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ABSTRACT

Offline reinforcement learning (RL) is a powerful approach for data-driven
decision-making and control. Compared to model-free methods, offline model-
based reinforcement learning (MBRL) explicitly learns world models from a static
dataset and uses them as surrogate simulators, improving the data efficiency and
enabling the learned policy to potentially generalize beyond the dataset support.
However, there could be various MDPs that behave identically on the offline
dataset and so dealing with the uncertainty about the true MDP can be chal-
lenging. In this paper, we propose modeling offline MBRL as a Bayes Adaptive
Markov Decision Process (BAMDP), which is a principled framework for address-
ing model uncertainty. We further introduce a novel Bayes Adaptive Monte-Carlo
planning algorithm capable of solving BAMDPs in continuous state and action
spaces with stochastic transitions. This planning process is based on Monte Carlo
Tree Search and can be integrated into offline MBRL as a policy improvement op-
erator in policy iteration. Our “RL + Search” framework follows in the footsteps
of superhuman AIs like AlphaZero, improving on current offline MBRL methods
by incorporating more computation input. The proposed algorithm significantly
outperforms state-of-the-art model-based and model-free offline RL methods on
twelve D4RL MuJoCo benchmark tasks and three target tracking tasks in a chal-
lenging, stochastic tokamak control simulator.

1 INTRODUCTION

The success of reinforcement learning (RL) typically relies on large amounts of interactions with
the environment. However, in real-world scenarios, such interactions can be unsafe or costly. As
an alternative, offline RL (Levine et al. (2020)) leverages offline datasets of transitions, collected
by a behavior policy, to train a policy that can transfer to an online task. To avoid overestima-
tion of the value function for some (out-of-sample) states in the environment, which can mislead
policy learning, model-free offline RL methods (Kumar et al. (2020); Wu et al. (2019)) often con-
strain the learned policy to remain close to the behavior policy or within the support of the offline
dataset. However, collecting transitions that comprehensively cover possible task scenarios, or ac-
quiring a large volume of demonstrations from a high-quality behavior policy, can be expensive.
This challenge has led to the development of offline model-based reinforcement learning (MBRL)
approaches, such as (Lu et al. (2022); Guo et al. (2022)). These methods train dynamics models from
offline data and optimize policies using imaginary rollouts generated by the models. Notably, the
dynamics modeling is independent of the behavior policy, making it possible to achieve high returns
even with data collected from a random policy. Furthermore, with careful dynamics modeling and
thorough simulation, the learned policy can more effectively handle the environmental stochasticity
and generalize to states beyond the support of the offline dataset.

Given a dataset, there may be various potential MDPs that behave identically on the limited set
of states and actions, but their dynamics and reward functions could differ, especially on out-of-
sample states and actions. This implies that we are dealing with a distribution of possible world
models underlying the dataset. A common strategy in offline MBRL is to learn an ensemble of
world models and treat them equally. For instance, when determining the next state, a world model
is uniformly sampled from the ensemble and generate its prediction. However, different ensemble
members may perform better in different regions of the state-action space, making it necessary to
adapt the belief over each ensemble member based on the experience accumulated since the start
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of the episode. The Bayes Adaptive Markov Decision Process (BAMDP, Duff (2002)) provides a
principled framework for modelling such an adaptive process. We show in Section 4.1 that, despite
the need for Bayesian posterior updates, BAMDPs can still be efficiently simulated using deep en-
sembles. BAMCP (Guez et al. (2013)) is an efficient online planning method for solving BAMDPs.
However, BAMCP has several limitations: (1) it relies on a ground-truth world model for planning;
(2) it is restricted to discrete state and action spaces; and (3) its outcome is an action choice at a
particular state, rather than a policy function. To address these challenges: (1) we apply a reward
penalty (defined with the adapting belief) to construct a pessimistic BAMDP, preventing overex-
ploitation of inaccurate world models (learned from the offline dataset); (2) we propose a novel
planning algorithm to solve BAMDPs in continuous state and action spaces by extending BAMCP
with double progressive widening (Auger et al. (2013)); and (3) we integrate the planning compo-
nent as a policy improvement operator within policy iteration RL methods (Sutton & Barto (2018)),
enabling the derivation of a policy suitable for real-time execution from the planning results. Specifi-
cally, the planning process is carried out through Monte Carlo Tree Search on a BAMDP. Integrating
search with RL allows for the use of significantly more computation input, thereby improving policy
learning performance. Grounded in the “scaling law”, this paradigm has seen tremendous success in
sophisticated policy learning, as demonstrated in (Silver et al. (2017b); Schrittwieser et al. (2020);
AlphaProof & AlphaGeometry (2024)). Its application to offline MBRL, particularly in continuous
control tasks, is a promising area for exploration.

To summarize, the main contributions of this work include: (1) Introducing BAMDPs to handle
model uncertainties in offline MBRL; (2) Proposing an efficient Bayes Adaptive Monte Carlo Tree
Search method for planning in continuous, stochastic BAMDPs; (3) Developing the first algorithm to
successfully integrate Bayesian RL, offline MBRL, and deep search for sophisticated policy learning
in continuous control under highly stochastic environments; (4) Demonstrating the improvements
brought by Bayesian RL and deep search across twelve D4RL MuJoCo tasks and three target track-
ing tasks in a stochastic tokamak control scenario (for nuclear fusion), highlighting the potential of
our algorithm to tackle challenging, real-world problems.

2 BACKGROUND

A Markov Decision Process (MDP, Puterman (2014)) is described as a tupleM = ⟨S,A,P,R, γ⟩.
S and A are the state space and action space, respectively. P : S × A → ∆S is the dynamics
function and R : S × A → ∆[0,1] is the reward function, where ∆X denotes the set of possible
probability distributions on X . γ ∈ [0, 1) is a discount factor. A Bayes Adaptive MDP (BAMDP,
Duff (2002)) can model scenarios where the precise MDPMθ = ⟨S,A,Pθ,Rθ, γ⟩ is uncertain but
is known to follow a prior distribution b0(θ). During planning, a Bayes-optimal agent would up-
date its belief over the MDP based on experience. Formally, a BAMDP can be described as a tuple
M+ = ⟨S+,A,P+,R+, γ⟩. S+ denotes the space of information states (s, b), which is a com-
position of the physical state and the current belief over the MDP. After each transition (s, a, r, s′),
the belief is updated to the corresponding Bayesian posterior: b′(θ) ∝ b(θ)P ((s, a, r, s′)|θ) =
b(θ)Pθ(s′|s, a)Rθ(r|s, a). Accordingly, P+ andR+ can be defined as follows:

P+((s′, b′′)|(s, b), a) = 1(b′′ = b′)

∫
θ

Pθ(s′|s, a)b(θ)dθ, R+((s, b), a) =

∫
θ

Rθ(s, a)b(θ)dθ (1)

The Q-function that satisfies the Bellman optimality equations: (∀x = (s, b) ∈ S+, a ∈ A)

Q∗(x, a) = R+(x, a) + γ

∫
x′
V ∗(x′)P+(x′|x, a)dx′, V ∗(x′) = max

a
Q∗(x′, a) (2)

is the Bayes-optimal Q-function and π∗(s, b) = argmaxaQ
∗((s, b), a) is the Bayes-optimal policy.

Actions derived from π∗ are executed in the real MDP and constitute the best course of action for
a Bayesian agent with respect to its prior belief b0 over the environment (Guez et al. (2014)). A
BAMDP can be cast into a partially observable MDP (POMDP, Littman (2009)) by viewing S+ and
S as the state and observation spaces, respectively. As a result, approaches developed for POMDPs
can potentially be used to solve BAMDPs.

Bayesian Reinforcement Learning (BRL, Ghavamzadeh et al. (2015)), as introduced above, is a prin-
cipled approach to dealing with uncertainty in the world modelMθ and has two main advantages:
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(1) Domain knowledge can be injected by defining a proper prior belief; (2) A Bayes Adaptive policy
solves the exploration-exploitation dilemma by explicitly including the belief in its state representa-
tion and incorporating belief updates into the planning process (Sorg et al. (2010)). Bayes-optimal
planning is generally intractable, and we introduce some approximate methods in the next section.

3 RELATED WORKS

Offline model-based RL: Offline RL (Chen et al. (2024)) enables an agent to learn control poli-
cies from datasets of environment transitions pre-collected by a behavior policy µ, i.e., Dµ =
{[(sit, ait, rit)Tt=1]

N
i=1}. Offline Model-based RL (MBRL) methods explicitly learn world modelsMθ

from Dµ and adoptMθ as a surrogate simulator, enabling the learned policy to possibly generalize
to states beyond Dµ. Specifically, both planning methods (Argenson & Dulac-Arnold (2021); Zhan
et al. (2022); Diehl et al. (2023)) and RL methods (Yu et al. (2020); Kidambi et al. (2020); Lu et al.
(2022); Yu et al. (2021); Guo et al. (2022)) can be applied on top of the learned Mθ to obtain a
policy. However, since Dµ may not span the entire state-action space, Mθ is unlikely to be glob-
ally accurate. Learning/Planning without any safeguards against such model inaccuracy can yield
poor results. In this case, the authors of (Yu et al. (2020); Kidambi et al. (2020); Lu et al. (2022))
propose learning an ensemble of world models, using ensemble-based uncertainty estimations to
construct a pessimistic MDP (P-MDP), and learning a near-optimal policy atop it. Ideally, for any
policy, the performance in the real environment is lower-bounded by the performance in the corre-
sponding P-MDP (with high probability), thus avoiding being overly optimistic about an inaccurate
model. Notably, none of these offline MBRL methods have modeled the problem as a BAMDP, even
though Bayesian RL provides a principled framework for handling model uncertainty.

