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ABSTRACT

This paper proposes a powerful regularization method named ShakeDrop regular-
ization. ShakeDrop is inspired by Shake-Shake regularization that decreases error
rates by disturbing learning. While Shake-Shake can be applied to only ResNeXt
which has multiple branches, ShakeDrop can be applied to not only ResNeXt but
also ResNet, Wide ResNet and PyramidNet in a memory efficient way. Important
and interesting feature of ShakeDrop is that it strongly disturbs learning by multi-
plying even a negative factor to the output of a convolutional layer in the forward
training pass. The effectiveness of ShakeDrop is confirmed by experiments on
CIFAR-10/100 and Tiny ImageNet datasets.

1 INTRODUCTION

Recent advances in generic object recognition have been brought by deep neural networks. After
ResNet (He et al.l 2016) opened the door to very deep CNNs of over a hundred layers by introduc-
ing the residual block, its improvements such as Wide ResNet (Zagoruyko & Komodakis| [2016),
PyramdNet (Han et al.| [2017ajb) and ResNeXt (Xie et al.l 2017) have broken the records of low-
est error rates. On the other hand, in learning, they often suffer from problems such as vanishing
gradients. Hence, regularization methods help to learn and boost the performance of such base net-
work architectures. Stochastic Depth (ResDrop) (Huang et al., 2016) and Shake-Shake (Gastaldi,
2017) are known to be effective regularization methods for ResNet and its improvements. Among
them, Shake-Shake applied to ResNeXt is the one achieving the lowest error rates on CIFAR-10/100
datasets (Gastaldil, 2017)).

Shake-Shake, however, has following two drawbacks. (1) Shake-Shake can be applied to only multi-
branch architectures (i.e., ResNeXt). (2) Shake-Shake is not memory efficient. Both drawbacks
come from the same root. That is, Shake-Shake requires two branches of residual blocks to apply. If
it is true, it is not difficult to conceive its solution: a similar disturbance to Shake-Shake on a single
residual block. It is, however, not trivial to realize it.

The current paper addresses the problem of realizing a similar disturbance to Shake-Shake on a
single residual block, and proposes a powerful regularization method, named ShakeDrop regular-
ization. While the proposed ShakeDrop is inspired by Shake-Shake, the mechanism of disturbing
learning is completely different. ShakeDrop disturbs learning more strongly by multiplying even
a negative factor to the output of a convolutional layer in the forward training pass. In addition, a
different factor from the forward pass is multiplied in the backward training pass. As a byproduct,
however, learning process gets unstable. Our solution to this problem is to stabilize the learning
process by employing ResDrop in a different usage from the usual. Based on experiments using var-
ious base network architectures, we reveal the condition that the proposed ShakeDrop successfully
works.

2 EXISTING METHODS REQUIRED TO INTRODUCE THE PROPOSED METHOD

2.1 DEEP NETWORK ARCHITECTURES

ResNet (He et al., 2016) opened the door to very deep CNNs of over a hundred layers by introducing
the residual block, given as

G(z) =z + F(x), (1)
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Figure 1: Network architectures.

where x and G(x) are the input and output of the residual block, respectively, and F'(z) is the output
of the residual branch on the residual block.

While ResNet realized deep networks, it is imperfect. pointed out that high error
rates obtained by the 1202-layer ResNet on the CIFAR datasets (Krizhevskyl, [2009) is caused by
overfitting. experimentally showed that some residual blocks whose channels
greatly increase cause high error rates.

PyramidNet (Han et al., 2017afb) overcame the problem of ResNet by gradually increasing chan-
nels on each residual block. It has almost same residual block as Eqn. (). It successfully realized

deep CNNs of up to 272 layers and achieved the lowest error rates among the vanilla residual net-
works on the CIFAR datasets.

2.2 NON-DEEP NETWORK ARCHITECTURES

Wide ResNet (Zagoruyko & Komodakis| [2016]) improved error rates by simply increasing channels
of ResNet. While it has almost same residual block as Eqn. (T), it has wider and shallower archi-
tecture than ResNet. [Jastrzebski et al| (2017) experimentally showed that like PyramidNet, Wide
ResNet overcomes the problem of ResNet.

