusses our conclusions.

2 The SincNet Architecture

The first layer of a standard CNN performs a set of time-domain convolutions between the input
waveform and some Finite Impulse Response (FIR) filters [43]. Each convolution is defined as
follows1:

y[n] = x[n] ∗ h[n] =
L−1∑
l=0

x[l] · h[n− l] (1)

where x[n] is a chunk of the speech signal, h[n] is the filter of length L, and y[n] is the filtered output.
In standard CNNs, all the L elements (taps) of each filter are learned from data. Conversely, the
proposed SincNet (depicted in Fig. 1) performs the convolution with a predefined function g that
depends on few learnable parameters θ only, as highlighted in the following equation:

y[n] = x[n] ∗ g[n, θ] (2)

A reasonable choice, inspired by standard filtering in digital signal processing, is to define g such
that a filter-bank composed of rectangular bandpass filters is employed. In the frequency domain, the
magnitude of a generic bandpass filter can be written as the difference between two low-pass filters:

G[f, f1, f2] = rect
( f

2f2

)
− rect

( f

2f1

)
, (3)

1Most deep learning toolkits actually compute correlation rather than convolution. The obtained flipped
(mirrored) filters do not affect the results.

2



Pooling

Dropout

CNN/DNN layers

Softmax

Speaker Classification

Speech Waveform

Layer Norm

Leaky ReLU

Figure 1: Architecture of SincNet.

where f1 and f2 are the learned low and high cutoff frequencies, and rect(·) is the rectangular
function in the magnitude frequency domain2. After returning to the time domain (using the inverse
Fourier transform [43]), the reference function g becomes:

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n), (4)
where the sinc function is defined as sinc(x) = sin(x)/x.

The cut-off frequencies can be initialized randomly in the range [0, fs/2], where fs represents the
sampling frequency of the input signal. As an alternative, filters can be initialized with the cutoff
frequencies of the mel-scale filter-bank, which has the advantage of directly allocating more filters in
the lower part of the spectrum, where crucial speech information is located. To ensure f1 ≥ 0 and
f2 ≥ f1, the previous equation is actually fed by the following parameters:

fabs1 = |f1| (5)

fabs2 = f1 + |f2 − f1| (6)

Note that no bounds have been imposed to force f2 to be smaller than the Nyquist frequency, since
we observed that this constraint is naturally fulfilled during training. Moreover, the gain of each filter
is not learned at this level. This parameter is managed by the subsequent layers, which can easily
attribute more or less importance to each filter output.

An ideal bandpass filter (i.e., a filter where the passband is perfectly flat and the attenuation in the
stopband is infinite) requires an infinite number of elements L. Any truncation of g thus inevitably
leads to an approximation of the ideal filter, characterized by ripples in the passband and limited
attenuation in the stopband. A popular solution to mitigate this issue is windowing [43]. Windowing

2The phase of the rect(·) function is considered to be linear.
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Figure 2: Examples of filters learned by a standard CNN and by the proposed SincNet (using the
Librispeech corpus on a speaker-id task). The first row reports the filters in the time domain, while
the second one shows their magnitude frequency response.

is performed by multiplying the truncated function g with a window function w, which aims to
smooth out the abrupt discontinuities at the ends of g:

gw[n, f1, f2] = g[n, f1, f2] · w[n]. (7)

This paper uses the popular Hamming window [44], defined as follows:

w[n] = 0.54− 0.46 · cos
(2πn
L

)
. (8)

The Hamming window is particularly suitable to achieve high frequency selectivity [44]. However,
results not reported here reveal no significant performance difference when adopting other functions,
such as Hann, Blackman, and Kaiser windows.

All operations involved in SincNet are fully differentiable and the cutoff frequencies of the filters
can be jointly optimized with other CNN parameters using Stochastic Gradient Descent (SGD) or
other gradient-based optimization routines. As shown in Fig. 1, a standard CNN pipeline (pooling,
normalization, activations, dropout) can be employed after the first sinc-based convolution. Multiple
standard convolutional, fully-connected or recurrent layers [15, 16, 17, 45] can then be stacked
together to finally perform a classification with a softmax classifier.