MCTS for model-based RL: Monte-Carlo Tree Search (MCTS, Browne et al. (2012)) has been
successfully integrated with RL, as exemplified by AlphaZero (Silver et al. (2017a)) and MuZero
(Schrittwieser et al. (2020)). These methods have achieved superhuman performance in domains
requiring highly sophisticated decision-making processes. AlphaZero relies on given world models,
whereas MuZero learns the world model and policy simultaneously by interacting with the environ-
ment. Although there have been various extensions of MuZero (Hubert et al. (2021); Schrittwieser
et al. (2021); Ye et al. (2021); Antonoglou et al. (2022); Oren et al. (2022); Zhao et al. (2024)),
most algorithms are designed for online MBRL. According to Niu et al. (2023), the applications
of MuZero in offline learning, especially for continuous control in highly stochastic environments,
which is our focus, still require significant improvement. Our algorithm design differs from MuZero
in several key ways: (1) MuZero integrates model learning and policy training into a single stage,
using a world model defined in a latent state space. Our algorithm separately learns a world model
and then trains the policy on top of it, aligning with the widely-adopted offline MBRL framework.
(2) MuZero employs a single latent model (rather than an ensemble) and does not account for un-
certainty in dynamics or reward predictions. (3) We introduce double progressive widening (Auger
et al. (2013)) and Bayes-adaptive planning into MCTS, making our core planning algorithm novel.

Bayes-adaptive planning: Bayes-optimal planning is typically intractable. Approximate methods,
such as (Asmuth et al. (2009); Sorg et al. (2010); Castro & Precup (2010); Asmuth & Littman
(2011); Wang et al. (2012); Fonteneau et al. (2013); Guez et al. (2013); Slade et al. (2020)) have
been developed. As a representative work, BAMCP (Guez et al. (2013)) adopts MCTS for Bayes-
adaptive planning and is shown to converge in probability to a near Bayes-optimal policy at the root
node of the search tree. However, all these methods cannot be directly applied to large-scale MDPs
with continuous state and action spaces. Moreover, these planning algorithms are not designed for
offline MBRL. Thus, how to incorporate search-based planning for policy improvement in RL and
how to handle the model uncertainty during planning still require exploration.

To sum up, our algorithm introduces a Bayesian approach to offline MBRL and leverages tree search
to enhance policy learning. There has been related research in both directions. (1) Dorfman et al.
(2021); Choshen & Tamar (2023) propose to model offline Meta RL as a BAMDP and learn a belief-
conditioned policy capable of adapting to different underlying MDPs for multi-task purposes. Ghosh
et al. (2022) apply the BAMDP framework to model-free offline RL, arguing that optimal policies for
offline RL should be adaptive to all observed transitions. Nevertheless, these works do not explore
the Bayesian treatment of model-based RL. (2) Model-based planning results can be utilized to
improve the sample efficiency of model-free RL. For instance, Feinberg et al. (2018) propose Model-
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based Value Expansion. It uses the learned world model to generate imaginary rollouts, providing a
more accurate estimation of value function targets for online actor-critic training. This idea is later
extended to the offline RL setting by Jeong et al. (2023). However, they do not employ BAMDP
for uncertainty treatment, and, compared to model-based rollouts, MCTS can offer more exhaustive
exploration, crucial for tackling complex tasks.

4 METHODOLOGY

We propose a novel offline MBRL algorithm based on Bayes Adaptive MCTS. The core challenge
is to design a Bayes Adaptive planning method that is efficient in large stochastic MDPs. In this
case, we propose Continuous BAMCP in Section 4.2, which can be applied to continuous control
tasks with high dynamics stochasticity. Then, in Section 4.3, we present a search-based policy
iteration framework, where the search results are distilled into policy and value networks for policy
improvement and policy evaluation, respectively, at each iteration. In this way, we integrate offline
MBRL with Bayes Adaptive MCTS. Both components require the use of an ensemble of world
models for either practical implementation or uncertainty quantification, as detailed in Section 4.1.

4.1 THE KEY ROLE OF DEEP ENSEMBLES

Offline MBRL methods estimate world modelsMθ from a static datasetDµ, which would inevitably
induce epistemic uncertainty about the identity of the real MDPM∗. Specifically, there could be
various potential MDPs that behave identically on the limited set of states and actions in Dµ, but
their dynamics and reward functions may differ, especially on out-of-sample states and actions.
Thus, we are actually dealing with a distribution of world models that follow a prior distribution
b0(θ) ≜ P (Mθ|Dµ). As introduced in Section 2, Bayesian RL based on BAMDP is a principled
framework for handling model uncertainty by explicitly including the belief over the models in its
state representation. Essentially, the belief is updated with experience, providing a measure of how
the models’ uncertainty has changed since the beginning of the episode. As a result, the agent can
adjust its behavior upon receiving new information that reduces the epistemic uncertainty. Such an
adaptive policy is necessary to act optimally in offline RL, as demonstrated in (Ghosh et al. (2022)).

The idea of deep ensembles (Lakshminarayanan et al. (2017)) is to train multiple deep neural net-
works as approximations of a function, each using a different weight initialization and optimized
with a different mini-batch sequence. For offline MBRL, we can learn an ensemble of dynamics
models {P1

θ , · · · ,PKθ } and reward models {R1
θ, · · · ,RKθ }1 from the dataset Dµ by minimizing the

following supervised learning loss: (i = 1, · · · ,K)

L(Piθ) = −E(s,a,s′)∼Dµ

[
logPiθ(s′|s, a)

]
, L(Riθ) = −E(s,a,r)∼Dµ

[
logRiθ(r|s, a)

]
(3)

{(Piθ,Riθ)Ki=1} can be viewed as a set of independent and identically distributed (IID) samples from
the prior P (Mθ|Dµ) and constitute a finite approximation of the space of world models. With such
an ensemble, the belief over the world models can be converted to a mass function over a set of K
items, where the i-th element denotes the probability of being in the MDP (Piθ,Riθ). In this case, a
reasonable prior distribution is b0(θ) = [1/K, · · · , 1/K], since these models are IID prior samples.
After receiving a transition (s, a, r, s′), the belief can be updated as follows:

b′(θ)(i) = xi/

K∑
j=1

xj , xi = b(θ)(i)Piθ(s′|s, a)Riθ(r|s, a) (4)

This update requires a single inference from each ensemble member, but can be parallelized for
computational efficiency. Equation (4) is a practical implementation of the Bayesian posterior update
based on deep ensembles, where b(θ), b′(θ), and Piθ(s′|s, a)Riθ(r|s, a) denote the prior, posterior
distributions, and likelihood, respectively. This simplified definition of b(θ) also enables efficient
execution of transitions in Bayesian RL, as described in Equation (1).

The ensemble can also be used for uncertainty quantification. As aforementioned, our algorithm re-
lies on thorough search on the learned world models. Without any constraints on the search process,

1In some MBRL scenarios, a certain reward function is available, for instance, as defined by domain experts.
Otherwise, the reward and dynamics function (Ri

θ,Pi
θ) are usually trained as a unified probabilistic model

N (µi
θ, σ

i
θ), since the reward r can be viewed as an element of the next state s′.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Continuous BAMCP

Input: π, V , E, dmax, γ, α, β, P1:K
θ ,R1:K

θ
procedure SEARCH((s, h), b(θ))

for e = 1 · · ·E do
SIMULATE((s, h), b(θ), dmax)

end for
vret =

∑
a∈C((s,h))

N((s,h),a)
N((s,h)) Q((s, h), a)

return πret, vret
end procedure
procedure SIMULATE((s, h), b(θ), d)

if d == 0 then return V ((s, h))
a← ACTIONPW((s, h))
r, s′, b′(θ)← STATEPW((s, h), b(θ), a)
N((s, h)) += 1, N((s, h), a) += 1
if N((s, h)) > 1 then

R← SIMULATE((s′, hars′), b′(θ), d−1)
else

R← V ((s′, hars′))
end if
Access r̃ or calculate r̃ using Eq. (5)
R← r̃ + γR, cache r̃

Q((s, h), a) += R−Q((s,h),a)
N((s,h),a)

return R
end procedure

procedure ACTIONPW((s, h))
if first visit then C((s, h))← ∅
if ⌊N((s, h))α⌋ ≥ |C((s, h))| then

a ∼ π(·|(s, h))
C((s, h))← C((s, h)) ∪ {a}
N((s, h), a), Q((s, h), a)← 0, 0

else
a← argmaxx∈C((s,h)) Q̃((s, h), x)

end if
return a

end procedure
procedure STATEPW((s, h), b(θ), a)

if first visit then C((s, h), a)← ∅
if
⌊
N((s, h), a)β

⌋
≥ |C((s, h), a)| then

r ∼
∑K
i=1 b(θ)(i)Riθ(·|s, a)

s′ ∼
∑K
i=1 b(θ)(i)Piθ(·|s, a)

Update b(θ) to b′(θ) using Eq. (4)
C((s, h), a)← C((s, h), a) ∪ {(r, s′, b′(θ))}
N((s′, hars′))← 0
return r, s′, b′(θ)

end if
return the least visited node in C((s, h), a)

end procedure

the learned policy may overfit to an inaccurate model (by overestimating the expected return) and fail
in the true MDP. Although the agent could adapt its belief and follow more reliable ensemble mem-
bers in the Bayesian RL framework, there could be regions in the state-action space where none of
the members generalize well, as they are all learned from a static offline dataset. A typical solution is
to construct a P-MDP (see Section 3), which lower-bounds the true MDP and discourages the policy
from regions where there is large discrepancy between the true and learned world models. We con-
struct the P-MDP by modifying each reward estimation r into r̃: (µθ(s, a) =

∑K
i=1 b(θ)(i)µ

i
θ(s, a))

r̃(s, a, r, b(θ)) = r − λ

√√√√ K∑
i=1

b(θ)(i)(σiθ(s, a)
2 + µiθ(s, a)

2)− µθ(s, a)2 (5)

The reward penalty is weighted by a hyperparameter λ > 0 and corresponds to the standard deviation
(std) of the mixture of Gaussian dynamics models, where µiθ and σiθ are the mean and std from the
ensemble member i. This penalty design combines epistemic and aleatoric model uncertainty and
has been shown to be successful at capturing errors in predicted dynamics (Lu et al. (2022))2.

4.2 BAYES ADAPTIVE MCTS IN CONTINUOUS STATE AND ACTION SPACES

BAMCP (Guez et al. (2013)) has been successful in solving large-scale BAMDPs, as detailed in
Appendix A, but it is limited to scenarios with discrete state and action spaces. In this subsection,
we introduce a novel planning method to approximate the Bayes-optimal policy at a decision point
(s, h) (h denotes the transition history that ends at s), which can be used to solve BAMDPs with
continuous states/actions and stochastic transition kernels.