ResNeXt 2017) achieved lower error rates than Wide ResNet on almost same number of
parameters. The basic architecture of ResNeXt is given as
G(z) =z + Fi(z) + Fa(), )

where F (x) and F5(x) are the outputs of the residual branches as shown in Figure The number
of residual branches is not limited to 2, and the number is the most important factor to control the
result.

2.3 REGULARIZATION METHODS

Stochastic Depth (Huang et al] 2016) is a regularization method which overcame problems of
ResNet such as vanishing gradients. It makes the network apparently shallow in learning by drop-
ping residual blocks stochastically selected. On the [*” residual block from input layer, the Stochas-
tic Depth process is given as

G(z) =z + b F(z), 3)
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where b; € {0,1} is a Bernoulli random variable with the probability of p;. |[Huang et al|(2016)
tested two rules for determining p;: uniform rule and linear decay rule. The uniform rule using a
constant for all p; did not work well. The linear decay rule which defines p; as

l
m=1-700-pL) )
where L is the number of all layers and py, is the initial parameter, worked well.

It was originally proposed for improving ResNet. It was also applied to PyramidNet; the combina-
tion of PyramidNet and Stochastic Depth was named PyramidDrop (Yamada et al., 2016).

Shake-Shake (Gastaldi, 2017) is a powerful regularization method for improving ResNeXt archi-
tectures. It is given as

G(z) =z +aFi(z) + (1 — a)F(2), 4)
where « is a random coefficient given as « € [0,1]. As shown in Figure calculation of the
backward pass is disturbed by another random coefficient 8 € [0,1] instead of o. As a result,
Shake-Shake decreased error rates than ResNeXt.

3 PROPOSED METHOD

3.1 INTERPRETATION OF SHAKE-SHAKE REGULARIZATION AND ITS DRAWBACKS

We give an intuitive interpretation of the forward pass of Shake-Shake regularization. To the best of
our knowledge, it has not been given yet, while the phenomenon in the backward pass is experimen-
tally investigated by Gastaldil (2017). As shown in Eqn. (8) (and also in Fig.[I(D)), in the forward
pass, Shake-Shake interpolates the outputs of two residual branches (i.e., Fy(x) and Fy(z)) with a
random variable « that controls the degree of interpolation. As DeVries & Taylor (2017a) demon-
strated that interpolation of two data in the feature space can synthesize reasonable augmented data,
the interpolation of two residual blocks of Shake-Shake in the forward pass can be interpreted as
synthesizing data. Use of a random variable o generates many different augmented data. On the
other hand, in the backward pass, a different random variable /3 is used to disturb learning to make
the network learnable long time. |Gastaldi| (2017) demonstrated how the difference between « and 3
affects.

The regularization mechanism of Shake-Shake relies on two or more residual branches, so that it
can be applied only to 2-branch networks architectures. In addition, 2-branch network architectures
consume more memory than 1-branch network architectures. One may think the number of learnable
parameters of ResNeXt can be kept in 1-branch and 2-branch network architectures by controlling
its cardinality and the number of channels (filters). For example, a 1-branch network (e.g., ResNeXt
1-64d) and its corresponding 2-branch network (e.g., ResNeXt 2-40d) have almost same number of
learnable parameters. However, even so, it increases memory consumption due to the overhead to
keep the inputs of residual blocks and so on. By comparing ResNeXt 1-64d and 2-40d, the latter
requires more memory than the former by 8% in theory (for one layer) and by 11% in measured
values (for 152 layers).

3.2 SIMILAR REGULARIZATION TO SHAKE-SHAKE ON 1-BRANCH NETWORK
ARCHITECTURES

In order to realize a similar regularization to Shake-Shake on 1-branch network architectures, in the
forward pass, we need a mechanism, different from interpolation, to synthesize augmented data in
the feature space. Actually,|DeVries & Taylor| (2017a)) demonstrated not only interpolation but also
noise addition in the feature space works well. Hence, following Shake-Shake, we apply random
perturbation, using «, to the output of a residual branch (i.e., F(z) of Eqn. (I)). In the backward
pass, we can use the same way as Shake-Shake for 1-branch network architectures.