Fig. 2 shows some examples of filters learned by a standard CNN and by the proposed SincNet for a
speaker identification task trained on Librispeech (the frequency response is plotted between 0 and 4
kHz). As observed in the figures, the standard CNN does not always learn filters with a well-defined
frequency response. In some cases, the frequency response looks noisy (see the first CNN filter),
while in others assuming multi-band shapes (see the third CNN filter). SincNet, instead, is specifically
designed to implement rectangular bandpass filters, leading to more a meaningful filter-bank.

2.1 Model properties

The proposed SincNet has some remarkable properties:

• Fast Convergence: SincNet forces the network to focus only on the filter parameters with
a major impact on performance. The proposed approach actually implements a natural
inductive bias, utilizing knowledge about the filter shape (similar to feature extraction
methods generally deployed on this task) while retaining flexibility to adapt to data. This
prior knowledge makes learning the filter characteristics much easier, helping SincNet to
converge significantly faster to a better solution. Fig. 3 shows the learning curves of SincNet
and CNN obtained in a speaker-id task. These results are achieved on the TIMIT dataset
and highlight a faster decrease of the Frame Error Rate (FER%) when SincNet is used.
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Figure 3: Frame Error Rate (%) obtained on
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Figure 4: Cumulative frequency response of
SincNet and CNN filters on speaker-id.

Moreover, SincNet converges to better performance leading to a FER of 33.0% against a
FER of 37.7% achieved with the CNN baseline.

• Few Parameters: SincNet drastically reduces the number of parameters in the first con-
volutional layer. For instance, if we consider a layer composed of F filters of length L, a
standard CNN employs F · L parameters, against the 2F considered by SincNet. If F = 80
and L = 100, we employ 8k parameters for the CNN and only 160 for SincNet. Moreover,
if we double the filter length L, a standard CNN doubles its parameter count (e.g., we go
from 8k to 16k), while SincNet has an unchanged parameter count (only two parameters
are employed for each filter, regardless its length L). This offers the possibility to derive
very selective filters with many taps, without actually adding parameters to the optimization
problem. Moreover, the compactness of the SincNet architecture makes it suitable in the
few sample regime.

• Computational Efficiency: The proposed function g is symmetric. This means we can
perform convolution in a very efficient way by only considering one side of the filter and
inheriting the results for the other half. This saves 50% of the first-layer computation over a
standard CNN.

• Interpretability: The SincNet feature maps obtained in the first convolutional layer are
definitely more interpretable and human-readable than other approaches. The filter bank, in
fact, only depends on parameters with a clear physical meaning. Fig. 4, for instance, shows
the cumulative frequency response of the filters learned by SincNet and CNN on a speaker-id
task. The cumulative frequency response is obtained by summing up all the discovered
filters and is useful to highlight which frequency bands are covered by the learned filters.
Interestingly, there are three main peaks which clearly stand out from the SincNet plot (see
the red line in the figure). The first one corresponds to the pitch region (the average pitch is
133 Hz for a male and 234 for a female). The second peak (approximately located at 500
Hz) mainly captures first formants, whose average value over the various English vowels
is indeed 500 Hz. Finally, the third peak (ranging from 900 to 1400 Hz) captures some
important second formants, such as the second formant of the vowel /a/, which is located
on average at 1100 Hz. This filter-bank configuration indicates that SincNet has successfully
adapted its characteristics to address speaker identification. Conversely, the standard CNN
does not exhibit such a meaningful pattern: the CNN filters tend to correctly focus on the
lower part of the spectrum, but peaks tuned on first and second formants do not clearly
appear. As one can observe from Fig. 4, the CNN curve stands above the SincNet one.
SincNet, in fact, learns filters that are, on average, more selective than CNN ones, possibly
better capturing narrow-band speaker clues.
Fig. 5 shows the cumulative frequency response of a CNN and SincNet obtained on a noisy
speech recognition task. In this experiment, we have artificially corrupted TIMIT with a
significant quantity of noise in the band between 2.0 and 2.5 kHz (see the spectrogram) and
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Figure 5: Cumulative frequency responses obtained on a speech recognition task trained with a noisy
version of TIMIT. As shown in the spectrogram, noise has been artificially added into the band 2.0-2.5
kHz. Both the CNN and SincNet learn to avoid the noisy band, but SincNet learns it much faster,
after processing only one hour of speech.

