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ABSTRACT

Cooperative perception systems in autonomous driving enhance each agent’s per-
ceptual capabilities by sharing visual information with others and demonstrated
effectiveness in handling prominent challenges like occlusions and long-range de-
tection. However, most existing cooperative systems transmit feature maps, such
as bird’s-eye view (BEV) representations, which include substantial background
data and are costly to process due to their high dimensionality. This paradigm in-
troduces a trade-off between improved perception and increased communication
overhead. To address this challenge, we present CoCMT, an object-query-based
collaboration framework that enables efficient communication while unifying ho-
mogeneous and heterogeneous cooperative perception tasks. Within CoCMT, we
introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-
agent object queries and implement a synergistic deep supervision approach to
accelerate convergence during training. Extensive experiments on the OPV2V
and V2V4Real datasets demonstrate that COCMT surpasses current state-of-the-
art methods in performance while offering significant communication efficiency.
Notably, on the real-world V2V4Real dataset, our proposed CoCMT model (Top-
50 object queries) requires merely 0.416 Mb bandwidth during inference. This
reduces bandwidth consumption by 323 times compared to SOTA methods while
improving AP@70 by 1.1. The code and models will be open-sourced.

1 INTRODUCTION

Accurate and efficient perception is essential for autonomous driving (AV) to ensure reliable nav-
igation and safe decision-making. However, single-vehicle autonomous systems face significant
challenges in real-world scenarios, such as occlusions and limited sensing range. Cooperative per-
ception systems address these issues by enabling agents to enhance their perceptual capabilities
through the sharing of sensing and visual information with other agents. Most research in coopera-
tive perception systems (Xu et al.,|2022cza; [Wang et al.,|2020; Xu et al.| [2022bj; Wei et al.| [2024) has
primarily focused on homogeneous multi-agent perception, where all agents utilize the same type
of sensors—such as LiDAR, cameras, or radars. Recent studies (Xiang et al.,|2023; Lu et al., [2024)
have advanced into heterogeneous multi-agent perception, facilitating collaboration between agents
equipped with diverse sensor types. This approach better reflects real-world conditions, significantly
enhancing the adaptability of cooperative perception systems and expanding their potential appli-
cations and impact. However, a trade-off exists between communication efficiency and perception
performance in cooperative perception systems (Hu et al.L|2022): while intermediate fusion methods
improve performance, they generally demand significant communication bandwidth, as compared
to simpler late fusion approaches whereas only the detection results are shared across agents.

Most existing cooperative perception fusion methods | Xu et al.| (2022c;b)); Wei et al.| (2024) use fea-
ture maps—such as Bird’s-Eye-View (BEV) features—as the medium for information transmission
among agents. Feature maps often employ high-dimensional representations to extend perception
range and enhance performance; however, this also increases communication bandwidth require-
ments. Moreover, feature maps represent the entire scene surrounding the vehicle, where dynamic,
relatively sparse foreground objects are mixed with a large amount of static background information.
Transmitting large amounts of background data offers minimal benefit to perception performance
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while occupying significant bandwidth. To this end, existing methods [Lu et al.| (2024)); Xiang et al.
(2023) have to incorporate complex foreground extraction mechanisms to reduce the unnecessary
information being shared, which inevitably increases model complexity. To further reduce the fea-
ture redundancy, Hu et al.| (2022 [2024) has focused on selecting key parts of the feature map or
adopting alternative representations to balance performance and communication efficiency.

This paper proposes a novel object-centric framework tailored for communication-efficient col-
laborative perception. The sparsity nature of query-based object representations |Carion et al.
(2020); |Li et al.| (2022a)) has offered several advantages over prior feature map-based strategies:
1) Small data size: The data size of object queries is significantly smaller than that of (BEV) fea-
ture maps, which can largely reduce the communication bandwidth required for transmission. 2)
Object-centric focus: Unlike feature maps, which contain extensive background information, object
queries are explicitly object-centric, encapsulating only the relevant contextual features and natu-
rally excluding irrelevant background data. This eliminates the need for intermediate fusion algo-
rithms to design complex foreground information extraction mechanisms (Hu et al.} 2022} [2024]). 3)
Modality independence: Object queries are less dependent on specific data modalities, making them
more versatile and effective for heterogeneous multi-agent perception tasks. These advantages make
object queries a more efficient and scalable choice for cooperative perception systems, especially in
bandwidth-constrained and multi-modal environments.