We call the regularization method mentioned above I-branch Shake. It is given as
G(z) =z + oF(z), (6)

where « is a coefficient that disturbs learning in the forward pass. As shown in Figure[I(c)| 8 is a
coefficient similar to the one of Shake-Shake and used in the backward pass. The I-branch Shake is
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expected to realize powerful generalization like Shake-Shake regularization. However, by applying
it to 110-layer PyramidNet with o € [0,1] and 8 € [0, 1] following Shake-Shake, the result on the
CIFAR-100 dataset was hopelessly bad (i.e., an error rate of 77.99%).

3.3 STABILIZING LEARNING WITH INTRODUCTION OF MECHANISM OF RESDROP

Failure of /-branch Shake is caused by too strong perturbation. However, weakening the perturba-
tion would also weaken the effect of regularization. Thus, we need a trick to promote learning under
strong perturbation.

Our idea is to use the mechanism of ResDrop for solving the issue. As is written in Sec[2.3] in
the original form, ResDrop promotes learning by dropping some residual blocks. In other words,
it makes a network apparently shallow in learning. In our situation, however, the original usage of
ResDrop does not contribute because a shallower network to which I-branch Shake is applied would
also suffer from strong perturbation. Thus, we use the mechanism of ResDrop as a probabilistic
switch of two network architectures: the original network (e.g., PyramidNet) and the one to which
I-branch Shake is applied (e.g., PyramidNet + /-branch Shake). By mixing up two networks, the
following effects are expected.

1. When the original network (e.g., PyramidNet) is selected, learning is correctly promoted.

2. When the network with strong perturbation (e.g., PyramidNet + I-branch Shake) is se-
lected, learning is disturbed.

To achieve a good performance, two networks should be in a good balance.
The proposed ShakeDrop is given as
G(z) =z + (b + a— ba)F(x), (7

where b; is a Bernoulli random variable following the linear decay rule. We call the new method
“ShakeDrop.” According to the value of b;, Eqn. (7)) is deformed as

o) = {a:JrF(x), ifh =1

8
x + aF(x), otherwise (ie., if b, = 0). ®

In the case that the base network is PyramidNet, ShakeDrop is equivalent to PyramidNet if b; = 1,
and it is equivalent to “PyramidNet + /-branch Shake” if b; = 0. We found that the linear decay rule
of ResDrop (Eqn. (@) works well, while we also tested the uniform rule which did not work well.
As shown in Figure[I(d)} similar to Shake-Shake, 3 is used in the backward pass instead of «. It is
noteworthy that regardless of the value of (3, the weights of the network are updated. For example,
let us consider the case of 5 = 0. In such a case, the weights of the residual blocks selected to
perturbate (i.e., the layers with b; = 0) are not updated. However, the inputs to their succeeding
residual blocks are perturbated and the weights of the residual blocks are updated reflecting the
perturbation.

4 EXPERIMENTS
See Sec.[A]for implementation details.

4.1 PRELIMINARY EXPERIMENTS: SEARCH FOR PARAMETER SETTINGS OF THE PROPOSED
METHOD

The best parameter settings of the proposed method, ShapeDrop, are searched when it is applied
to PyramidNet. They include parameter ranges of o and /3, and the timing these parameters are
updated. In the preliminary experiments, the CIFAR-100 dataset was used. PyramidNet had 110
layers, which consisted of a convolution layer, 54 additive pyramidal residual blocks and a fully
connected layer. The number of channels at the last residual block was 286. Table [I| shows repre-
sentative parameter ranges of o and /3 we tested and their results. From the results, we can see how
the combinations of « and f affect. First of all, except PyramidDrop (o« = 0, 5 = 0), only case F
(o € [-1,1],8 = 0) and case H (« € [-1,1], 8 € [0,1]) were better than the original PyramidNet
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Table 1: Average Top-1 errors (%) of “PyramidNet + ShakeDrop” with several ranges of parameters
of 4 runs at the final (300th) epoch on CIFAR-100 dataset in the “Batch” level. In some settings, it
is equivalent to PyramidNet and PyramidDrop.