we have analyzed how fast the two architectures learn to avoid such a useless band. The
second row of sub-figures compares the CNN and the SincNet at a very early training stage
(i.e., after having processed only one hour of speech in the first epoch), while the last row
shows the cumulative frequency responses after completing the training. From the figures
emerges that both CNN and SincNet have correctly learned to avoid the corrupted band
at end of training, as highlighted by the holes between 2.0 and 2.5 kHz in the cumulative
frequency responses. SincNet, however, learns to avoid such a noisy band much earlier.
In the second row of sub-figures, in fact, SincNet shows a visible valley in the cumulative
spectrum even after processing only one hour of speech, while CNN has only learned to
give more importance to the lower part of the spectrum.

3 Related Work

Several works have recently explored the use of low-level speech representations to process audio
and speech with CNNs. Most prior attempts exploit magnitude spectrogram features [22, 23, 24, 46,
47, 48]. Although spectrograms retain more information than standard hand-crafted features, their
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design still requires careful tuning of some crucial hyper-parameters, such as the duration, overlap,
and typology of the frame window, as well as the number of frequency bins. For this reason, a more
recent trend is to directly learn from raw waveforms, thus completely avoiding any feature extraction
step. This approach has shown promise in speech [25, 26, 27, 28, 29], including emotion tasks [30],
speaker recognition [35], spoofing detection [34], and speech synthesis [31, 32].

Similar to SincNet, some previous works have proposed to add constraints on the CNN filters, for
instance forcing them to work on specific bands [46, 47]. Differently from the proposed approach, the
latter works operate on spectrogram features and still learn all the L elements of the CNN filters. An
idea related to the proposed method has been recently explored in [48], where a set of parameterized
Gaussian filters are employed. This approach operates on the spectrogram domain, while SincNet
directly considers the raw waveform in the time domain.

Some valuable works have recently proposed theoretical and experimental frameworks to analyze
CNNs [49, 50]. In particular, [51, 35, 52] feed a standard CNN with raw audio samples and analyze
the filters learned in the first layer on both speech recognition and speaker identification tasks. The
authors highlight some interesting properties emerged from analyzing the cumulative frequency
response and propose a spectral dictionary interpretation of the learned filters. Similarly to our
findings, the latter works noticed that the filters tend to focus more on the lower part of the spectrum
and they can sometimes highlight some peaks that likely corresponds to the fundamental frequency.
In this work, we argue that all of these interesting properties can be observed more clearly and at an
earlier training stage with SincNet.

This paper extends our previous studies on the SincNet [38]. To the best of our knowledge, this paper
is the first that shows the effectiveness of the proposed SincNet in a speech recognition application.
Moreover, this work not only considers standard close-talking speech recognition, but it also extends
the validation of SincNet to distant-talking speech recognition [53, 54, 55].

4 Results

The proposed SincNet has been evaluated on both speech and speaker recognition using different
corpora. This work considers a challenging but realistic speaker recognition scenario: for all the
adopted corpora, we only employed 12-15 seconds of training material for each speaker, and we tested
the system performance on short sentences lasting from 2 to 6 seconds. In the spirit of reproducible
research, we release the code of SincNet for speaker identification3 and speech recognition4 (under
the PyTorch-Kaldi project [56]). More details on the adopted datasets as well as on the SincNet and
baseline setups can found in the appendix.