Double Progressive Widening (DPW): DPW (Couëtoux et al. (2011); Auger et al. (2013)) is a
technique to extend the use of MCTS to continuous state and action spaces. Instead of exploring all
possible actions and next states, DPW maintains a finite list of options to search at each decision

2In the original literature (Lakshminarayanan et al. (2017); Lu et al. (2022)), the ensemble is treated as a
uniformly-weighted mixture model, i.e., b(θ)(i) = 1/K, (i = 1, · · ·K), since their belief is not adaptive.
Equation (5) fits into the Bayesian RL framework by adapting the belief b(θ), which is part of our novelty.
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point, incrementally adding new options to the list based on the visitation counts of that decision
point. To be specific, for a node (s, h), a new action a is sampled (with the current policy π) and
added to its children set C((s, h)), if ⌊N((s, h))α⌋ ≥ |C((s, h))|, where α ∈ (0, 1) is a hyperparam-
eter that controls the growth rate and N denotes the visitation counts of (s, h). Otherwise, an action
is selected from the existing children set C((s, h)) according to the UCT (Kocsis & Szepesvári
(2006)) rule. Similarly, to handle the infinitely many possible state transitions, a new next state
s′ is added to the children set C((s, h), a) only if

⌊
N((s, h), a)β

⌋
≥ |C((s, h), a)| (β ∈ (0, 1)).

Otherwise, the least visited child in C((s, h), a) will be selected as the next state. With DPW, the
sets of possible actions or next states to explore are finite, allowing deep tree search as in discrete
scenarios. The more promising states and actions (with higher N ) have more subsequent branches,
thereby reducing corresponding estimation uncertainty.

Integration of DPW and BAMCP: Directly combining DPW and BAMCP (i.e., Algorithm 3) can-
not solve BAMDPs with continuous state and action spaces. As introduced in Appendix A, BAMCP
relies on root sampling, which samples dynamics functions only at the root node and follows a spe-
cific dynamics function throughout a simulation rollout. However, the rationale of root sampling
(i.e., Lemma A.1) does not hold when applying DPW3. As an alternative design, Polynomial Upper
Confidence Tree (PUCT, Auger et al. (2013)), built upon DPW, is a provably consistent planning
method for solving MDPs with infinite-scale state and action spaces and highly stochastic transi-
tion dynamics. Thus, we propose casting BAMDPs into MDPs (i.e.,M+ defined in Section 2) and
solving them with PUCT. The pseudo code is shown as Algorithm 1. Ideally, as the number of
simulations E →∞, PUCT can find a near-optimal solution ofM+ (Auger et al. (2013)), which is
also a near Bayes-optimal solution for the true environment.

Proposed algorithm – Continuous BAMCP: In Algorithm 1, each simulation follows a path from
the root node to an unvisited node, utilizing progressive widening when sampling actions or next
states, as detailed in the ACTIONPW and STATEPW procedures. Compared to PUCT, the signif-
icant modifications include: (1) replacing ⟨S,P,R⟩ in MDPs with their extended definitions in
BAMDPs, i.e., ⟨S+,P+,R+⟩, and (2) applying reward penalties to account for model uncertainty.
To be specific, in STATEPW, r and s′ are sampled from the distribution predicted by all ensemble
members, which is a practical implementation of sampling fromR+ and P+ as outlined in Eq. (1).
After receiving the transition (s, a, r, s′), the belief vector b(θ) is updated to b′(θ) following Eq.
(4), finishing the transition in S+ from (s, b(θ)) to (s′, b′(θ)). Meanwhile, the transition history h
is updated to h′ = hars′. Secondly, in SIMULATE, the reward r is adjusted with a penalty term
defined in Eq. (5), which is then used to calculate the return R. Applying such a reward penalty can
effectively mitigate the issue of model exploitation.

Algorithm 1 can be used to approximate the Bayes-optimal policy at (s, h), which is πret(a|(s, h)) ∝
N((s, h), a)), a ∈ C((s, h) (Auger et al. (2013)). However, we aim to solve the entire BAMDP
offline, eliminating the need for anything beyond simple inference using the policy network during
deployment. This necessitates a well-learned policy function at each decision point, but we cannot
execute Algorithm 1 at every (s, h) due to the scale of the state space. Therefore, we integrate
the planning algorithm into a policy iteration framework as introduced in the next subsection. In
this case, π and V in Algorithm 1 denote the policy and value functions from the previous learning
iteration4; while πret and vret are the improved policy and value estimates for specific decision points.
As additional details, multiple terms (labeled in blue) in Algorithm 1 have alternative designs across
different literatures, which we elaborate on in Appendix B.

4.3 THE OVERALL FRAMEWORK: SEARCH-BASED POLICY ITERATION

In this subsection, we present how to integrate continuous BAMCP into policy improvement and
policy evaluation. By iteratively running these procedures, we can approach a near Bayes-optimal
policy, i.e., π, that can be directly referred to during execution in the true environment. The pseudo
code of the overall framework is shown as Algorithm 2. For efficiency, a learner and a number of

3The last equality of Eq. (6) does not hold, since b̃(θ|has′) ∝ b̃(θ|ha)P̃θ(s
′|s, a) ̸= b̃(θ|ha)Pθ(s

′|s, a).
P̃θ(s

′|s, a) represents the state transition distribution when applying DPW, which differs from the true distri-
bution Pθ(s

′|s, a), as dictated by the DPW rule.
4π and V are functions of (s, h) because the states in BAMDPs consist of both s and the corresponding

belief b(θ), with b(θ) being a function of the history h (according to its recursive updating rule).
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Algorithm 2 Search-based Policy Iteration

Input: T , El, P1:K
θ ,R1:K

θ

Initialize π and V , D ← ∅
procedure LEARNER

e← 0
while true do
{(s, h, πret, r̃, s

′, h′)i}Bi=1 ∼ D
minπ L(π, {(s, h, πret)i}Bi=1)
minV LTD(V, {(s, h, r̃, s′, h′)i}Bi=1)
e += 1
Update π, V in ACTOR if e%El == 0

end while
end procedure
L(π, {τi}Bi=1) = −

∑
((s,h),πret)

πT
ret log π(·|(s, h))/(BT )

procedure ACTOR
while true do

Sample s from Dµ, h← s, τ ← []
Obtain the prior b(θ) at s
for t = 1 · · ·H do

πret, vret ← SEARCH((s, h), b(θ))
a ∼ πret(·|(s, h))
Acquire r, s′, b′(θ) as in STATEPW
Calculate r̃ using Eq. (5)
Append τ with ((s, h), r̃, πret, vret)
s, h, b(θ)← s′, hars′, b′(θ)

end for
D ← D ∪ {τ}

end while
end procedure

actors execute in parallel, reading from and sending data to the replay buffer D respectively. The
actors update their copies of policy and value functions every El learner steps.

Each actor interacts with the learned world models to sample trajectory segments τ . The starting
states of these segments are sampled from the provided dataset Dµ. Notably: (1) the segment
length H is kept relatively short to minimize error accumulation when interacting with the learned
world models; and (2) the prior belief at a starting state s is obtained by performing the Bayesian
posterior update (i.e., Eq. (4)) on the offline trajectory to which s belongs. These belief updates
are reliable, as the offline trajectories are collected from the real environment. At each time step of
the segment, a SEARCH procedure (defined in Algorithm 1) is executed at the current decision point
(s, h). The search result πret is then used to indicate the action choice, i.e., a ∼ πret(·|(s, h)). As in
STATEPW, the subsequent transition process follows a BAMDP, where r ∼ R+(·|(s, h), a), s′ ∼
P+(·|(s, h), a), and the belief b(θ) is adapted with the new transition. The collected segments are
used in the learning process, where π is trained to mimic the search result πret by minimizing a cross-
entropy loss (i.e., L(π, {τi}Bi=1)), while V is updated using standard temporal difference learning
methods (e.g., SAC (Haarnoja et al. (2018))) based on the sampled transitions.5 As noted in (Hubert
et al. (2021)), πret improves π at each decision point, so repeatedly applying continuous BAMCP to
obtain πret and projecting the search results to the parameter space of π (through supervised learning)
constitute a powerful improvement operator to iteratively enhance the policy π.

5 EVALUATION

Our experiments target at the following research questions: (RQ1) Would using BAMDP improve
policy performance (by properly adapting the belief over the ensemble members)? (RQ2) Can the
proposed search method, Continuous BAMCP, further enhance the performance of MBRL? (RQ3)
How can the search outcomes (i.e., πret) be effectively used for policy updates? (RQ4) Is it necessary
to apply reward penalties to mitigate the overestimation issue? (RQ5) Does the proposed algorithm
outperform other deep-search-based offline RL methods, such as MuZero and its variants? (RQ6)
Can the proposed algorithm be applied to complex, real-world data-driven control tasks? We address
the first four research questions in Section 5.1, RQ5 in Section 5.2, and RQ6 in Section 5.3.