| o [ B [ Eror (%) | Note
A 1 1 18.01 Equivalent to PyramidNet
B 0 0 17.74 Equivalent to PyramidDrop
C 0,1 [-1,1] 20.61
D 0,1 [0, 1] 18.27
E||[-1,1 1 18.68
F|[-1,1 0 17.28
G| [-1,1] | [-1,1] 18.26
H| [-1,1 [0, 1] 16.22

Table 2: Average Top-1 errors (%) of “PyramidNet + ShakeDrop” with different levels of 4 runs at
the final (300th) epoch on CIFAR-100 dataset.

o [ B ] Level [ Error(%)
Batch 16.22
Tmage | 16.04
[—1,1] | [0,1] Channel 16.12
Pixel 15.78

(case A: « = 1,8 = 1). Among them, case H was the best. It is interesting to observe three cases E
(a € [-1,1],8 = 1), F and H all of which take the same range of «. Since cases F and H were bet-
ter than PyramidNet, we confirm strong perturbation is effective. However, case E was even worse
than PyramidNet. This implies that if strong perturbation is applied, the residual blocks selected to
perturbate strongly suffer from the perturbation, so that the weights of the residual blocks should not
be fully updated (i.e., 5 = 1 should be avoided). On the other hand, the range of /3 of the best case
H was in-between cases E and F. This implies that the values of 3 should be well balanced.

The best strategy to update the parameters (referred as scaling coefficient) among “Batch,” “Image,”
“Channel” and “Pixel” are explored. “Batch” means that the same scaling coefficients are used
for all the images in the mini-batch for each residual block. “Image” means that the same scaling
coefficients are used for each image for each residual block. “Channel” means that the same scaling
coefficients are used for the each channel for each residual block. “Pixel” means that the same
scaling coefficients are used for each element for each residual block. ShakeDrop was trained using
the best parameters found in the experiment above, i.e, ranges a € [—1,1], 8 € [0, 1]. Table[2]shows
that “Pixel” level was the best. However, it required a lot of memory. Hence, we selected “Image”
level, which was the second best, considering memory efficiency.

Through the preliminary experiments, we found that the most effective parameters for o and g are
a € [-1,1] and 8 € [0,1], and the effective and memory efficient level is “Image” level. We
conduct the following experiments using these parameters.

4.2 COMPARISON WITH REGULARIZATION METHODS

The proposed ShakeDrop is compared with vanilla (without regularization), ResDrop and I-branch
Shake in different network architectures including ResNet, PyramidNet, Wide ResNet and ResNeXct.
Tables [3|and [4] show experimental results on CIFAR-100 dataset (Krizhevskyl [2009) and Tiny Ima-
geNet datase% respectively.

Table[3|shows that the proposed ShakeDrop can be applied to not only PyramidNet but also ResNet,
Wide ResNet and ResNeXt. However, to successfully apply it, we found that the residual blocks
have to end with batch normalization (BN) (Ioffe & Szegedy,[2015)). Since without BN, the outputs
of residual blocks are not in a certain range, sometimes factors « and 3 could be too big. This
seems to cause diverge in learning. With this regard, EraseReLU (Dong et al., [2017) which elimi-

'"https://tiny-imagenet .herokuapp.com/
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Table 3: Top-1 errors (%) at the final (300th) epoch of ResNet and its improvements to which
different regularization methods are applied on CIFAR-100 dataset. Method names are followed
by components of their residual blocks. For ResNet and ResNeXt, in addition to the original form,
ones without ReL.U unit in the end of residual blocks following EraseReLU (Dong et al., [2017) are
also examined. For Wide ResNet, ones with bath normalization added in the end of residual blocks,
referred as “w/ BN,” are also examined. “Type A” and “Type B” of ResDrop and ShakeDrop mean
that regularization unit is inserted before and after “add” unit for residual branches, respectively.

T3 VE2]

x” means learning did not converge. * indicates the result is quoted from the literature.