However, integrating object queries from multiple agents introduces two challenges. Firstly, object
query-based models generate numerous initial queries, many of which are unrelated to actual objects.
The challenge lies in efficiently filtering out noisy queries to merely focus on high-quality object
queries for fusion. Moreover, object queries are unordered, meaning adjacent queries in the sequence
may represent distant objects, especially when integrated from multiple agents. This unordered na-
ture can cause feature confusion, complicating the interaction between relevant objects. To address
these challenges, we introduce the CoCMT framework—Communication-Efficient Cross-Modal
Transformer for Collaborative Perception. This framework utilizes object query as the medium for
information transmission, effectively handling both homogeneous and heterogeneous multi-agent
perception tasks using a unified and concise architecture. The framework is divided into two stages:
the single-agent independent prediction stage and the cooperative fusion prediction stage. Addi-
tionally, we propose a synergistic deep supervision mechanism that applies deep supervision across
both stages simultaneously, accelerating convergence and enhancing positive interactions between
stages to improve overall performances. Extensive experiments on both simulated and real datasets
demonstrate that our model achieves superior performance compared to State-of-the-art methods
while requiring order-of-magnitude smaller communication bandwidth. Our contributions are:

* We propose CoCMT, a novel object query-based collaborative perception framework that uses
object queries as intermediaries for information transmission, significantly reducing bandwidth
consumption while enhancing the efficiency of collaborative perception.

* We design the Efficient Query Transformer (EQFormer), which incorporates three masking mech-
anisms to limit interactions between object queries to spatially valid, proximate, and strongly
target-associated areas, ensuring precise and efficient attention learning for fusion.

* We introduce a Synergistic Deep Supervision mechanism that applies deep supervision at both the
individual prediction and collaborative fusion stages. This mechanism accelerates model conver-
gence during training and improves overall performance.

* Our extensive experiments on the OPV2V and V2V4real datasets validate the bandwidth effi-
ciency of our proposed framework. The results demonstrate that the framework significantly re-
duces bandwidth consumption while achieving superior performance. We also conducted com-
prehensive ablation studies to demonstrate the efficacy of each component in our model design.

2 RELATED WORKS

2.1 COOPERATIVE PERCEPTION SYSTEMS

Cooperative perception systems enable connected and automated vehicles to communicate with oth-
ers, thus enjoying shared perception capabilities to handle occlusions and long-distance perception
issues Wang et al.[(2020). Among the three types of cooperative perception—early fusion, interme-
diate, and late fusion—recent research has primarily focused on intermediate fusion methods, which
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Figure 1: AP vs Bandwidth. The figure shows the variation in AP70 performance of the model un-
der different bandwidth conditions, evaluating three settings in the OPV2V dataset: V2V-C, V2V-L,
and V2V-H. Our CoCMT model, with a significant bandwidth advantage, demonstrates performance
comparable to or even better than state-of-the-art (SOTA) methods. Moreover, as the bandwidth
gradually decreases, COCMT exhibits only minor performance degradation, fully showcasing its ex-
cellent adaptability to bandwidth fluctuations.

aim to improve cooperative perception performance by fusing intermediate neural features (Xu
et al., 2022c; [Wang et al., [2020; Xu et al.| 2022a3bj |Li et al.l |2024¢). For instance, V2VNet (Wang
et al., 2020) uses a graph neural network to fuse feature maps from different agents. AttFuse (Xu
et al.| 2022c) combines self-attention with a local graph to learn interactions between feature maps.
CoBEVT (Xu et al.| 2022a) employs a fused axial attention module (FAX) to model interactions
across different perspectives and agents. V2X-ViT (Xu et al., [2022b)) utilizes a vision transformer
architecture with two specially designed attention mechanisms to fuse heterogeneous feature maps
in V2X scenarios. HEAL |Lu et al.| (2024)) proposes a multi-scale foreground-aware Pyramid Fusion
network to conduct heterogeneous collaborative perception.

2.2 CHALLENGES IN COOPERATIVE PERCEPTION

Despite their advantages, cooperative perception systems introduce several challenges, such as het-
erogeneous feature fusion, domain gaps, communication delays, and limited communication band-
width, to name a few. Many studies have focused on enhancing the robustness of multi-agent co-
operative perception systems to maintain perception performance (Xu et al.l 2022b; Xiang et al.,
2023; Hu et al.l 2024; [We1 et al., 2024; Xu et al., |[2023a; [L1 et al., 2023} 2024a:b). For instance,
CoBEVFlow (Wei et al., 2024) enhances robustness to asynchronous communication by compen-
sating for motion through BEV Flow. To handle broader heterogeneous multi-agent perception in
real-world scenarios, HMVIiT (Xiang et al., |2023) integrates heterogeneous sensor features from
connected vehicles using a heterogeneous 3D graph transformer. HEAL (Lu et al.l [2024) utilizes
a PyramidFusion architecture to fuse heterogeneous features in a multi-scale and foreground-aware
manner, and reduces the training cost for adding new heterogeneous agents through backward align-
ment. S2R-ViT (L1 et al.| 2024d) introduces sim-to-real transfer learning to minimize the sim2real
domain gap in collaborative perception systems.