4.1 Speaker Recognition

Table 1 reports the Classification Error Rates (CER%) achieved on a speaker-id task. The table
shows that SincNet outperforms other systems on both TIMIT (462 speakers) and Librispeech (2484
speakers) datasets. The gap with a standard CNN fed by raw waveform is larger on TIMIT, confirming
the effectiveness of SincNet when few training data are available. Although this gap is reduced when
LibriSpeech is used, we still observe a 4% relative improvement that is also obtained with faster
convergence (1200 vs 1800 epochs). Standard FBANKs provide results comparable to SincNet only
on TIMIT, but are significantly worse than our architecture when using Librispech. With few training
data, the network cannot discover filters that are much better than that of FBANKs, but with more
data a customized filter-bank is learned and exploited to improve the performance.

Table 2 extends our validation to speaker verification, reporting the Equal Error Rate (EER%)
achieved with Librispeech. All DNN models show promising performance, leading to an EER
lower than 1% in all cases. The table also highlights that SincNet outperforms the other models,
showing a relative performance improvement of about 11% over the standard CNN model. Note
that the speaker verification system is derived from the speaker-id neural network using the d-vector
technique. The d-vector [19, 24] is extracted from the last hidden layer of the speaker-id network. A
speaker-dependent d-vector is computed and stored for each enrollment speaker by performing an L2
normalization and averaging all the d-vectors of the different speech chunks. The cosine distance

3 at https://github.com/mravanelli/SincNet/.
4 at https://github.com/mravanelli/pytorch-kaldi/.
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TIMIT LibriSpeech

DNN-MFCC 0.99 2.02
CNN-FBANK 0.86 1.55
CNN-Raw 1.65 1.00
SincNet 0.85 0.96

Table 1: Classification Error Rate (CER%) of speaker
identification systems trained on TIMIT (462 spks) and
Librispeech (2484 spks) datasets. SincNet outperforms
the competing alternatives.

EER(%)

DNN-MFCC 0.88
CNN-FBANK 0.60
CNN-Raw 0.58
SINCNET 0.51

Table 2: Speaker Verification Equal
Error Rate (EER%) on Librispeech
datasets over different systems. SincNet
outperforms the competing alternatives.

between enrolment and test d-vectors is then calculated, and a threshold is then applied on it to reject
or accept the speaker. Ten utterances from impostors were randomly selected for each sentence
coming from a genuine speaker. To assess our approach on a standard open-set speaker verification
task, all the enrolment and test utterances were taken from a speaker pool different from that used for
training the speaker-id DNN.

For the sake of completeness, experiments have also been conducted with standard i-vectors. Although
a detailed comparison with this technology is out of the scope of this paper, it is worth noting that our
best i-vector system achieves an EER=1.1%, rather far from what is achieved with DNN systems. It
is well-known in the literature that i-vectors provide competitive performance when more training
material is used for each speaker and when longer test sentences are employed [57, 58, 59]. Under
the challenging conditions faced in this work, neural networks achieve better generalization.

4.2 Speech Recognition

Tab. 3 reports the speech recognition performance obtained by CNN and SincNet using the TIMIT
and the DIRHA dataset [41]. To ensure a more accurate comparison between the architectures, five
experiments varying the initialization seeds were conducted for each model and corpus. Table 3 thus
reports the average speech recognition performance. Standard deviations, not reported here, range
between 0.15 and 0.2 for all the experiments.

TIMIT DIRHA

CNN-FBANK 18.3 40.1
CNN-Raw waveform 18.3 40.5
SincNet-Raw waveform 18.0 38.2

Table 3: Speech recognition performance obtained on the TIMIT and DIRHA datasets.

For all the datasets, SincNet outperforms CNNs trained on both standard FBANK and raw waveforms.
The latter result confirms the effectiveness of SincNet not only in close-talking scenarios but also
in challenging noisy conditions characterized by the presence of both noise and reverberation. As
emerged in Sec.2, SincNet is able to effectively tune its filter-bank front-end to better address the
characteristics of the noise.

5 Conclusions and Future Work

This paper proposed SincNet, a neural architecture for directly processing waveform audio. Our
model, inspired by the way filtering is conducted in digital signal processing, imposes constraints
on the filter shapes through efficient parameterization. SincNet has been extensively evaluated on
challenging speaker and speech recognition tasks, consistently showing some performance benefits.