(a) 1-residual-branch network architectures (ResNet, ResNeXt and PyramidNet)

Methods | Regularization [[ Original (%) | EraseReLU (%)
Vanilla 28.51 24.93
ResNet-110
<Conv-BN-ReLU-Conv-BN-add- ResDrop 24.09 22.88
(ReLU)> 1-branch Shake 24.18 23.80
ShakeDrop X 22.68
ResNet-164 Bottleneck R\g]l)lilj 5%8(6) 5(1)22
<Conv-BN-ReLU-Conv-BN-ReLU- p : :
Conv-BN-add-(ReLU)> 1-branch Shake 22.20 21.60
ShakeDrop X 19.89
ResNeXt-29 8-64d Bottleneck Vanilla 20.90 20.25
ResDrop 20.66 20.28
<Conv-BN-ReLU-Conv-BN-ReLU-
Conv-BN-add-(ReLU)> 1-branch Shake 22.70 24.00
ShakeDrop X 19.90
PyramidNet-272 2200 Bottleneck anilla LR
<BN-Conv-BN-ReLU-Conv-BN-ReLLU- P . N/A
Conv-BN-add> 1-branch Shake 71.51
ShakeDrop 14.90

(b) 1-residual-branch network architectures (Wide ResNet)

Methods | Regularization [[ Original (%) [ w/ BN (%)
Vanilla 26.49 24.24
Wide-ResNet-28-10k ResDrop 34.19 26.64
<BN-ReLU-Conv-BN-ReLU-Conv-(BN)-add> | 1-branch Shake 90.73 58.89
ShakeDrop 76.87 19.12
(c) 2-residual-branch network architectures
Methods | Regularization [ Original (%) [ EraseReLU (%)
Vanilla 23.82 21.75
ResNeXt-164 2-1-40d Bottleneck ResDrop Type-A 21.38 2044
ResDrop Type-B 21.34 20.21
<Conv-BN-ReLU-Conv-BN-ReLU-
Conv-BN-add-(ReLU)> Shake-Shake 22.35 22.51
ShakeDrop Type-A X 19.98
ShakeDrop Type-B X 19.83
Vanilla 21.19 X
ResNeXt-29 2-4-64d Bottleneck ResDrop Type-A 21.12 20.13
ResDrop Type-B 19.27 19.01
<Conv-BN-ReLU-Conv-BN-ReLU-
Conv-BN-add-(ReLU)> Shake-Shake 19.16 18.82
ShakeDrop Type-A X 20.07
ShakeDrop Type-B X 18.17

nates the last ReLU is a very convenient for us because in the EraseReLU versions of ResNet and
ResNeXt, the residual blocks ends with BN. On the other hand, in the case of Wide ResNet, we
need to intentionally add BN in the end of the residual blocks. In ResNeXt, we examined two ways,
referred as “Type A” and “Type B,” to apply ResDrop and ShakeDrop. They mean the regularization
module is inserted before and after “add” module, respectively. As far as we examined, Type B was
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Table 4: Top-1 errors (%) at the final (300th) epoch of ResNet and its improvements to which
different regularization methods are applied on Tiny ImageNet dataset. Method names are followed
by components of their residual blocks. For ResNet and ResNeXt, in addition to the original form,
ones without ReL.U unit in the end of residual blocks following EraseReLU (Dong et al., [2017) are
also examined. For Wide ResNet, ones with bath normalization added in the end of residual blocks,
referred as “w/ BN,” are also examined. “Type A” and “Type B” of ResDrop and ShakeDrop mean
that regularization unit is inserted before and after “add” unit for residual branches, respectively.

T3 VE2]

x” means learning did not converge. * indicates the result is quoted from the literature.

(a) 1-residual-branch network architectures (ResNet, ResNeXt and PyramidNet)

Methods | Regularization [[ Original (%) | EraseReLU (%)
Vanilla 42.07 41.24
ResNet-110
<Conv-BN-ReLU-Conv-BN-add- ResDrop 43.74 42.50
(ReLU)> 1-branch Shake 45.56 45.16
ShakeDrop X 48.92
ResNet-164 Bottleneck R\g]l)lils gg%g gg(s)g
<Conv-BN-ReLU-Conv-BN-ReLU- p : :
Conv-BN-add-(ReLU)> 1-branch Shake 39.29 42.10
ShakeDrop X 42.80
Vanilla 36.52
PyramidNet-110 o270 ResDrop 33.97 N/A
<BN-Conv-BN-ReLLU-Conv-BN-add > 1-branch Shake 85.84
ShakeDrop 32.44
PyramidNet-200 o300 Bottleneck RVarll)llla gg?g
<BN-Conv-BN-ReLU-Conv-BN-ReLU- S TOp : N/A
Conv-BN-add> 1-branch Shake 78.12
onv-Bi-a ShakeDrop 31.15