To reduce communication bandwidth, Where2comm (Hu et al., 2022) adopts a spatial confidence-
aware strategy to transmit only the most critical feature information. CodeFilling (Hu et al)
2024) approximates feature maps using codebook-based representations and selects key informa-
tion through information filling, achieving an optimal balance between communication and perfor-
mance. QUEST (Fan et al.,2024) explores the use of object query as the information carrier in V2X
scenarios, reducing communication bandwidth. However, these studies are limited to camera only
homogeneous perception, and its performance degrades considerably when reducing the threshold
of transmitted queries. In this paper, we extend the object query-based approach to simultaneously
handle homogeneous and heterogeneous multi-agent perception tasks involving both LiDAR and
cameras, aiming to achieve better communication-performance trade-offs.

2.3 3D OBJECT DETECTION

3D object detection plays a critical role in autonomous driving perception systems, and has under-
gone rapid development. Early multi-view camera-based 3D object detection methods (Philion &
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Figure 2: Overview of the CoCMT framework. This system consists of two stages: the single-
agent independent prediction phase and the cooperative fusion prediction phase. The single-agent
independent prediction stage can utilize any query-based 3D object detection model and it retaining
the S-head (single-agent task head). The cooperative fusion prediction stage is composed of four key
components: Information Selection and Sharing, Spatial Alignment and Concatenation, the Efficient
Query Transformer, and Cooperative Taskheads. The MLN (Motion-aware Layer Normalization) is
employed to perform spatial alignment for the object query.

Fidler, 20205 Li et al., [2022b; |Liu et al.,|2023)) often relied on explicit view transformation or implic-
itly learned dense BEV features via Transformers to model the surrounding environment. To reduce
dependence on complex view transformation processes, some work (Liu et al.,2022; |Lin et al.,2022;
2023agb; |Yan et al.|, 2023 [Wang et al.l [2023) has explored sparse query techniques for efficiently
sampling features. Especially, PETR (Liu et al.l 2022)) initializes object queries using 3D refer-
ence points, where these queries interact with 2D image features with added position embeddings
within the Transformer decoder, directly learning spatial mappings from 2D to 3D. Sparse4D (Lin
et al.| 2022)) leverages 4D key points to initialize object queries for sparse 4D key feature sampling.
CMT (Yan et al., |2023) introduces the multi-modal 3D object detection framework by applying
coordinate encoding for both image and point cloud features.

3 CoCMT COOPERATIVE PERCEPTION FRAMEWORK

We present COCMT, illustrated in Figure [2] divided into two stages: the 1) single-agent prediction
stage and the 2) cooperative fusion prediction stage. We adopt the standard query-based learning
objective to train the single-agent perception. In the cooperative fusion prediction stage, we pro-
pose the Efficient Query Transformer (EQFormer) to restrict the interaction between object queries,
achieved by applying several layers of attention masks. To accelerate the convergence of the frame-
work and enhance the mutual reinforcement between the two stages, we propose a synergistic deep
supervision mechanism that provides deep supervision for both stages simultaneously.

3.1 SINGLE-AGENT INDEPENDENT PREDICTION STAGE

In the first stage, we employ a query-based 3D object detection model to extract object queries,
denoted as Q; € RV*P | where Q; represents the set of object queries extracted from agent 1.
Each agent generates IV queries with D-dimensional features. We select (); as the core intermedi-
ate features in the cooperative fusion prediction stage. Notably, unlike most cooperative perception
models that rely solely on the backbone for feature extraction, our approach retains the task heads
of the model at this stage. This retention allows us to incorporate additional predictive informa-
tion—specifically, the 3D object centers C; € R™ <3 and object class scores S; € RV*¢ —into the
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subsequent cooperative fusion prediction stage. By leveraging C; and \S; alongside ();, we enhance
the effectiveness of the cooperative fusion by utilizing richer single-agent predictive outputs.

3.2 COOPERATIVE FUSION PREDICTION STAGE

Information Selection and Sharing. Most query-based 3D object detection models initialize a large
set of object queries to improve query coverage and accelerate model training [Liu et al.| (2022); Li
et al.|(2022a); Yan et al.[(2023)). However, during training, only a small portion of the object queries
maintain strong associations with actual target objects, while the majority are predicted as back-
ground. These background object queries do not contribute significantly to detection performance
yet consume substantial transmission bandwidth when shared among agents. To address this issue,
we apply a Top-k strategy to the object queries (); based on the object classification scores S; output
from the previous stage. To balance effective fusion with reduced communication costs, we set k
to the maximum number of detectable objects by the connected and automated vehicles (CAVs).
After filtering, each CAV shares object queries ();, object centers C;, and object class scores .5;.
Additionally, the LiDAR poses of the CAVs are shared for subsequent spatial alignment.