Beyond performance improvements, SincNet also significantly improves convergence speed over a
standard CNN, is more computationally efficient due to the exploitation of filter symmetry, and it is
more interpretable than standard black-box models. Analysis of the SincNet filters, in fact, revealed
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that the learned filter-bank is tuned to the specific task addressed by the neural network. In future
work, we would like to evaluate SincNet on other popular speaker recognition tasks, such as VoxCeleb.
Inspired by the promising results obtained in this paper, in the future we will explore the use of
SincNet for supervised and unsupervised speaker/environmental adaptation. Moreover, although this
study targeted speaker and speech recognition only, we believe that the proposed approach defines a
general paradigm to process time-series and can be applied in numerous other fields.

Acknowledgement

This research was enabled in part by support provided by Calcul Québec and Compute Canada.

References
[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[2] D. Yu and L. Deng. Automatic Speech Recognition - A Deep Learning Approach. Springer, 2015.

[3] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio. End-to-end attention-based large
vocabulary speech recognition. In Proc. of ICASSP, pages 4945–4949, 2016.

[4] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proc.
of ICML, pages 1764–1772, 2014.

[5] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Proc.of
ICLR, 2015.

[6] C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub,
2018.

[7] S. Chakraborty et al. Interpretability of deep learning models: A survey of results. In Proc. of SmartWorld,
2017.

[8] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. of ECCV,
2014.

[9] Q.-S. Zhang and S.-C. Zhu. Visual interpretability for deep learning: a survey. Frontiers of Information
Technology & Electronic Engineering, 19(1):27–39, Jan 2018.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?": Explaining the predictions of any
classifier. In Proc. of ACM SIGKDD, pages 1135–1144, 2016.

[11] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S.-C. Zhu. Interpreting CNN Knowledge via an Explanatory
Graph. In Proc. of AAAI, 2018.

[12] S. Sabour, N. Frosst, and G. E Hinton. Dynamic routing between capsules. In Proc. of NIPS, pages
3856–3866. 2017.

[13] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek. Interpreting and explaining deep
neural networks for classification of audio signals. CoRR, abs/1807.03418, 2018.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
November 1997.

[15] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. In Proc. of NIPS, 2014.

[16] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Improving speech recognition by revising gated
recurrent units. In Proc. of Interspeech, 2017.

[17] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Light gated recurrent units for speech recognition.
IEEE Transactions on Emerging Topics in Computational Intelligence, 2(2):92–102, April 2018.

[18] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with gradient-based learning. In Shape,
Contour and Grouping in Computer Vision, London, UK, UK, 1999. Springer-Verlag.

[19] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez. Deep neural networks for
small footprint text-dependent speaker verification. In Proc. of ICASSP, pages 4052–4056, 2014.

9



[20] F. Richardson, D. A. Reynolds, and N. Dehak. A unified deep neural network for speaker and language
recognition. In Proc. of Interspeech, pages 1146–1150, 2015.

[21] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur. Deep neural network embeddings for
text-independent speaker verification. In Proc. of Interspeech, pages 999–1003, 2017.

[22] C. Zhang, K. Koishida, and J. Hansen. Text-independent speaker verification based on triplet convolutional
neural network embeddings. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 26(9):1633–1644, 2018.

[23] G. Bhattacharya, J. Alam, and P. Kenny. Deep speaker embeddings for short-duration speaker verification.
In Proc. of Interspeech, pages 1517–1521, 2017.

[24] A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb: a large-scale speaker identification dataset. In Proc.
of Interspech, 2017.

[25] D. Palaz, M. Magimai-Doss, and R. Collobert. Analysis of CNN-based speech recognition system using
raw speech as input. In Proc. of Interspeech, 2015.

[26] T. N. Sainath, R. J. Weiss, A. W. Senior, K. W. Wilson, and O. Vinyals. Learning the speech front-end with
raw waveform CLDNNs. In Proc. of Interspeech, 2015.

[27] Y. Hoshen, R. Weiss, and K. W. Wilson. Speech acoustic modeling from raw multichannel waveforms. In
Proc. of ICASSP, 2015.