(b) 1-residual-branch network architectures (Wide ResNet)

Methods | Regularization [[ Original (%) [ w/BN (%)
Vanilla 99.50 37.88
Wide-ResNet-28-10k ResDrop 99.50 45.80
<BN-ReLU-Conv-BN-ReLLU-Conv-(BN)-add> | 1-branch Shake 98.68 93.62
ShakeDrop 91.11 36.39

always better than Type A. We also confirmed that ShakeDrop Type B outperformed Shake-Shake
in RexNeXt. As a conclusion, the table shows that as long as the residual blocks end with BN, the
proposed ShakeDrop achieved the lowest error rates.

Table ] shows the results on Tiny ImageNet. To conduct the experiments, it is better to use networks
tuned for ImageNet. However, except PyramidNet, we could apply the same networks tuned for
CIFAR-100 dataset were used due to time constraint. As a result, in ResNet, the lowest error rates
were achieved by vanilla EraseReLU networks. This could be caused by use of inappropriate base
networks for the task since learning ended with relatively high training loss and no regularization
methods correctly worked. However, in PyramidNet and Wide ResNet, the proposed ShakeDrop
achieved the lowest error rates. This confirms that the proposed ShakeDrop works on Tiny ImageNet
dataset.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

The proposed method was compared with state-of-the-arts on the CIFAR-10/100 datasets. State-
of-the-art methods introduced some techniques that can be applied to many methods in the learning
process. One is longer learning. While most of methods related to ResNet use 300-epoch scheduling
for learning like the preliminary experiment in Sec.[d.1] Shake-Shake use 1800-epoch cosine anneal-
ing, on which the initial learning rate is annealed using a cosine function without restart (Gastaldsi,
2017). Another one is image preprocessing. DeVries & Taylor| (2017b) and Zhong et al.| (2017)
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showed that accuracy is improved by data augmentation which randomly fills a part of learning
images. For fair comparison with these methods, we also applied them to the proposed method.

PyramidNet (including PyramidDrop and “PyramidDrop + ShakeDrop”) had 272 layers, which con-
sisted of a convolution layer, 90 additive pyramidal “bottleneck” blocks (He et al.,[2016) and a fully
connected layer. The number of channels at the last pyramidal residual block was 864. Table [3]
shows the error rates. The proposed method, “PyramidNet + ShakeDrop,” without longer learn-
ing and image preprocessing, was 3.41% on the CIFAR-10 dataset and 14.90% on the CIFAR-100
dataset. We make following comparisons with existing methods. Note that the proposed method
used less numbers of parameters than rival methods in all conditions.

(1) Fair comparison with Shake-Shake (ResNeXt + Shake-Shake) in the same condition
“PyramidNet + ShakeDrop” combined with longer training achieved error rates of 2.67% (better by
0.19%) on the CIFAR-10 dataset and 13.99% (better by 1.86%) on the CIFAR-100 dataset.

(2) Fair comparison with Cutout (ResNeXt + Shake-Shake + Cutout) in the same condition
“PyramidNet + ShakeDrop” combined with both longer learning and image preprocessing achieved
error rates of 2.31% (better by 0.25%) and 12.19% (better by 3.01%) on the CIFAR-10/100 datasets,
respectively.

(3) Comparison with the state-of-the-arts, Cutout on CIFAR-10 and Coupled Ensemble on
CIFAR-100

“PyramidNet + ShakeDrop” combined with both longer learning and image preprocessing achieved
error rates of 2.31% (better by 0.25% than Cutout) and 12.19% (better by 2.85% than Coupled
Ensemble) on the CIFAR-10/100 datasets, respectively.