Spatial Alignment and Fusion. Due to the spatial differences between the CAVs and the ego
vehicle, their object queries exhibit significant spatial discrepancies. To solve this issue, we apply
the Motion-aware Layer Normalization (MLN) (Wang et al.| 2023 to spatially align object queries.
Specifically, in our method, we first encode the transformation matrix £¢79 from the CAV to ego
vehicle and then applies an affine transformation to ).,,,. The object centers C.,, of the CAVs are
transformed into the ego vehicle’s coordinate using E299. After spatial alignment, we concatenate
Qego and Q.q, for further fusion operations: Quu = Qego + D _; Qcav, To handle the dynamic
number of connected vehicles in different V2V scenarios, we set the maximum number of connected

vehicles in the system to L and zero-padding the final query to maintain a fixed dimension of L x N.

Efficient Query Transformer. After obtaining the object query sequences Q,;;, we input them
into our Efficient Query Transformer (EQFormer). EQFormer consists of three query-based self-
attention blocks and utilizes the M, attention mask to enable targeted interactions for object queries.
My is a combination of three masking mechanisms specifically designed to address the challenges
of object query fusion. Further details of the EQFormer are discussed in Section [3.3]

Cooperative Task Head. The fused object query sequence () ysecq, processed by the Efficient
Query Transformer, is fed into the task head for 3D bounding box and object class prediction. We
normalize the object center sequences C' as reference points to accelerate model training. Then, a
bipartite matching algorithm (Carion et al.| (2020) is applied to assign the predicted results to the
ground truths in the manner. The details of the loss function are explained in Section

3.3 EFFICIENT QUERY TRANSFORMER

To address the challenges in object query fusion, we propose the Efficient Query Transformer (EQ-
Former), as shown in Fig. @ Our EQFormer introduces the Integrated Mask Miyergrate, Which in-
tegrates three distinct masking strategies. The first masking block is Query Selective Mask, which
is designed to prevent padded, invalid object queries from interfering with interactions. Then, to
mitigate interaction failures caused by significant contextual differences between object queries, we
develop the second masking block, Proximity-Constrained Mask, based on object centers, which re-
stricts interactions to spatially proximity object queries. After that, we propose the Score-Selective
Mask to focus interactions on object queries that are strongly related to the target, which is devel-
oped based on object class scores. Here, we construct the query-based self-attention block by using
Mhintergrare as the attention mask in the Multi-Head Self-Attention (MHSA) mechanism, combined
with the Feed-Forward Network, EQFormer is built by stacking three query-based self-attention
blocks to achieve efficient fusion of the object query sequences.

Query Selective Mask. To ensure that only valid object queries participate in interactions, we
designed a Query Selective Mask (QSM) mechanism, which masks out zero-padded object queries.
The matrix is defined as follows:

0 if0<i<ANand0<j < AN
1 otherwise

)

Mosmli, 7] = { Mosy € REXN)X(LXN) )
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(a) Construction process of the Integrated Mask (b) Efficient Query Transformer

Figure 3: EQFormer architecture. Figure (a) illustrates the construction process of the integrated
mask M. It consists of three mask mechanisms specifically designed to address the challenges
of object query fusion: Query Selective Mask, Proximity-Constrained Mask, and Score-Selective
Mask. Figure (b) shows the composition of the query-based self-attention block in EQFormer, which
contains query-based self-attention equipped with M, and a feed-forward network (FFN).

Positions beyond AN are assigned a value of 1, indicating masked object queries that are excluded
from interactions, ensuring only valid queries are involved.

Proximity-Constrained Mask. To ensure that only spatially relevant object queries engage in the
fusion stage, we introduce the Proximity-Constrained Mask (PCM). This mechanism limits interac-
tions based on the spatial proximity of the object centers corresponding to each object query. This
can potentially cause confusion during feature fusion, when object centers are too far apart, the con-
textual features between the corresponding queries may vary significantly. To address this, PCM
applies a distance threshold 7 to restrict interactions. Specifically, let Cy;; = {c1,¢o,...,cLxN}
represent object centers sequence, where c; denotes the object center corresponding to the i-th ob-
ject query. We define the spatial distance matrix D, with the element D;; representing the Euclidean
distance between the i-th and j-th object centers, formulated as: D;; = ||¢; — ¢;||. Based on the
matrix D and the distance threshold 7, we introduce the matrix of Proximity-Constrained Mask,
expressed as follows:

0, if Dij S T

M R(LXN)X(LXN). 2
1, ifDy>7 P € @

Mpemli, j] = { )
Here, the values in the spatial distance matrix exceeds the threshold 7, Mpcy, which are set to 1,
indicating that the corresponding object queries are masked. Conversely, Mpcy are set to 0, allowing
participation in interaction.