5.1 BENCHMARKING RESULTS ON D4RL MUJOCO TASKS

To evaluate the effectiveness of each component in our algorithm design, we introduce three variants:
(1) BA-MBRL leverages learned world models as surrogate simulators, applying reward penalties
to collected transitions and using standard online RL algorithms (e.g., SAC) to learn a policy. While

5The search result vret can be used to construct the value target; however, we did not observe empirical
performance improvements from it.
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Data Type Environment BA-MCTS
-SL (ours)

BA-MCTS
(ours)

BA-MBRL
(ours) Optimized COMBO MOReL MOPO

random HalfCheetah 29.20± 2.00 36.23± 1.04 32.76± 1.16 31.7 38.8 25.6 35.4
random Hopper 33.83± 0.10 31.56± 0.12 31.47± 0.03 12.1 17.9 53.6 11.7
random Walker2d 21.89± 0.07 21.59± 0.32 21.45± 0.53 21.7 7.0 37.3 13.6
medium HalfCheetah 70.47± 3.52 75.84± 3.81 56.54± 5.20 45.7 54.2 42.1 42.3
medium Hopper 97.75± 7.09 96.70± 14.0 98.25± 3.42 69.3 97.2 95.4 28.0
medium Walker2d 82.24± 1.85 74.73± 3.25 75.41± 4.17 79.7 81.9 77.8 17.8

med-replay HalfCheetah 61.16± 1.60 65.45± 0.81 62.50± 0.18 58.0 55.1 40.2 53.1
med-replay Hopper 106.3± 0.13 101.8± 3.46 93.91± 4.25 90.8 89.5 93.6 67.5
med-replay Walker2d 92.13± 5.13 95.06± 2.11 97.54± 1.93 65.8 56.0 49.8 39.0
med-expert HalfCheetah 80.53± 6.63 76.16± 10.3 90.52± 4.13 104.2 90.0 53.3 63.3
med-expert Hopper 112.2± 0.29 108.3± 0.22 107.8± 0.37 105.8 111.1 108.7 23.7
med-expert Walker2d 107.7± 0.82 110.0± 1.74 84.71± 0.87 97.1 103.3 95.6 44.6

Average Score 74.62 74.45 71.06 65.16 66.83 64.42 36.67

Table 1: Comparisons between the proposed algorithms and SOTA offline model-based RL methods
on the D4RL benchmark suite. Each value represents the normalized score, as proposed in (Fu et al.
(2020)), of the policy trained by the corresponding algorithm. These scores are undiscounted returns
normalized to approximately range between 0 and 100, where a score of 0 corresponds to a random
policy and a score of 100 corresponds to an expert-level policy. For our algorithms, we report the
average score of the final ten policy learning epochs and its standard deviation across three random
seeds. Results in the last four columns are taken from the original papers (Lu et al. (2022); Yu et al.
(2021); Kidambi et al. (2020); Yu et al. (2020)), respectively.

following existing offline MBRL methods, it models the problem as a BAMDP (rather than an
MDP), with environment transitions defined by Equations (1) and (4) and the reward penalty by
Equation (5), and is designed to evaluate the effectiveness of Bayesian RL. (2) BA-MCTS builds
on BA-MBRL by introducing Continuous BAMCP (Algorithm 1) to plan at decision points, rather
than inferring directly from the policy, to generate trajectories for downstream SAC, demonstrating
the impact of deep search on policy learning. (3) BA-MCTS-SL, described in Algorithm 2, replaces
the policy learning algorithm in BA-MCTS from policy gradient methods (as in SAC) with super-
vised learning (SL), allowing us to compare which approach offers a more efficient policy update
mechanism, particularly for continuous control tasks.

We first evaluate our algorithms on a widely-used continuous control benchmark for offline RL
methods – D4RL MuJoCo (Fu et al. (2020)). The evaluation results for three types of robotic agents,
each with offline datasets of four different qualities, are presented in Table 1. (1) Compared to SOTA
offline MBRL methods, our algorithms achieve superior performance on nine out of twelve tasks.
In terms of average performance, BA-MBRL significantly outperforms the baselines, demonstrating
the effectiveness of using BAMDPs to handle model uncertainties in offline MBRL and addressing
RQ1. Further, in Appendix H, we show that employing a Bayes-adaptive ensemble, instead of a uni-
form ensemble, improves the prediction likelihood for the provided offline trajectories and reduces
the prediction errors in imaginary rollouts. As illustrative examples of such performance improve-
ment, Figure 4 tracks belief adaptation during an offline rollout and several imaginary rollouts. (2)
Both BA-MCTS and BA-MCTS-SL further improve upon BA-MBRL, highlighting the enhance-
ment brought by deep search in policy learning, as related to RQ2. Notably, we apply Continuous
BAMCP to only 10% of states when collecting training trajectories, while for the remaining states,
we sample actions directly from the policy, i.e., a ∼ π(·|s). Increasing the search ratio could further
enhance policy performance at the cost of increased computation. (3) For RQ3, BA-MCTS-SL per-
forms similarly to BA-MCTS, validating the effectiveness of both policy update mechanisms. How-
ever, BA-MCTS-SL struggles on Walker2d, where a warm-up training phase (using BA-MBRL) is
required to establish a better initial policy. On the other hand, the advantage of the SL-based policy
update is evident in the training plots of our algorithms in Figure 2, where BA-MCTS-SL exhibits
much smoother learning curves compared to the other two algorithms, indicating greater robustness
in model selection. (4) We further compare our algorithms with model-free offline policy learning
methods, as shown in Appendix D. The performance improvement is even greater than that over
model-based methods, highlighting the necessity of model-based learning. Particularly, when data
quality is low, merely mimicking or staying close to the behavior policy would result in an underper-
forming policy. (5) To investigate RQ4, we provide an ablation study in Appendix F to demonstrate
the necessity of incorporating the reward penalty in offline MBRL to prevent the overexploitation of
inaccurate world models. Additionally, we find that the SL-based policy update is less sensitive to
model inaccuracies.
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Figure 1: Evaluation results for the tokamak control tasks. The figure shows the change in episodic
returns over training epochs for the proposed algorithms and baselines across three target tracking
tasks in the nuclear fusion scenario. Solid lines represent the average performance, while shaded
areas indicate the 95% confidence intervals.

For fair comparisons and real-time execution, we do not perform test-time search and adopt the
same policy architecture as the baselines, i.e., a feedforward neural network, rather than an RNN
that incorporates transition history as input. These alternative designs have the potential to fur-
ther improve our algorithms. For implementation, we build on the codebase of Optimized (Lu et al.
(2022)), which thoroughly explores design choices in offline MBRL, making minimal changes to the
code and hyperparameter settings6. Therefore, we believe the performance improvements stem from
the Bayesian RL framework and deep search components. Both components can be integrated with
other advancements in offline MBRL, such as more accurate world model learning and improved un-
certainty quantification for constructing P-MDPs. To validate this, we incorporate a reward penalty
design proposed in (Sun et al. (2023)) with BA-MCTS, achieving improved performance in several
benchmarking tasks and demonstrating its SOTA performance (see Appendix I).

5.2 COMPARISON WITH MUZERO-TYPE METHODS

MuZero also applies deep search to MBRL. To evaluate its performance on D4RL MuJoCo tasks
and answer RQ5, we use the open-source implementation and hyperparameter configurations of
Sampled EfficientZero (Ye et al. (2021)) provided by LightZero (Niu et al. (2023)). Benchmark-
ing results from LightZero indicate that Sampled EfficientZero achieves the best performance on
(online) MuJoCo locomotion tasks compared to other MuZero variants. To adapt Sampled Effi-
cientZero for offline learning, we employ the reanalyse technique proposed by (Schrittwieser et al.
(2021)). The evaluation results are presented in Figure 3 (Appendix E). For reference, the expert-
level episodic returns (corresponding to scores of 100) for HalfCheetah, Hopper, and Walker2d are
12135, 3234.3, and 4592.3, respectively. As shown, the results are significantly worse compared
to the performance of offline RL methods listed in Table 1, despite Sampled EfficientZero’s higher
computational cost. (In Appendix E, we provide a detailed comparison of the computational costs
of our proposed algorithms and Sampled EfficientZero.) Notably, both Sampled EfficientZero and
BA-MCTS-SL rely on supervised learning for policy improvement. However, for continuous control
tasks, the agent can only sample a finite number of actions at a decision point, and the search result
(e.g., πret in Algorithm 1) is a distribution over this finite set, which could be a poor approximation
of the optimal action distribution. Thus, purely mimicking the search result may be less sample-
efficient than policy gradient methods, as it fails to account for the continuous nature of the action
space. Further, world model learning is the foundation of MBRL and can be particularly challeng-
ing in continuous control and offline learning settings, where the state-action space is vast but
training data is limited. Sampled EfficientZero integrates model learning and policy training into a
single stage, which significantly increases the learning difficulty (compared to BA-MCTS-SL).

5.3 APPLICATIONS TO TOKAMAK CONTROL

Finally, to investigate RQ6, we evaluate our algorithms on three target tracking tasks in tokamak
control. The tokamak is one of the most promising confinement devices for achieving controllable
nuclear fusion, where the primary challenge lies in confining the plasma, i.e., an ionized gas of
hydrogen isotopes, while heating it and increasing its pressure to initiate and sustain fusion reactions
(Pironti & Walker (2005)). Tokamak control involves applying a series of direct actuators (e.g.,

6The detailed hyperparameter setups of our algorithms are provided in Appendix C.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Task BA-MCTS
-SL (ours)

BA-MCTS
(ours)

BA-MBRL
(ours) CQL Optimized

Temperature -21.16 ± 5.00 -23.83 ± 9.66 -29.35 ± 4.72 -59.62 ± 1.57 -83.55 ± 10.56
Rotation -14.14 ± 1.88 -19.07 ± 5.85 -31.33 ± 11.54 -85.48 ± 2.72 -71.54 ± 9.88

βn -37.03 ± 17.98 -18.93 ± 1.75 -23.4 ± 10.77 -36.37 ± 1.17 -57.84 ± 10.27
Average -24.11 -20.61 -28.03 -60.49 -70.98

Table 2: Comparisons between the proposed algorithms and offline RL baselines on the target track-
ing tasks. For each algorithm, we report the average return of the final ten policy learning epochs
and its standard deviation across three different random seeds.

neutral beam, ECH power, magnetic field) and indirect actuators (e.g., setting targets for the plasma
shape and density) to confine the plasma to achieve a desired state or track a given target. This
sophisticated physical process is an ideal test bed for our algorithms. Specifically, we use a well-
trained data-driven dynamics model provided by Char et al. (2024) as a “ground truth” simulator for
the nuclear fusion process during evaluation, and generate a dataset containing 725270 transitions
using this model for offline RL. We select a reference shot (i.e., an episode of a fusion process)
from DIII-D7, and use its trajectories of Ion Rotation, Electron Temperature, and βn as targets
for three tracking tasks. These are critical quantities in tokamak control, particularly βn, which
serves as an economic indicator of the efficiency of nuclear fusion. The tracking tasks have a 28-
dimensional state space and a 14-dimensional action space, both continuous. Moreover, these tasks
are highly stochastic, as the underlying dynamics model is a probabilistic neural network and each
state transition is a sample from this model. For details on the simulator, and the design of the
state/action spaces and reward functions, please refer to Appendix G. We compare our algorithms
with SOTA model-free and model-based offline RL methods, specifically CQL and Optimized. The
learning performance on the three tracking tasks is shown in Figure 1, where the x-axis and y-axis
represent the training epochs and (negative) full-shot tracking errors, respectively. Our algorithms
consistently outperform the baselines. Notably, the offline dataset does not include the reference
shot or any similar, nearby shots. Therefore, restricting the policy to stay close to the behavior
policy, as done in model-free methods, can be problematic. Also, learning dynamics models for
MBRL is quite challenging in this nuclear fusion scenario. Our algorithms share the same ensemble
of dynamics models with “Optimized” for policy learning, and the comparisons can demonstrate the
superiority of Bayesian RL and deep search. Figure 1 has been smoothed for visualization8. We
further report the average return over the final 10 training epochs in Table 2, and the conclusions
align with those from the D4RL MuJoCo tasks, showing the robustness of our proposed algorithms.