5 CONCLUSION

We proposed a new stochastic regularization method ShakeDrop which can be successfully ap-
plied to ResNet and its improvements as long as the residual blocks ends with BN. Its effectiveness
was confirmed through the experiments on CIFAR-10/100 and Tiny ImageNet datasets. ShakeDrop
achieved the state-of-the-art performance in the CIFAR-10/100 datasets, and the best results among
existing regularization methods on Tiny ImageNet dataset except some cases using inappropriate
networks.
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Table 5: Top-1 errors (%) at the final epoch (300th or 1800th) on the CIFAR-10/100 datasets. Repre-
sentative methods and the proposed ShakeDrop applied to PyramidNet are compared. “Reg” repre-
sents regularization methods including ResDrop (RD), Shake-Shake (SS) and proposed ShakeDrop
(SD). If “Cos” is checked, 1800-epoch cosine annealing schedule (Loshchilov & Hutter, 2016) is
used following |Gastaldi| (2017). Otherwise, 300-epoch multi-step learning rate decay schedule is
used following each method. If “Fil” is checked, the data augmentation used in Cutout (CO) (De-
Vries & Taylor, [2017b)) or Random Erasing (RE) (Zhong et al., 2017), which randomly fills a part
of learning images, is used. * indicates the result is quoted from the literature. 4 indicates the result
is quoted from |Gastaldi| (2017)). Compared to the same condition of Cutout, the state-of-the-art, the
proposed method reduced the error rate by 0.25% on CIFAR-10 and 3.01% on CIFAR-100.

CIFAR | CIFAR
Method Reg | Cos | Fil | Depth | #Param 10 (%) | -100 (%)

118 25. M *2.99 *16.18

106 25.1M *2.99 *15.68

76 24.6M *2.92 *15.76

Coupled Ensemble % %
(Dutt et al1| 2017) LT N /N N
- 75M *2.68 *15.04
- 100M *2.73 *15.05
ResNeXt 26 26.2M 358 -
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PyramidDrop RD 272 | 26.0M 3.83 15.94
(Yamada et al.,[2016) RD v RE 272 26.0M 2.91 15.48
- SD 272 26.0M 3.41 14.90
PyramdNet + ShakeDrop SD RE | 272 26.0M 2.89 13.85
(Proposed) SD Ve 272 26.0M 2.67 13.99
SD v RE 272 26.0M 2.31 12.19

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochas-
tic depth. arXiv preprint arXiv:1603.09382v3, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448-456, Lille, France, 07-09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/ioffel5.html.

Stanisaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o(1/k?).
Soviet Mathematics Doklady, 27:372-376, 1983.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533-536, 1986.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in Neural Information Processing Systems 29, 2016.


http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Under review as a conference paper at ICLR 2018

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proc. CVPR, 2017.

Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Deep pyramidal residual networks with
separated stochastic depth. arXiv preprint arXiv:1612.01230, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proc. BMVC, 2016.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. arXiv preprint arXiv:1708.04896, 2017.

A IMPLEMENTATION DETAILS

All implementations used in the experiments were based on the publicly available code of
fb.resnet.torc}ﬂ ShakeDrop was trained using back-propagation by stochastic gradient descent
with an approximate versio of Nesterov accelerated gradient (Nesterov, |1983) and momentum
method (Rumelhart et al., [1986). 4 GPUs were used for learning acceleration; due to parallel pro-
cessing, even the same layer had different values of parameters b;, o and 8 depending on GPUs.

CIFAR-10/100 datasets

Input images of CIFAR-10/100 datasets were processed in the following manner. An original image
of 32 x 32 pixels was color-normalized, followed by horizontally flipped with a 50% probability.
Then, it was zero-padded to be 40 x 40 pixels and randomly cropped to be an image of 32 x 32
pixels.

On PyramidNet, the initial learning late was set to 0.5 for both CIFAR-10/100 datasets following
the version 2 of |[Han et al.| (2017b), while they use 0.1 for the CIFAR-10 dataset and 0.5 for the
CIFAR-100 dataset since version 3. Other than PyramidNet, the initial learning late was set to
0.1. The initial learning rate was decayed by a factor of 0.1 at 1/2 and 3/4 of the entire learning
process (300 epochs), respectively, following Han et al.|(2017b). As the filter parameters initializer,
“MSRA” (He et al., [2015) was used. In addition, a weight decay of 0.0001, a momentum of 0.9,
and a batch size of 128 were used with 4 GPUs. On PyramidDrop and “PyramidNet + ShakeDrop,”
the linear decay parameter p;, = 0.5 was used following [Huang et al.|(2016). I-branch Shake used
a = [0,1],8 = [0, 1]. ShakeDrop used parameters of « = [—1,1], 8 = [0, 1] and “Image” level
scaling coefficient.