Score-Selective Mask. In the Information Selection and Sharing module, we employed a Top-k
filtering strategy to eliminate most of object queries predicted as background. To further restrict
interactions to object queries that are strongly associated with the object targets and improve fusion
efficiency, we introduced the Score-Selective Mask, which is an object class score-based masking
mechanism. Specifically, let S,y = {s1, s2, ..., SLxn } represent the object class score sequence,
where s; denotes the object class score of the i-th object query. Using the confidence threshold 6,
the matrix of the Score-Selective Mask is expressed as follows:

0, ifs; >0

M. R(LXN)X(LXN) 3
1 ifs; <6’ ssM € ) 3

Mssm,i = {

where the confidence threshold 6 is set to 0.20, aligning with the threshold used in post-processing.
If the object score s; is less than or equal to 6, Mggy are set to 1, indicating that the corresponding
object query is masked. Conversely, Mgsy are set to 0, allowing the corresponding object query to
participate in the fusion stage.
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Query-based Self-Attention Block. We integrate the above three object query interaction mech-
anisms into a unified mask, termed M,;, which serves as the Attention Mask input for the self-
attention block. This self-attention block and feed-forward network (FFN), form our query-based
self-attention block. These operations are formulated as follows:

M = (Mosm A Mpem A Mssm) V I 4

Attention(Q, K, V, M) = softmax (QKT + Mall) v, 5)
Vi,

qused = EQFormer(Qalla Mintergrale)- (6)

The object query sequences @, are fed into the EQFormer, achieving efficient fusion of object
queries from different CAVs, and output the fused object queries Qysed-

3.4 SYNERGISTIC DEEP SUPERVISION

In current cooperative perception systems, improving the accuracy of a single agent’s perception en-
hances the overall performance of the cooperative perception. This implies a positive reinforcement
between the Single-Agent Independent Prediction and the Cooperative Fusion Prediction Stages. To
achieve that, we introduce a Synergistic Deep Supervision approach and apply deep supervision to
both stages simultaneously. During the Single-Agent independent prediction stage, Qego(?) from
each layer of the ego vehicle’s decoder is fed into the Single-TaskHeads. In the collaborative fu-
sion prediction stage, Qfusea(j) from each layer of the EQFormer is fed into the Co-TaskHeads for
regression and classification prediction. These operations are formulated as follows:

Tsingle (), Csingle (¢) = Single-TaskHeads(Qego (7)), @)

fco (.7) ) éco (]) = CO'TaSkHeadS(qused (.7)) ) (8)

where Tingie (4) and 7¢o(j) represent the regression predictions at each stage, while Cgingle(2) and
¢eo(j) denote the classification predictions.

In our method, we utilize identical loss functions for both stages. The classification loss is based on
Cross-Entropy Loss, and the regression loss employs L; Loss. The loss functions are defined as:

I
Lsingle - Z (wl Lreg (Tsingle(i); fsingle(i)) + w2Lcls(Csingle(i)a ésingle ('L))) ) (9)
i=1
Leo = (w/lLreg<rco (])7 eo (])) + wéLcls(cco (.7)7 Ceo (.7))) » (10)

J
—

J
where w1, wsy, and w}, wj are the weights controlling the regression and classification losses in
the two stages. Deep supervision is applied in both stages to facilitate faster model convergence.
Therefore, our final loss function is:

L= wsingleLsingle + Weo Lo, (11
where wgingle and we, are weights that balance the contributions of the losses from the two stages.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

Datasets. We conducted extensive experiments on two multi-agent datasets: OPV2V (Xu et al.,
2022c) and V2V4Real (Xu et al., [2023b). OPV2V (Xu et al., 2022c) is a large-scale, multi-modal
simulated V2V perception dataset. The train/validation/test splits are 6,694/1,920/2,833, respec-
tively. V2V4Real (Xu et al.}2023b) is an extensive real-world cooperative V2V perception dataset,
which is split into 14,210/2,000/3,986 frames for training, validation, and testing, respectively.

Evaluation. Following (Xiang et al [2023), we evaluate three primary settings on this dataset: 1)
Homogeneous camera-based detection (V2V-C), 2) Homogeneous LiDAR-based detection (V2V-
L), and 3) Heterogeneous camera-LiDAR detection (V2V-H). We adopt Average Precision (AP) at
Intersection-over-Union (IoU) thresholds of 0.5 and 0.7 to evaluate the model performance. The
communication range between agents is set to 70m.
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Table 1: Main performance and bandwidth comparison on OPV2V and V2V4Real Dataset. To
further enhance model performance, we expanded the detection range of HMViT, PyramidFusion,
and CoCMT to [—102.4m, +102.4m] in the V2V-C setting of the OPV2V dataset. For CoOCMT, we
transmits the Topk(k=50) object queries during inference.