6 CONCLUSION AND DISCUSSIONS

In this work, we propose framing offline model-based reinforcement learning (MBRL) as a Bayes
Adaptive Markov Decision Process (BAMDP) to better address uncertainties in the world models
learned from offline datasets. We also introduce a novel planning method for solving BAMDPs in
continuous state and action spaces using Monte Carlo Tree Search. This planning process is inte-
grated into a policy iteration framework, enabling the derivation of a policy suitable for real-time
execution from the planning results. In our evaluation, we test several variants of our algorithms to
separately highlight the effectiveness of Bayesian RL and deep search. Additionally, we compare
two different approaches for policy updates (based on the search results) in continuous control tasks:
supervised learning and policy gradient methods. Our findings demonstrate that: (1) adapting beliefs
over an ensemble of world models based on experience yields more accurate model approximations
for MBRL; (2) deep search improves learning performance by incorporating planning and addi-
tional computation input; and (3) while supervised-learning-based policy updates result in smoother
learning curves, they may struggle in complex continuous control tasks due to their approximation
of the continuous action space as a finite set of action samples. For future work, our algorithms
can be improved by integrating advancements in offline MBRL and Bayesian RL, such as Bayesian
Neural Networks, techniques to address sparse rewards in MBRL, and more principled approaches
to construct pessimistic MDPs beyond those based on ensemble discrepancy.

7DIII-D is a tokamak device located in San Diego, California, operated by General Atomics.
8The episodic return is plotted every 10 training epochs, with the y-axis representing the average value of a

sliding window of length 5.
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A BAMCP

Algorithm 3 BAMCP

Input: π, E, dmax,R, γ, A, c

procedure SEARCH((s, h), b(θ))
for e = 1 · · ·E do

θ ∼ b(·)
SIMULATE((s, h), θ, dmax)

end for
return argmaxaQ((s, h), a)

end procedure

procedure ROLLOUT((s, h), θ, d)
if d == 0 then

return 0
end if
a ∼ π(·|(s, h))
s′ ∼ Pθ(·|s, a)
r ← R(s, a)
R← r + γROLLOUT((s′, has′), θ, d− 1)
return R

end procedure

procedure SIMULATE((s, h), θ, d)
if d == 0 then

return 0
end if
if N((s, h)) == 0 then

for a ∈ A do
N((s, h), a), Q((s, h), a)← 0, 0

end for
a ∼ π(·|(s, h))
s′ ∼ Pθ(·|s, a), r ← R(s, a)
R← r+γROLLOUT((s′, has′), θ, d− 1)
N((s, h)), N((s, h), a)← 1, 1
Q((s, h), a)← R
return R

end if
a← argmaxx Q((s, h), x) + c

√
logN((s,h))
N((s,h),x)

s′ ∼ Pθ(·|s, a), r ← R(s, a)
R← r + γSIMULATE((s′, has′), θ, d− 1)
N((s, h)) += 1, N((s, h), a) += 1

Q((s, h), a) += R−Q((s,h),a)
N((s,h),a)

return R
end procedure

Bayes Adaptive Monte Carlo Planning (BAMCP, Guez et al. (2013)) is a sample-based online plan-
ning method, aiming to find the action a∗ that approximately maximizes the expected return at a de-
cision point (s, h) under the BAMDP. Its detailed pseudo code is shown as Algorithm 3. BAMCP has
demonstrated success in solving BAMDPs with large-scale discrete state and action spaces. Its key
algorithmic ideas include: (1) applying MCTS with an efficient exploration strategy – UCT (Kocsis
& Szepesvári (2006)) to the BAMDP in order to simulate the outcomes of different action choices;
(2) utilizing root sampling to avoid frequent Bayesian posterior updates. Specifically, the UCT
rule is used for selecting actions at non-leaf nodes, i.e., a ← argmaxx Q((s, h), x) + c

√
logN((s,h))
N((s,h),x)

,
managing the tradeoff between exploration and exploitation. Root sampling refers to sampling the
dynamics model only at the root node (i.e., θ ∼ b(·)) and not adapting the belief b(·) according to
the Bayes rule during the search process, of which the rationality is justified in the following lemma.

Lemma A.1. For all suffix histories h′ of h, b(θ|h′) = b̃(θ|h′). Here, b(θ|h′) is the true posterior
probability of θ at the decision point h′, while b̃(θ|h′) is the probability of experiencing θ at h′ when
using root sampling.

Proof. This lemma can be proved by induction.

Base case: When h′ = h, b(θ|h′) = b̃(θ|h′) = b(θ).

Step case:
b(θ|has′) = P (has′|θ)P (θ)/P (has′)

= P (h|θ)Pθ(s′|s, a)P (θ)/P (has′)

= b(θ|h)P (h)Pθ(s′|s, a)/P (has′)

= Zb(θ|h)Pθ(s′|s, a)
= Zb̃(θ|h)Pθ(s′|s, a)
= Zb̃(θ|ha)Pθ(s′|s, a) = b̃(θ|has′)

(6)
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Here, Z = 1/
∫
θ
Pθ(s′|s, a)b(θ|h)dθ = 1/

∫
θ
Pθ(s′|s, a)b̃(θ|h)dθ = 1/

∫
θ
Pθ(s′|s, a)b̃(θ|ha)dθ is

the normalization constant. The fifth equality in Eq. (6) holds due to the inductive hypothesis. The
sixth equality is based on the fact that the choice of a at each node h is made independently of the
sample θ. As for the last equality, to experience θ at has′, the sample θ needs to traverse ha (with
probability b̃(θ|ha)) and then the state s′ needs to be sampled, which is with probability Pθ(s′|s, a),
so b̃(θ|has′) ∝ b̃(θ|ha)Pθ(s′|s, a).

B ALTERNATIVE DESIGN CHOICES FOR CONTINUOUS BAMCP

The terms labeled in blue in Algorithm 1 have alternative design choices. Empirical comparisons
among these alternatives are reserved for future work.

Q̃((s, h), x) in the exploration strategy, i.e., a ← argmaxx∈C((s,h)) Q̃((s, h), x), could take var-
ious forms. For instance, in (Couëtoux et al. (2011); Guez et al. (2013); Lee et al. (2020)),

Q̃((s, h), x) = Q((s, h), x) + c
√

logN((s,h))
N((s,h),x) ; in PUCT (Auger et al. (2013)), Q̃((s, h), x) =

Q((s, h), x) +
√

N((s,h))e(d)

N((s,h),x) , where e(d) is a schedule of coefficients related to the search depth
d; in Sampled MuZero (a variant of MuZero that can be applied in continuous action spaces (Hubert

et al. (2021))), Q̃((s, h), x) = Q((s, h), x) + π̂(x|(s, h))
√
N((s,h))

1+N((s,h),x)

(
c1 + log

(
N((s,h))+c2+1

c2

))
.

Here, c, c1, c2 are hyperparameters, π̂ = β̂π1−1/τ is a sample policy defined upon the real policy π.
In particular, at each decision point (s, h), Sampled MuZero would sample M actions {ai} from the
distribution π1/τ and accordingly define β̂(a|(s, h)) =

∑
i 1ai=a/M , where τ > 0 is a temperature

hyperparameter. Thus, Sampled MuZero does not adopt progressive widening like ours. Following
BAMCP, we adopt the first definition of Q̃((s, h), x), though it could potentially be improved with
other choices. In addition, as an implementation trick (Hamrick et al. (2021)), the Q estimates are
usually normalized into Q̄ ∈ [0, 1] before being used to calculate Q̃ as above. The normalized esti-
mates can be computed as Q̄((s, h), x) = Q((s,h),x)−Qmin

Qmax−Qmin
, where Qmax and Qmin are the maximum

and minimum Q values observed in the search tree so far.

As the planning/search result, πret can take multiple forms. In (Guez et al. (2013); Sunberg &
Kochenderfer (2018); Lee et al. (2020)), πret((s, h)) = argmaxa∈C((s,h)) Q((s, h), a); in (Sampled)

MuZero, πret(a|(s, h)) = N((s,h),a)1/τ∑
x∈C((s,h))N((s,h),x)1/τ

; in ROSMO (a variant of MuZero with improved

performance in offline scenarios (Liu et al. (2023))), πret(a|(s, h)) ∝ π(a|(s, h)) exp(Q((s, h), a)−
V ((s, h))). Here, τ ∈ (0, 1] is a temperature parameter and decays with the training process, ensur-
ing the action selection becomes greedier. We select the second form for πret in Algorithm 1. This
is because (1) as described in PUCT, the returned action should be the most visited one, which is
not necessarily the one with the highest Q value, and (2) ROSMO adopts one-step look-ahead rather
than deep tree search at each root node, which does not align with our approach.

As for the conditions of double progressive widening, PUCT designs α and β to be functions of
the search depth d, while UCT-DPW (Couëtoux et al. (2011)) utilizes a different set of conditions:
⌈KaN((s, h))α⌉ ≥ |C((s, h))|,

⌈
KsN((s, h), a)β

⌉
≥ |C((s, h), a)|, where Ka,Ks, α, β are all

constant hyperparameters. When the progressive widening condition for sampling the next state is
not satisfied, either the least visited node in C((s, h), a) can be selected (following PUCT), or a
random node can be sampled from C((s, h), a) following a distribution proportional to the number
of visits (following UCT-DPW). As shown in Algorithm 1, we follow the designs of PUCT, but keep
α and β as constants for simplicity in hyperparameter fine-tuning.