Tiny ImaneNet dataset

Input images of Tiny ImageNet were processed in the following manner. An original image of
64 x 64 pixels was distorted aspect ratio and randomly cropped to be an image of 56 x 56 pixels.
Then, brightness, contrast, and saturation of the image were randomly changed. After that, the
image was color-normalized by mean and standard deviation of ImageNet, followed by horizontally
flipped with a 50% probability.

Learning settings of 110-layer PyramidNet on Tiny ImageNet were almost same as on CIFAR-
10/100. The initial learning late was set to 0.5. The initial learning rate was decayed by a factor
of 0.1 at 1/2 and 3/4 of the entire learning process (300 epochs), respectively, following |Han et al.
(2017b). As the filter parameters initializer, “MSRA” (He et al., |2015) was used. In addition, a
weight decay of 0.0001, a momentum of 0.9, and a batch size of 128 were used with 4 GPUs.
Stride size of the first convolution layer was set to 2, and stride of average Pooling layer was set to
7. Learning settings of other than 200-layer PyramidNet on Tiny ImageNet were almost same as
110-layer PyramidNet. The initial learning late was set to 0.1.

Learning settings of 200-layer PyramidNet on Tiny ImageNet were almost same as on ImageNet.
The initial learning late was set to 0.0125. The initial learning rate was decayed by a factor of 0.1
at 1/2, 3/4 and 7/8 of the entire learning process (120 epochs), respectively, following [Han et al.

Zhttps://github.com/facebook/fb.resnet.torch

3Please be aware that the implementation in sgd.lua of Torch7 with nesterov mode is an approximation of
the original Nesterov accelerated gradient and momentum method. See https://github.com/torch/
optim/issues/27,
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(a) 300-epoch training loss. (b) 1800-epoch training loss.

Figure 2: Change of training loss of PyramidNet with no regularization method (vanilla), ResDrop
and ShakeDrop.

(2017b). As the filter parameters initializer, “MSRA” (He et al.| [2015) was used. In addition, a
weight decay of 0.0001, a momentum of 0.9, and a batch size of 32 were used with 4 GPUs. Stride
size of the first convolution layer was set to 1, and Stride of Max Pooling layer was set to 1.

B DISCUSSION

In order to find out why the proposed method achieved the low error rates, we investigate what kind
of difference exists with the conventional methods, particularly with PyramidNet and PyramidDrop.

B.1 TRAINING LOSS

Fig. [ shows change of training loss. Fig.[2(a)]is of the 300-epoch multi-step learning rate decay
schedule with 110-layer networks. Fig. is of 1800-epoch cosine annealing schedule with 272-
layer networks. ResDrop and ShakeDrop, which are probabilistic regularization methods, decreased
the training loss more slowly than vanilla PyramidNet in both figures. Even at the final epoch, the
loss of ResDrop and ShakeDrop are much larger than O in contrast to vanilla PyramidNet whose loss
is close to 0.

B.2 MEAN AND VARIANCE OF GRADIENTS

In addition to the training loss, we examined the mean and variance of gradients on each iteration for
each regularization method. Under the same conditions as the preliminary experiment in Sec.
we compared PyramidNet with no regularization method (vanilla), ResDrop and ShakeDrop in the
“Batch” level. We focused on 3 residual blocks out of 54 residual blocks and named “first,” “mid-
dle” and “final.” They mean the first, 27th and final residual blocks, respectively. For each, we
checked the 2nd convolutional layer. Figs. [3|and ] show change of mean and variance of gradients,
respectively. Although ResDrop and ShakeDrop were similar in Fig.[2] ShakeDrop took much larger
values than ResDrop in Figs. [3]and @] Particularly, the difference was significant in “first,” and also
large in “middle.” They would indicate that relatively intensive training lasts in ShakeDrop.
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Figure 3: The average of the gradients on each iteration in PyramidNet.
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Figure 4: The variance of the gradients on each iteration in PyramidNet.
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