Dataset \ OPV2V \ V2V4Real
Seting | V2v.-C |  V2V.L |  V2V.H |  V2V.L | Bandwidth

Metric | APSOT AP701 | APSOT AP701 | APSOT AP701 | APSOT AP701 | (MP)
AttFusion 0447 0184 | 0895 0779 | 0624 0411 | 0701 0454 | 5368
CoBEVT 0466 0168 | 0933 0823 | 0811 0504 | 0.684 0404 | 1342
V2X-VIT 0.518 0259 | 0940 0830 | 0858 0667 | 0659 0426 | 1342
HM-ViT 0523 0278 | 0947 0861 | 0861 0699 | 0419 0419 | 1342
PyramidFusion | 0634 0412 | 0957 0921 | 0842 0765 | 0712 0460 | 13422

CoCMT (Late) 0.611 0.385 0.969 0.894 0.817 0.621 0.693 0.418 0.024
CoCMT (Interm) | 0.634 0.445 0.971 0911 0.879 0.771 0.710 0.471 0.416

4.2 EXPERIMENTAL SETUPS

Implementation Details. we employ the query-based 3D detection model, CMT (Yan et al.,|2023)),
as the primary model in the single-agent stage. For the Camera agent, we employ the CMT-C
variant, which utilizes ResNet-50 as the camera encoder. For the LiDAR agent, we employ the
CMT-L variant, which utilizes PointPillar as the LiDAR encoder. SPCONV2 (Contributors}, 2022)
is applied for voxelization of the point cloud data. In both stages, all feature dimensions are set to
256, including point cloud tokens, image tokens, and object queries.

Training strategy. For V2V-L, we adopt the training strategy described in Section We utilize
a Top-k selection strategy to transmit 120 object queries (¢ = 120). For V2V-H, we load the
single-agent model (CMT-C) weights along with the multi-agent model weights trained in the V2V-
L scenario. The Top-k selection strategy is applied to transmit k£ = 120 object queries. For V2V-C,
we train the model in an end-to-end manner, transmitting all 900 object queries.

Compared Methods. We adopt the late fusion method from the single-agent model of our frame-
work as the baseline, which aggregates detection results from all CAVs and generates the final out-
put. For the intermediate fusion methods, we benchmark five SOTA methods: ATTFuse (Xu et al.|
2022c), CoBEVT (Xu et al.,2022a), V2X-ViT (Xu et al.}|2022b), HMViT (Xiang et al., [2023)), and
HEAL (PyramidFusion) (Lu et al.,|2024). These approaches all use feature maps as the medium
for information exchange and employ LSS (Philion & Fidler, [2020) to construct BEV features for
camera branch. In our experiments, ResNet50 and PointPillar served as the backbone networks for
the camera and LiDAR branches, respectively.

4.3 QUANTITATIVE EVALUATION

Perception performance and bandwidth. Figure [l|demonstrates the trend of AP70 as a function
of bandwidth on the OPV2V dataset. Under the V2V-L, V2V-C, and V2V-H settings, at the same
bandwidth, our object-query-based model CoCMT significantly outperforms the feature-map-based
intermediate fusion models. Additionally, as the bandwidth decreases, the performance degradation
of the CoCMT is considerably smaller compared to the feature-map-based model, highlighting the
transmission efficiency of object query and their adaptability to bandwidth limitations. Table. [I]
presents a performance comparison on the OPV2V and V2V4Real datasets. Our proposed CoCMT
model transmits only the Top-k (k = 50) object queries during inference, requiring just 0.416
Mb of bandwidth, which reduces bandwidth consumption by 323x compared to the feature-map-
based SOTA intermediate fusion model. Despite the significant reduction in bandwidth, CoCMT
still demonstrates excellent performance across multiple settings: on the OPV2V dataset, AP70
outperforms the SOTA intermediate fusion model by 2.7 and 0.6 points in the V2V-C and V2V-
H settings, respectively; AP50 improves by 1.4 points in the V2V-L setting; and AP70 increases
by 1.1 points in the V2V-L setting of the V2V4Real dataset. This indicates that CoOCMT not only
offers significant transmission efficiency but also maintains superior performance in low-bandwidth
environments. Furthermore, CoCMT’s intermediate fusion method significantly outperforms the
single-agent late fusion method, particularly on the V2V4Real dataset, where AP70 and AP50 are
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improved by 5.3 and 1.7 points, respectively. This further highlights the performance advantages of
our object-query-based intermediate fusion method.