Finally, the condition for continuing the simulation procedure, i.e., N((s, h)) > 1, could potentially
be replaced with N((s, h), a) > 1 or N((s′, hars′)) > 0. These conditions indicate that the nodes
(s, h), (s, h, a), and (s′, hars′) have been visited before, respectively. At the end of the simulation
procedure, we can either apply rollouts, i.e., simulating a single path until the end of an episode,
to estimate the expected value for a leaf node (s, h), or directly use V ((s, h)) as the estimation.
The former approach is widely used in online planning algorithms (Guez et al. (2013); Sunberg &
Kochenderfer (2018); Lee et al. (2020)), while the latter is used in iterative frameworks like MuZero.
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C KEY HYPERPARAMETER SETUP

Data Type Environment BA-MBRL BA-MCTS BA-MCTS-SL
K λ H N K λ H N K λ H N

random HalfCheetah 10 7 6 200 10 7 6 800 10 7 6 500
random Hopper 6 50 47 700 6 50 47 800 6 50 47 500
random Walker2d 10 0.5 20 700 10 0.5 20 800 10 0.5 20 500
medium HalfCheetah 12 6 6 300 12 6 5 800 12 6 5 500
medium Hopper 12 40 42 200 12 40 42 800 12 40 42 200
medium Walker2d 8 5 20 700 8 5 20 800 8 5 20 500

med-replay HalfCheetah 11 40 10 300 11 40 10 800 11 40 10 500
med-replay Hopper 7 5 5 700 7 5 5 800 7 5 5 500
med-replay Walker2d 13 2.5 47 1000 13 2.5 47 800 13 2.5 47 500
med-expert HalfCheetah 7 100 5 1000 7 100 5 800 7 100 5 1100
med-expert Hopper 12 40 43 600 12 40 43 800 12 40 43 500
med-expert Walker2d 6 20 37 400 6 20 37 800 6 20 37 500

Table 3: Key hyperparameters of the proposed algorithms for each evaluation task. K: ensemble
size, λ: reward penalty coefficient, H: rollout horizon, N : number of training epochs.

In Table 3, we list the key hyperparameters of the proposed algorithms. For each task, an ensemble
of K dynamics and reward models is trained using the provided offline dataset. These learned
models are then utilized as a simulator to train a control policy using off-the-shelf RL methods, such
as SAC. The policy is trained for N epochs. At each epoch, 50000H transitions are sampled by
interacting with the simulator, followed by 1000 RL training iterations. In particular, 50000 states
are randomly sampled from the offline dataset, with each state followed by a rollout lasting H time
steps. To mitigate overestimation, a reward penalty based on the discrepancy among the ensemble
members is applied with a coefficient λ, as shown in Equation (5). The setups for K, λ, and H are
almost the same across the three algorithms and primarily inherited from the baseline – “Optimized”
(Lu et al. (2022)), to make sure the improvements are brought by the Bayesian RL and deep search
components.

The policy is evaluated on the ground truth environment for 10 episodes at the end of each training
epoch. We report the average scores across the final 10 training epochs of our algorithms in Tables
1 and 5. It is important to note that increasing the number of training epochs N does not necessar-
ily lead to better policy performance, since the training is based on learned dynamics and reward
models rather than the ground truth. According to (Lu et al. (2022)) and our experiments, the hyper-
parameters listed above can significantly influence the performance of model-based RL. Adjusting
these hyperparameters could either enhance or impair the learning performance of our algorithms.
We also suspect that the performance of the baselines listed in Tables 1 and 5, which are from their
original papers, could be further improved by fine-tuning the relevant hyperparameters.

Data Type Environment BA-MCTS BA-MCTS-SL
ρ α c η ns na ρ α c η ns na NSL NP

random HalfCheetah 0.1 0.5 2.5 0.3 1 20 0.1 0.5 2.5 0.3 1 20 5 0
random Hopper 0.1 0.5 2.5 0.3 1 20 0.1 0.5 2.5 0.3 1 20 5 0
random Walker2d 0.1 0.5 2.5 0.3 1 20 0.1 0.5 2.5 0.3 1 20 5 100
medium HalfCheetah 0.1 0.5 1.0 0.1 5 10 0.1 0.5 1.0 0.1 5 10 20 0
medium Hopper 0.1 0.5 2.5 0.3 1 20 0.1 0.5 1.0 0.3 1 20 5 0
medium Walker2d 0.1 0.5 2.5 0.3 1 20 0.1 0.5 2.5 0.3 1 20 5 100

med-replay HalfCheetah 0.1 0.8 1.0 0.3 5 10 0.1 0.8 2.5 0.3 1 20 5 0
med-replay Hopper 0.1 0.8 1.0 0.1 1 20 0.1 0.8 1.0 0.1 1 20 15 0
med-replay Walker2d 0.1 0.8 2.5 0.3 1 20 0.1 0.8 2.5 0.3 1 20 5 200
med-expert HalfCheetah 0.1 0.8 1.0 0.3 5 10 0.1 0.8 2.5 0.3 1 20 5 0
med-expert Hopper 0.1 0.8 1.0 0.3 1 20 0.1 0.8 1.0 0.3 1 20 5 0
med-expert Walker2d 0.1 0.8 2.5 0.3 1 20 0.1 0.8 2.5 0.3 1 20 15 100

Table 4: Important hyperparameters used in the search process.

BA-MCTS and BA-MCTS-SL utilize Bayes Adaptive Monte Carlo Tree Search to collect samples
for offline model-based RL. Instead of performing a tree search at every state, we randomly se-
lect a proportion (i.e., ρ) of states from the available 50000 states at each rollout time step as root
nodes for tree search. For the remaining states, actions are sampled directly from the policy, i.e.,
a ∼ π(·|s). The tree search procedure is detailed in Algorithm 1, with the number of MCTS it-
erations, E, set to 50. Increasing ρ and E can potentially enhance performance, but it will also
linearly increase the computational cost. Table 4 outlines the key hyperparameters related to the
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(a) hc-med-expert (b) hc-med-replay (c) hc-medium (d) hc-random

(e) hp-med-expert (f) hp-med-replay (g) hp-medium (h) hp-random

(i) wk-med-expert (j) wk-med-replay (k) wk-medium (l) wk-random

Figure 2: Performance of our proposed algorithms on D4RL MuJoCo tasks. The results for
HalfCheetah, Hopper, and Walker2d are presented in the three rows, respectively. Each subfigure
depicts the change in the undiscounted episodic return as a function of training epochs. Experiments
are repeated three times with different random seeds, with the solid line representing the mean and
the shaded area indicating the 95% confidence interval. For reference, the expert-level episodic re-
turns for HalfCheetah, Hopper, and Walker2d are 12135, 3234.3, and 4592.3, respectively. Note
that the training epochs for each algorithm, as listed in Table 3, have been linearly scaled to 800 for
better visualization.

search process for each algorithm and task. (1) As described in Algorithm 1, the parameters α and
β control the rate of double progressive widening. (β is set as 0.5 across all tasks.) To encourage
deeper search, we limit the number of actions sampled from a state under na and the number of
next states sampled from an action under ns, respectively. Action selection follows the UCT rule,
as discussed in Appendix A, where c > 0 balances the exploration and exploitation. Additionally,
inspired by the success of MuZero in enhancing exploration, we introduce Dirichlet noise xd at the
root nodes, where actions are sampled from a mixture of distributions: a ∼ ηxd + (1 − η)π(·|s)
and η controls the mixture rate. Notably, for (c, η, na, ns), we explore the set of possible com-
binations: {(2.5, 0.3, 20, 1), (1.0, 0.3, 20, 1), (1.0, 0.1, 20, 1), (1.0, 0.3, 10, 5), (1.0, 0.1, 10, 5)} dur-
ing hyperparameter fine-tuning. We believe there are likely more optimal search settings yet to be
discovered. (2) In BA-MCTS-SL, policy improvement is achieved through supervised learning. We
find that, rather than learning solely from samples collected within the current epoch, incorporat-
ing a buffer of samples from the past NSL epochs helps to stabilize the learning process. Also, in
the Walker2d environment, BA-MCTS-SL requires a warm-up training phase of NP epochs using
BA-MBRL, allowing the initial policy to generate effective signals for supervised learning.

D COMPARISONS WITH MODEL-FREE METHODS ON D4RL MUJOCO

As a complement to Table 1, we compare our algorithms with a series of model-free offline policy
learning (Chen et al. (2024)) methods. We include SOTA model-free offline RL methods: CQL
(Kumar et al. (2020)), BEAR (Kumar et al. (2019)), and BRAC-v (Wu et al. (2019)). Additionally,
we show the performance of directly applying SAC or Behavioral Cloning (BC, Chen et al. (2024))
to the provided offline dataset in the last two columns. The mean performance of the baselines are
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Data Type Environment BA-MCTS
-SL (ours)

BA-MCTS
(ours)

BA-MBRL
(ours) CQL BEAR BRAC-v SAC BC

random HalfCheetah 29.20± 2.00 36.23± 1.04 32.76± 1.16 35.4 25.1 31.2 30.5 2.1
random Hopper 33.83± 0.10 31.56± 0.12 31.47± 0.03 10.8 11.4 12.2 11.3 1.6
random Walker2d 21.89± 0.07 21.59± 0.32 21.45± 0.53 7.0 7.3 1.9 4.1 9.8
medium HalfCheetah 70.47± 3.52 75.84± 3.81 56.54± 5.20 44.4 41.7 46.3 -4.3 36.1
medium Hopper 97.75± 7.09 96.70± 14.0 98.25± 3.42 86.6 52.1 31.1 0.8 29.0
medium Walker2d 82.24± 1.85 74.73± 3.25 75.41± 4.17 74.5 59.1 81.1 0.9 6.6

med-replay HalfCheetah 61.16± 1.60 65.45± 0.81 62.50± 0.18 46.2 38.6 47.7 -2.4 38.4
med-replay Hopper 106.3± 0.13 101.8± 3.46 93.91± 4.25 48.6 33.7 0.6 3.5 11.8
med-replay Walker2d 92.13± 5.13 95.06± 2.11 97.54± 1.93 32.6 19.2 0.9 1.9 11.3
med-expert HalfCheetah 80.53± 6.63 76.16± 10.3 90.52± 4.13 62.4 53.4 41.9 1.8 35.8
med-expert Hopper 112.2± 0.29 108.3± 0.22 107.8± 0.37 111 96.3 0.8 1.6 111.9
med-expert Walker2d 107.7± 0.82 110.0± 1.74 84.71± 0.87 98.7 40.1 81.6 -0.1 6.4

Average Score 74.62 74.45 71.06 54.85 39.83 31.44 4.13 25.07

Table 5: Comparisons between the proposed algorithms and model-free offline policy learning meth-
ods on the D4RL benchmark suite. Each value represents the normalized score, as proposed in (Fu
et al. (2020)), of the policy trained by the corresponding algorithm. These scores are undiscounted
returns normalized to approximately range between 0 and 100, where a score of 0 corresponds to
a random policy and a score of 100 corresponds to an expert-level policy. For our algorithms, we
report the average score of the final ten policy learning epochs and its standard deviation across three
different random seeds.