[28] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bacchiani, and A. Senior. Speaker localization
and microphone spacing invariant acoustic modeling from raw multichannel waveforms. In Proc. of ASRU,
2015.

[29] Z. Tüske, P. Golik, R. Schlüter, and H. Ney. Acoustic modeling with deep neural networks using raw time
signal for LVCSR. In Proc. of Interspeech, 2014.

[30] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. Schuller, and S. Zafeiriou. Adieu
features? end-to-end speech emotion recognition using a deep convolutional recurrent network. In Proc. of
ICASSP, pages 5200–5204, 2016.

[31] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In Arxiv, 2016.

[32] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C. Courville, and Y. Bengio. Samplernn:
An unconditional end-to-end neural audio generation model. CoRR, abs/1612.07837, 2016.

[33] P. Ghahremani, V. Manohar, D. Povey, and S. Khudanpur. Acoustic modelling from the signal domain
using CNNs. In Proc. of Interspeech, 2016.

[34] H. Dinkel, N. Chen, Y. Qian, and K. Yu. End-to-end spoofing detection with raw waveform CLDNNS.
Proc. of ICASSP, 2017.

[35] H. Muckenhirn, M. Magimai-Doss, and S. Marcel. Towards directly modeling raw speech signal for
speaker verification using CNNs. In Proc. of ICASSP, 2018.

[36] J.-W. Jung, H.-S. Heo, I.-H. Yang, H.-J. Shim, , and H.-J. Yu. A complete end-to-end speaker verification
system using deep neural networks: From raw signals to verification result. In Proc. of ICASSP, 2018.

[37] J.-W. Jung, H.-S. Heo, I.-H. Yang, H.-J. Shim, and H.-J. Yu. Avoiding Speaker Overfitting in End-to-End
DNNs using Raw Waveform for Text-Independent Speaker Verification. In Proc. of Interspeech, 2018.

[38] M. Ravanelli and Y. Bengio. Speaker Recognition from raw waveform with SincNet. In Proc. of SLT,
2018.

[39] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren. DARPA TIMIT
Acoustic Phonetic Continuous Speech Corpus CDROM, 1993.

[40] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR corpus based on public domain
audio books. In Proc. of ICASSP, pages 5206–5210, 2015.

[41] M. Ravanelli, L. Cristoforetti, R. Gretter, M. Pellin, A. Sosi, and M. Omologo. The DIRHA-ENGLISH
corpus and related tasks for distant-speech recognition in domestic environments. In Proc. of ASRU 2015,
pages 275–282.

10



[42] M. Ravanelli, P. Svaizer, and M. Omologo. Realistic multi-microphone data simulation for distant speech
recognition. In Proc. of Interspeech, 2016.

[43] L. R. Rabiner and R. W. Schafer. Theory and Applications of Digital Speech Processing. Prentice Hall, NJ,
2011.

[44] S. K. Mitra. Digital Signal Processing. McGraw-Hill, 2005.

[45] M. Ravanelli, D. Serdyuk, and Y. Bengio. Twin regularization for online speech recognition. In Proc. of
Interspeech, 2018.

[46] T. N. Sainath, B. Kingsbury, A. R. Mohamed, and B. Ramabhadran. Learning filter banks within a deep
neural network framework. In Proc. of ASRU, pages 297–302, 2013.

[47] H. Yu, Z. H. Tan, Y. Zhang, Z. Ma, and J. Guo. DNN Filter Bank Cepstral Coefficients for Spoofing
Detection. IEEE Access, 5:4779–4787, 2017.

[48] H. Seki, K. Yamamoto, and S. Nakagawa. A deep neural network integrated with filterbank learning for
speech recognition. In Proc. of ICASSP, pages 5480–5484, 2017.

[49] V. Papyan, Y. Romano, and M. Elad. Convolutional neural networks analyzed via convolutional sparse
coding. Journal of Machine Learning Research, 18:83:1–83:52, 2017.

[50] S. Mallat. Understanding deep convolutional networks. CoRR, abs/1601.04920, 2016.