Efficient Inference Experiment. Figure. [4

demonstrates the performance variation of our Efiicient Inferents

model when reducing transmission bandwidth 2P e

during inference. Our model employs a class 0.8

score-based Top-k strategy during inference to

reduce the number of transmitted object query,  _ 0.6

thereby lowering transmission bandwidth. When &

the number of transmitted object query is re- <4 e S

duged frorri 120 Ef) 30Zi mgdeil pelrlform;lnce re- o NEL

mgm; nqar y unatfected. ny. when the trans- 0.2 CoCMT V2V-H

mission is reduced to 20, a slight performance —e— CoCMT V2V-C

drop is observed in the V2V-H and V2V-L set- 0.0+ - - )

tings. This indicates that our object score mask 10 éo — (I&I?)) 10

effectively limits interactions to only strongly re- a ) ]

lated object query. Figure 4: Top-k selection strategy at inference.

4.4 ALATION STUDY

Component A.blation Study. We conducted Table 2: Components ablation studies.

ablation experiments on the core design of

CoCMT, with results shown in Table[2} The re- EQFormer Mosm  Mpem  Mssw | APSOT  AP70 1

sults indicate that each design component sig- p 823? 8-2‘3‘?

nificantly enhances model performance. First, v v 0691 0440

the Query Selective Mask Mgy filters out v v v 0.721  0.465
v v v v 0710 0471

padded zero-value queries, preventing them
from interfering with the fusion process and en-
suring model stability. Second, the Proximity-Constrained Mask Mpcy restricts object query inter-
actions to spatially adjacent areas, enabling efficient and accurate fusion within a reasonable spatial
range. Lastly, the Score-Selective Mask Mggy further improves the focus of the fusion process by
limiting interactions to only those object queries highly relevant to the target. Combining these three
masking mechanisms allows EQFormer to fuse object queries effectively for optimal performance.

Proximity-Constrained Mask Distance Ablation. The dis-  Table 3: Mpcy distance ablation.
tance threshold in the Proximity-Constrained Mask directly in-
fluences the interaction range between object queries, which in Mpcu | APS0 T AP70 1

turn has a significant impact on model performance. In Table +00 0.690 0.419
El, we conducted an ablation study to evaluate the effects of 30m 0.696 0.440
different threshold values. When the threshold is set to infin- 20m 0.700 0.452
ity, meaning no proximity-constrained restrictions are applied 10m 0.710 0.471
to interactions between object queries (i.e., the Proximity- 5m 0.683 0.430

Constrained Mask is not used), the model’s performance sig-
nificantly declines. We believe this is due to the large contextual differences between object queries,
which lead to failed feature fusion. In contrast, when the distance threshold is set to 10 meters,
the model achieves optimal performance. Although increasing the threshold further expands the
interaction range, it also introduces unreasonable interactions between object queries that are too
far apart, ultimately resulting in reduced model performance. This demonstrates that the Proximity-
Constrained Mask plays a key role in improving model performance by effectively controlling the
interaction range between object queries.

4.5 QUALITATIVE EVALUATION

Detection visualization. Figure |5|presents the detection visualizations of CoCMT and Pyramid-
Fusion on the OPV2V and V2V4Real datasets. As shown in the V2V-C setting of OPV2V, our
CoCMT achieves higher detection accuracy, with predicted bounding boxes showing a greater over-
lap with ground truths. In the V2V-L setting of both OPV2V and V2V4Real dataset, COCMT detects
more dynamic objects, showcasing the efficiency of using object query as a medium for information
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Figure 5: Qualitative visualizations on the OPV2V and V2V4Real datasets. Green and red 3D
bounding boxes represent the ground truth and predictions, respectively. Key areas are highlighted
with yellow boxes. Our method provides more accurate detection results and identifies more targets.
Additional visualizations are provided in the supplementary materials.

transmission. In the V2V-H setting of OPV2V, CoCMT also achieves higher accuracy and broader
detection coverage within the detection range of connected camera agents, demonstrating that our
approach can effectively handle both homogeneous and heterogeneous multi-agent perception tasks
through a unified and concise architecture.

5 CONCLUSION

In this paper, we introduce the CoCMT framework to address the challenges of collaborative per-
ception in both homogeneous and heterogeneous multi-agent environments. By utilizing object
queries as the medium for information transmission, the framework significantly reduces bandwidth
consumption while enhancing the efficiency of collaborative perception. The Efficient Query Trans-
former (EQFormer) is designed with three masking mechanisms to precisely regulate interactions
between object queries, ensuring focused and efficient fusion. Additionally, the Synergistic Deep
Supervision mechanism applies deep supervision across both stages, accelerating model training.
Extensive experiments on both simulated and real-world datasets validate the bandwidth efficiency
of our proposed CoCMT framework, demonstrating its capability to achieve superior performance
compared to state-of-the-art methods with orders-of-magnitude bandwidth savings. We hope our
work will facilitate resource-constraint, communication-efficient collaborative perception frame-
works towards safer, more robust mobility systems.