(a) hc-med-expert (b) hc-med-replay (c) hc-medium (d) hc-random

(e) hp-med-expert (f) hp-med-replay (g) hp-medium (h) hp-random

(i) wk-med-expert (j) wk-med-replay (k) wk-medium (l) wk-random

Figure 3: Performance of Sampled EfficientZero on D4RL MuJoCo tasks. The results for HalfChee-
tah, Hopper, and Walker2d are presented in the three rows, respectively. Each subfigure depicts the
change in undiscounted episodic return as a function of the number of training samples. Experiments
are repeated three times with different random seeds, with the solid line representing the mean and
the shaded area indicating the 95% confidence interval. For reference, the expert-level episodic re-
turns for HalfCheetah, Hopper, and Walker2d are 12135, 3234.3, and 4592.3, respectively.

taken from related works (Yu et al. (2020); Kidambi et al. (2020); Fu et al. (2020)). Our algorithms
show significantly better performance, demonstrating the necessity of model-based learning in these
environments. The training plots of our proposed algorithms in each environment is further detailed
in Figure 2.

E COMPUTATION COST ON D4RL MUJOCO

In Table 6, we report the training time of the proposed algorithm and Sampled EfficientZero on
the D4RL MuJoCo tasks. The experiments were conducted on a server with 40 Intel(R) Xeon(R)
Gold 5215 CPUs and 4 Tesla V100-SXM2-32GB GPUs. While the tree-search-based variants (i.e.,
BA-MCTS and BA-MCTS-SL) achieve higher performance, they require more computation during
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the offline training stage. However, this extra computational cost is limited to the training phase;
no MCTS is performed during deployment, to ensure real-time execution. Additionally, leveraging
parallel computation frameworks for MCTS could further reduce the training time. On the other
hand, our algorithm requires considerably less training time than Sampled EfficientZero, which is
also based on deep search, to achieve superior performance, as shown in Figures 3 and 2.

Data Type Environment BA-MCTS
-SL (ours)

BA-MCTS
(ours)

BA-MBRL
(ours)

Sampled
EfficientZero

random HalfCheetah 11.2 ± 2.6 14.6 ± 2.2 1.2 ± 0.4 54.8 ± 2.6
random Hopper 48.7 ± 2.4 65.2 ± 1.9 5.6 ± 0.8 153.7 ± 19.4
random Walker2d 25.7 ± 2.0 38.1 ± 1.1 5.2 ± 1.1 175.7 ± 28.2
medium HalfCheetah 12.6 ± 3.0 15.3 ± 1.3 1.9 ± 0.2 54.7 ± 1.9
medium Hopper 18.9 ± 4.8 67.5 ± 0.2 1.8 ± 0.2 70.5 ± 1.0
medium Walker2d 24.0 ± 1.8 33.3 ± 4.0 4.8 ± 1.0 63.7 ± 1.5

med-replay HalfCheetah 24.7 ± 0.9 22.4 ± 1.2 2.1 ± 0.4 54.8 ± 1.8
med-replay Hopper 17.9 ± 0.0 12.7 ± 1.2 5.4 ± 0.2 126.6 ± 12.0
med-replay Walker2d 40.3 ± 7.2 77.0 ± 2.4 8.0 ± 0.3 134.9 ± 4.2
med-expert HalfCheetah 32.6 ± 0.1 12.6 ± 0.8 4.7 ± 1.1 55.4 ± 1.3
med-expert Hopper 61.5 ± 4.6 76.9 ± 11.6 5.3 ± 0.5 66.1 ± 0.9
med-expert Walker2d 35.0 ± 6.5 55.9 ± 1.8 2.9 ± 0.9 60.8 ± 1.8

Table 6: Training time (in hours) of the proposed algorithms and Sampled EfficientZero for each
evaluation task. Results are presented as the mean and standard deviation from three repeated ex-
periments.

F ABLATION STUDY ON THE REWARD PENALTY

Data Type Environment BA-MCTS
-SL BA-MCTS BA-MBRL BA-MCTS

-SL (λ = 0)
BA-MCTS
(λ = 0)

BA-MBRL
(λ = 0)

random HalfCheetah 29.20± 2.00 36.23± 1.04 32.76± 1.16 34.80± 1.39 38.78± 1.65 39.64± 2.86
random Hopper 33.83± 0.10 31.56± 0.12 31.47± 0.03 9.16± 0.16 7.44± 0.14 6.97± 0.07
random Walker2d 21.89± 0.07 21.59± 0.32 21.45± 0.53 17.53± 6.16 21.53± 0.42 21.41± 0.64
medium HalfCheetah 70.47± 3.52 75.84± 3.81 56.54± 5.20 61.64± 4.58 60.84± 2.00 41.49± 2.29
medium Hopper 97.75± 7.09 96.70± 14.0 98.25± 3.42 102.8± 2.29 104.4± 1.88 93.68± 11.4
medium Walker2d 82.24± 1.85 74.73± 3.25 75.41± 4.17 82.61± 0.86 57.01± 7.24 57.97± 15.4

med-replay HalfCheetah 61.16± 1.60 65.45± 0.81 62.50± 0.18 42.10± 2.85 36.65± 2.39 44.03± 7.35
med-replay Hopper 106.3± 0.13 101.8± 3.46 93.91± 4.25 107.9± 0.07 84.11± 2.97 91.81± 11.5
med-replay Walker2d 92.13± 5.13 95.06± 2.11 97.54± 1.93 88.61± 5.21 97.33± 3.51 98.19± 1.23
med-expert HalfCheetah 80.53± 6.63 76.16± 10.3 90.52± 4.13 51.76± 5.31 26.60± 1.46 29.88± 2.28
med-expert Hopper 112.2± 0.29 108.3± 0.22 107.8± 0.37 106.8± 6.34 81.76± 6.45 86.79± 18.7
med-expert Walker2d 107.7± 0.82 110.0± 1.74 84.71± 0.87 110.8± 1.72 110.2± 0.91 53.35± 38.0

Average Score 74.62 74.45 71.06 68.04 60.55 55.43

Table 7: Comparison of the proposed algorithms with their corresponding versions without the
reward penalty (i.e., λ = 0). The definitions of the values in this table are consistent with those in
Table 5.

To demonstrate the necessity of incorporating the reward penalty in offline MBRL, we conduct an
ablation study by setting λ in Eq. (5) to 0, resulting in ablated versions of our proposed three al-
gorithms. The results are presented in Table 7. First, the average performance of the algorithms
with the reward penalty is consistently better, demonstrating the importance of using reward penal-
ties in offline MBRL to prevent the overexploitation of the learned world models (which can be
inaccurate). Second, the supervised-learning-based algorithm (i.e., BA-MCTS-SL (λ = 0)) is less
affected by the absence of the reward penalty, compared to the policy-gradient-based methods. No-
tably, BA-MCTS-SL (λ = 0) and BA-MCTS-SL achieve comparable performance in the Hopper
and Walker2d tasks. This shows an additional advantage of BA-MCTS-SL – its reduced sensitivity
to model inaccuracies. Lastly, there are instances where superior performance is achieved with λ set
to 0. For example, BA-MCTS-SL (λ = 0) performs better than BA-MCTS-SL in 5 out of 12 tasks.
This suggests that the performance of our algorithms in Tables 1 and 5 could be further improved by
adjusting hyperparameters such as λ9.

9As mentioned in Section 5, we retain most of the hyperparameter settings from Optimized (Lu et al. (2022))
to ensure that the performance improvements are attributed to our algorithm design.
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G DETAILS OF THE TOKAMAK CONTROL TASKS

STATE SPACE

Scalar States βn, Internal Inductance, Line Averaged Density,
Loop Voltage, Stored Energy

Profile States Electron Density, Electron Temperature, Pressure,
Safety Factor, Ion Temperature, Ion Rotation

ACTION SPACE
Targets Current Target, Density Target

Shape Variables Elongation, Top Triangularity, Bottom Triangularity, Minor Radius,
Radius and Vertical Locations of the Plasma Center

Direct Actuators Power Injected, Torque Injected, Total Deuterium Gas Injection,
Total ECH Power, Magnitude and Sign of the Toroidal Magnetic Field

Table 8: The state and action spaces of the tokamak control tasks.

Nuclear fusion is a promising energy source to meet the world’s growing demand. It involves fusing
the nuclei of two light atoms, such as hydrogen, to form a heavier nucleus, typically helium, releas-
ing energy in the process. The primary challenge of fusion is confining a plasma, i.e., an ionized
gas of hydrogen isotopes, while heating it and increasing its pressure to initiate and sustain fusion
reactions. The tokamak is one of the most promising confinement devices. It uses magnetic fields
acting on hydrogen atoms that have been ionized (given a charge) so that the magnetic fields can
exert a force on the moving particles (Pironti & Walker (2005)).

Char et al. (2024) trained a deep recurrent network as a dynamics model for the DIII-D tokamak, a
device located in San Diego, California, and operated by General Atomics, using a large dataset of
operational data from that device. A typical shot (i.e., episode) on DIII-D lasts around 6-8 seconds,
consisting of a one-second ramp-up phase, a multi-second flat-top phase, and a one-second ramp-
down phase. The DIII-D also features several real-time and post-shot diagnostics that measure the
magnetic equilibrium and plasma parameters with high temporal resolution. The authors demon-
strate that the learned model predicts these measurements for entire shots with remarkable accuracy.
Thus, we use this model as a “ground truth” simulator for tokamak control tasks. Specifically, we
generate a dataset of 725270 transitions for offline RL and evaluate the learned policy using this
data-driven simulator.