[51] D. Palaz and R. Magimai-Doss, M.and Collobert. End-to-end acoustic modeling using convolutional neural
networks for automatic speech recognition. 2016.

[52] H. Muckenhirn, M. Magimai-Doss, and S. Marcel. On Learning Vocal Tract System Related Speaker
Discriminative Information from Raw Signal Using CNNs. In Proc. of Interspeech, 2018.

[53] M. Ravanelli. Deep learning for Distant Speech Recognition. PhD Thesis, Unitn, 2017.

[54] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. A network of deep neural networks for distant
speech recognition. In Proc. of ICASSP, pages 4880–4884, 2017.

[55] M. Ravanelli and M. Omologo. Contaminated speech training methods for robust DNN-HMM distant
speech recognition. In Proc. of Interspeech 2015, pages 756–760.

[56] M. Ravanelli, T. Parcollet, and Y. Bengio. The PyTorch-Kaldi Speech Recognition Toolkit. In
arXiv:1811.07453, 2018.

[57] A. K. Sarkar, D Matrouf, P.M. Bousquet, and J.F. Bonastre. Study of the effect of i-vector modeling on
short and mismatch utterance duration for speaker verification. In Proc. of Interspeech, pages 2662–2665,
2012.

[58] R. Travadi, M. Van Segbroeck, and S. Narayanan. Modified-prior i-Vector Estimation for Language
Identification of Short Duration Utterances. In Proc. of Interspeech, pages 3037–3041, 2014.

[59] A. Kanagasundaram, R. Vogt, D. Dean, S. Sridharan, and M. Mason. i-vector based speaker recognition on
short utterances. In Proc. of Interspeech, pages 2341–2344, 2011.

[60] M. Matassoni, R. Astudillo, A. Katsamanis, and M. Ravanelli. The DIRHA-GRID corpus: baseline and
tools for multi-room distant speech recognition using distributed microphones. In Proc. of Interspeech
2014, pages 1616–1617.

[61] E. Zwyssig, M. Ravanelli, P. Svaizer, and M. Omologo. A multi-channel corpus for distant-speech
interaction in presence of known interferences. In Proc. of ICASSP 2015, pages 4480–4484.

[62] L. Cristoforetti, M. Ravanelli, M. Omologo, A. Sosi, A. Abad, M. Hagmueller, and P. Maragos. The
DIRHA simulated corpus. In Proc. of LREC 2014, pages 2629–2634.

[63] Douglas P. and J. M. Baker. The design for the wall street journal-based csr corpus. In Proceedings of the
Workshop on Speech and Natural Language, Proc. of HLT, pages 357–362, 1992.

[64] M. Ravanelli, A. Sosi, P. Svaizer, and M. Omologo. Impulse response estimation for robust speech
recognition in a reverberant environment. In Proc. of EUSIPCO 2012.

[65] M. Ravanelli and M. Omologo. On the selection of the impulse responses for distant-speech recognition
based on contaminated speech training. In Proc. of Interspeech 2014, pages 1028–1032.

11



[66] J. Ba, R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

[67] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In Proc. of ICML, pages 448–456, 2015.

[68] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. Batch-normalized joint training for dnn-based distant
speech recognition. In Proc. of SLT, 2016.

[69] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models.
In Proc. of ICML, 2013.

[70] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In
Proc. of AISTATS, pages 249–256, 2010.

[71] D. Povey et al. The Kaldi Speech Recognition Toolkit. In Proc. of ASRU, 2011.

[72] A. Larcher, K. A. Lee, and S. Meignier. An extensible speaker identification sidekit in python. In Proc. of
ICASSP, pages 5095–5099, 2016.