Limitations. The single-agent model in our framework uses a DETR-based architecture. Com-
pared to anchor-based models, DETR-based models converge slowly and require higher training
costs. We could consider using the query denoising methods mentioned in (L1 et al.| 2022a; Zhang
et al.| |2022; Wang et al., |2023) to accelerate the model training. Additionally, our model is also
suitable for multi-modal cooperative perception, where each agent simultaneously uses both LIiDAR
and camera sensors. In our future work, we plan to explore this capability further using real-world
multimodal cooperative perception datasets.

Broader Impact. Our proposed CoCMT framework has the potential to significantly advance the
field of autonomous driving by improving the efficiency and scalability of cooperative perception
systems. However, the deployment of such systems also raises important considerations. First,
sharing information among vehicles involves transmitting sensitive information. To protect against
potential cyber-attacks or data breaches, robust encryption, and secure communication protocols
must be implemented. Furthermore, the increased reliance on automated systems may impact em-
ployment in the transportation sector and raise questions about accountability in the event of system
failures. In the future, researchers and engineers should handle these challenges responsibly.
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A APPENDIX

A.1 MULTI RANGE LABEL SELECTION

We adopted a multi-range label selection method and constructed corresponding ground truth for
two stages: Tsingle and Csingle for the single-agent independent prediction stage, and 7, and c¢,
for the cooperative fusion prediction stage. This strategy offers several advantages: not only does it
expand the cooperative perception detection range under the V2V-C setting, but it also reduces the
learning complexity during the cooperative fusion stage and effectively addresses challenges posed
by differing detection ranges of heterogeneous sensors in the V2V-H setting. We configured the
detection ranges and ground truth for the three cooperative perception settings: V2V-L, V2V-C, and
V2V-H. Using the OPV2V dataset as an example, the selection results are shown in Table.

Table 4: Specific Configuration Settings

Setting |  Ego Detection and GT Range (m) | Collaborative Detection and GT Range (m)
V2V-L | [-102.4,-102.4,4102.4,+102.4] | [-102.4,—102.4,+102.4, +102.4]
V2V-C | [-51.2, —51.2,+51.2, +51.2] \ [—102.4, —102.4, +102.4, +102.4]

L: [—102.4, —102.4, +102.4, +102.4]
C: [-51.2,-51.2, +51.2, +51.2]

V2V-H [—102.4, —102.4, +102.4, +102.4]

For V2V-C Setting: Unlike most cooperative perception methods Xiang et al.| (2023); [Lu et al.
(2024); Xu et al.| (2022a) that use a detection range of only 51.2m, we maintained the camera’s
detection range and ground truth of 51.2m in the single-agent independent prediction stage, while
extending the detection range to 102.4m during the cooperative fusion stage. Through a cooperative
deep supervision mechanism, the effective detection range for cooperative perception was success-
fully expanded.

For V2V-L Setting: Due to the larger detection range of the LiDAR, we used a 102.4m detection
range for both the single-agent prediction and cooperative fusion stages. To improve individual
vehicle detection performance, we introduced cooperative ground truth in the single-agent stage,
increasing the number of prediction labels, thereby reducing the difficulty of subsequent cooperative
fusion.

For V2V-H Setting: In the OPV2V Xu et al.[(2022c) dataset, the camera’s effective detection range
is 51.2m, while the LiDAR’s is 102.4m. Unlike HMViT [Xiang et al.,| (2023)), which simplifies
heterogeneous feature fusion by unifying the detection range to 102.4m, our framework flexibly
handles differences in detection ranges between heterogeneous sensors. In the single-agent inde-
pendent prediction stage, each sensor used its effective detection range and ground truth. During
the cooperative fusion prediction stage, we unified the detection range to 102.4m, leveraging the
cooperative ground truth to further improve the accuracy of individual vehicle predictions.

A.2 DETECTION VISUALIZATION

13
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Figure 6: Qualitative comparison on scenarios 1-4 under V2V-L setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and prediction, respectively. Our
method detected more dynamic objects.
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Figure 7: Qualitative comparison on scenarios 1-4 under V2V-C setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and prediction, respectively. Our
method produced more accurate detection results.
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Figure 8: Qualitative comparison on scenarios 1-4 under V2V-H setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and predictions, respectively. Our
method produced more accurate detection results and resulted in fewer false detection boxes.
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Figure 9: Qualitative comparison on scenarios 1-4 in the V2V4Real dataset. The green and red
bounding boxes represent the ground truth and predictions, respectively. Our method produced more
accurate detection results.
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