12



Appendix

Corpora

To provide experimental evidence on datasets characterized by different numbers of speakers, this paper considers
the TIMIT (462 spks, train chunk) [39] and Librispeech (2484 spks) [40] corpora. For speaker verification
experiments, non-speech intervals at the beginning and end of each sentence were removed. Moreover, the
Librispeech sentences with internal silences lasting more than 125 ms were split into multiple chunks. To address
text-independent speaker recognition, the calibration sentences of TIMIT (i.e., the utterances with the same text
for all speakers) have been removed. For the latter dataset, five sentences for each speaker were used for training,
while the remaining three were used for test. For the Librispeech corpus, the training and test material have been
randomly selected to exploit 12-15 seconds of training material for each speaker and test sentences lasting 2-6
seconds. To evaluate the performance in a challenging distant-talking scenario, speech recognition experiments
have also considered the DIRHA dataset [41]. This corpus, similarly to the other DIRHA corpora [60, 61], has
been developed in the context of the DIRHA project [62] and is based on WSJ sentences [63] recorded in a
domestic environment. Training is based on contaminating WSJ-5k utterances with realistic impulse responses
[64, 65], while the test phase test phase consists of 409 WSJ sentences recorded by native speakers in a domestic
environment (the average SNR is 10 dB).

SincNet Setup

The waveform of each speech sentence was split into chunks of 200 ms (with 10 ms overlap), which were
fed into the SincNet architecture. The first layer performs sinc-based convolutions as described in Sec. 2,
using 80 filters of length L = 251 samples. The architecture then employs two standard convolutional layers,
both using 60 filters of length 5. Layer normalization [66] was used for both the input samples and for all
convolutional layers (including the SincNet input layer). Next, three fully-connected layers composed of 2048
neurons and normalized with batch normalization [67, 68] were applied. All hidden layers use leaky-ReLU
[69] non-linearities. The parameters of the sinc-layer were initialized using mel-scale cutoff frequencies, while
the rest of the network was initialized with the well-known “Glorot" initialization scheme [70]. Frame-level
speaker and phoneme classifications were obtained by applying a softmax classifier, providing a set of posterior
probabilities over the targets. For speaker-id, a sentence-level classification was simply derived by averaging
the frame predictions and voting for the speaker which maximizes the average posterior. Training used the
RMSprop optimizer, with a learning rate lr = 0.001, α = 0.95, ε = 10−7, and minibatches of size 128. All the
hyper-parameters of the architecture were tuned on TIMIT, then inherited for Librispeech as well. The speaker
verification system was derived from the speaker-id neural network using the d-vector approach [19, 24], which
relies on the output of the last hidden layer and computes the cosine distance between test and the claimed
speaker d-vectors. Ten utterances from impostors were randomly selected for each sentence coming from a
genuine speaker. Note that to assess our approach on a standard open-set speaker-id task, all the impostors were
taken from a speaker pool different from that used for training the speaker-id DNN.

Baseline Setups

We compared SincNet with several alternative systems. First, we considered a standard CNN fed by the raw
waveform. This network is based on the same architecture as SincNet, but replacing the sinc-based convolution
with a standard one.

A comparison with popular hand-crafted features was also performed. To this end, we computed 39 MFCCs (13
static+∆+∆∆) and 40 FBANKs using the Kaldi toolkit [71]. These features, computed every 25 ms with 10
ms overlap, were gathered to form a context window of approximately 200 ms (i.e., a context similar to that of
the considered waveform-based neural network). A CNN was used for FBANK features, while a Multi-Layer
Perceptron (MLP) was used for MFCCs. Note that CNNs exploit local correlation across features and cannot
be effectively used with uncorrelated MFCC features. Layer normalization was used for the FBANK network,
while batch normalization was employed for the MFCC one. The hyper-parameters of these networks were also
tuned using the aforementioned approach.

For speaker verification experiments, we also considered an i-vector baseline. The i-vector system was imple-
mented with the SIDEKIT toolkit [72]. The GMM-UBM model, the Total Variability (TV) matrix, and the
Probabilistic Linear Discriminant Analysis (PLDA) were trained on the Librispeech data (avoiding test and
enrollment sentences). GMM-UBM was composed of 2048 Gaussians, and the rank of the TV and PLDA
eigenvoice matrix was 400. The enrollment and test phase is conducted on Librispeech using the same set of
speech segments used for DNN experiments.
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