The state and action spaces for the tokamak control tasks are outlined in Table 8. For detailed
physical explanations of their components, please refer to (Abbate et al. (2021); Char et al. (2023);
Ariola et al. (2008)). The state space consists of five scalar values and six profiles which are dis-
cretized measurements of physical quantities along the minor radius of the toroid. After applying
principal component analysis (Maćkiewicz & Ratajczak (1993)), the pressure profile is reduced to
two dimensions, while the other profiles are reduced to four dimensions each. In total, the state
space comprises 27 dimensions. The action space includes direct control actuators for neutral beam
power, torque, gas, ECH power, current, and magnetic field, as well as target values for plasma den-
sity and plasma shape, which are managed through a lower-level control module. Altogether, the
action space consists of 14 dimensions. While for certain tasks, it is possible to prune the state and
action spaces to reduce the learning complexity, we have chosen not to apply any domain-specific
knowledge in these evaluations for general RL algorithms. We reserve the domain-specific applica-
tions of our algorithms, which would require more domain knowledge and engineering efforts, as
an important future work.

We select a reference shot from DIII-D, which spans 251 time steps, and use its trajectories of Ion
Rotation, Electron Temperature, and βn as targets for three tracking tasks. Specifically, βn is the
normalized ratio between plasma pressure and magnetic pressure, a key quantity serving as a rough
economic indicator of efficiency. Since the tracking targets vary over time, we include the time step
as part of the policy input. The reward function for each task is defined as the negative squared
tracking error of the corresponding component (i.e., temperature, rotation, or βn) at each time step,
and the reward is normalized by the episode horizon (i.e., 251 time steps). Notably, for policy
learning, the reward function is provided rather than learned from the offline dataset as in D4RL
tasks; and the dataset does not include the reference shot or any nearby, similar shots.
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H ANALYSIS OF THE BENEFITS OF BELIEF ADAPTATION

hc-med-expert hc-med-replay hc-medium hc-random
0.7515 2.6315 2.2674 2.4561

hp-med-expert hp-med-replay hp-medium hp-random
14.064 4.2214 3.5913 1.7400

wk-med-expert wk-med-replay wk-medium wk-random
2.0898 3.8169 34.264 1.0341

Table 9: Ratios of average transition likelihoods in offline data with and without belief adaptation
across ensemble members. Bayesian belief adaptation based on observed transitions generally en-
hances prediction performance in the offline dataset, with the exception of hc-med-expert (i.e., the
HalfCheetah dataset with medium-expert performance).

Data Type Environment Prediction Error on Next State Prediction Error on Reward Overall Prediction Error
Adaptive Uniform Adaptive Uniform Adaptive Uniform

random HalfCheetah 0.339± .021 0.342± .017 0.016± .001 0.016± .001 0.177± .011 0.179± .009
random Hopper 0.232± .016 0.189± .008 0.012± .001 0.022± .008 0.122± .008 0.106± .008
random Walker2d 62.10± 11.0 112.0± 19.0 1.364± .215 4.908± .708 31.73± 5.61 58.44± 9.83
medium HalfCheetah 1.387± .040 1.355± .038 0.057± .001 0.061± .001 0.722± .021 0.708± .019
medium Hopper 0.429± .033 0.570± .035 19.03± 8.58 68.24± 11.4 9.727± 4.30 34.40± 5.69
medium Walker2d 34.01± .556 34.26± .142 24.38± 4.31 113.1± 3.47 29.19± 1.89 73.69± 1.78

med-replay HalfCheetah 0.677± .027 0.707± .036 0.115± .005 0.114± .006 0.396± .016 0.410± .021
med-replay Hopper 0.170± .022 0.212± .054 1.177± .420 3.320± 1.14 0.674± .221 1.766± .558
med-replay Walker2d 66.83± 7.39 44.61± 1.34 27.21± 3.24 60.52± 3.17 47.02± 5.17 52.57± 2.25
med-expert HalfCheetah 1.423± .054 1.467± .046 0.071± .002 0.074± .002 0.747± .028 0.771± .024
med-expert Hopper 3.665± 2.56 18.27± 2.09 71.46± 79.9 384.7± 37.6 37.56± 41.2 201.5± 19.4
med-expert Walker2d 55.69± 3.71 51.89± .481 121.9± 12.6 186.3± 3.86 88.77± 8.18 119.1± 2.08

Table 10: Comparison of the prediction errors for next states and rewards in imaginary rollouts, with
and without Bayesian belief adaptation. The last two columns present the average prediction errors
for next states and rewards, serving as an overall indicator. Each metric is computed over three
repetitions with different random seeds, reporting both the mean and standard deviation. Ground
truth for the imaginary rollouts is obtained by replaying the action sequences in the real simulators.

The Bayesian adaptation, as defined in Eq. (4), uses observed state transition sequences to adjust the
belief over each ensemble member, thereby enhancing the quality of predicted rollout trajectories.
For each benchmarking task in D4RL MuJoCo, we compute the average transition likelihood (i.e.,
P(s′|s, a)R(r|s, a)) through the provided offline rollouts, comparing cases with and without belief
adaptation. The ratios of these average likelihoods are presented in Table 9. Results show that the
offline rollouts, collected from real environments, are more likely under the adapted ensemble, with
the exception of HalfCheetah-med-expert. This also demonstrates that Bayesian belief adaptation
serves as an effective calibration method for learned dynamics models.

As detailed in Appendix C, at each learning epoch, we randomly sample states from the offline
dataset to serve as starting points for imaginary rollouts, which are generated using the learned dy-
namics models. Belief adaptation is applied not only to the offline trajectories (to establish beliefs at
these starting states) but also throughout the imaginary rollouts. To evaluate the quality of the imag-
inary rollouts, we select 10000 starting states from the offline dataset and perform rollouts using the
same ensemble and behavior policy (based on MCTS), with the only difference being whether belief
adaptation is applied to the ensemble members. Table 10 presents the prediction errors, measured
as the average mean squared errors across each time step in the rollouts, for next states and rewards
in the imaginary rollouts. Ground truth rollouts are generated by replaying the planned action se-
quences in the real simulators. The last two columns, which show the average prediction errors for
next states and rewards, reveal that the adaptive ensemble achieves more accurate predictions in 10
out of 12 benchmarking tasks, with comparable performance in the remaining two.

Regarding the overall prediction error, the adaptive ensemble significantly outperforms the uniform
ensemble in Hopper-med-expert. To illustrate this, we plot the belief adaptation over an offline
trajectory in Hopper-med-expert in Figure 4(a). Initially, all twelve ensemble members have the
same belief. As the trajectory progresses, the beliefs of each member are updated based on the
transition history, with the dominant model (the one with the highest belief) continuously changing.
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(a) Offline rollout (b) Imaginary rollout (at step 0)

(c) Imaginary rollout (at step 22) (d) Imaginary rollout (at step 495)

Figure 4: Belief adaptation during offline and imaginary rollouts. (a) shows the belief over twelve
ensemble members, each represented by a specific color, adapting to an offline trajectory of Hopper-
med-expert. (b), (c), and (d) illustrate the belief changes during imaginary rollouts which start from
the beginning, middle, and end of the offline trajectory shown in (a), respectively.

Additionally, we track the belief changes in imaginary rollouts starting from the beginning, middle,
and end of the offline trajectory. It is evident that different ensemble members dominate at different
stages of the offline rollout. This dynamic belief adaptation is crucial for achieving lower prediction
errors as shown in Table 10.

I COMPARISON WITH ADDITIONAL BASELINES

Data Type Environment BA-MCTS
(ours) MOBILE CBOP RAMBO APE-V MAPLE

random HalfCheetah 39.09*± 1.30 39.3 32.8 40.0 29.9 41.5
random Hopper 31.56± 0.12 31.9 31.4 21.6 31.3 10.7
random Walker2d 21.59± 0.32 17.9 17.8 11.5 15.5 22.1
medium HalfCheetah 75.84± 3.81 74.6 74.3 77.6 69.1 48.5
medium Hopper 103.9*± 0.33 106.6 102.6 92.8 - 44.1
medium Walker2d 87.25*± 2.64 87.7 95.5 86.9 90.3 81.3

med-replay HalfCheetah 70.16*± 5.24 71.7 66.4 68.9 64.6 69.5
med-replay Hopper 106.4*± 0.53 103.9 104.3 96.6 98.5 85.0
med-replay Walker2d 95.06± 2.11 89.9 92.7 85.0 82.9 75.4
med-expert HalfCheetah 100.6*± 0.87 108.2 105.4 93.7 101.4 55.4
med-expert Hopper 112.8± 0.14 112.6 111.6 83.3 105.7 95.3
med-expert Walker2d 116.0*± 1.49 115.2 117.2 68.3 110.0 107.0

Average Score 80.02 79.96 79.33 68.85 72.65 61.32

Table 11: Comparison of BA-MCTS with more recent offline RL baselines on the D4RL benchmark
suite. Each value in the table represents the normalized score as defined in Tables 1 and 5. Baseline
results are sourced from their respective papers: MOBILE (Sun et al. (2023)), CBOP (Jeong et al.
(2023)), RAMBO (Rigter et al. (2022)), APE-V (Ghosh et al. (2022)), and MAPLE (Chen et al.
(2021)). For BA-MCTS, results marked with * indicate enhanced performance achieved using the
reward penalty design proposed in (Sun et al. (2023)).

As noted in Section 5, the implementation of our algorithms is based on Optimized, making mini-
mal changes to its codebase and hyperparameter settings. Therefore, the performance improvements
shown in Table 1 stem from the Bayesian RL framework and deep search component. Our algo-
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rithms can be seamlessly integrated with other advancements in offline MBRL, such as RNN-based
policy functions, more accurate world model learning, and improved uncertainty quantification.

To testify this, we replace the reward penalty design in Eq. (5) with the one proposed in a recent
work (Sun et al. (2023)). Specifically, this reward penalty measures the discrepancy in the Q-value
targets predicted by each ensemble member and is calculated based not only on the ensemble but
also on the target Q network:

r̃(s, a, r) = r − λ · std

 γ

M

M∑
j=1

Qψ−(s′i,j , a
′
i,j)

K
i=1

, s′i,j ∼ Piθ(·|s, a), a′i,j ∼ π(·|s′i,j) (7)

Here, (s′i,j , a
′
i,j) are samples generated from the learned dynamics and policy models. These sam-

ples are fed into the target Q network, Qψ− , to estimate the Q-value target for the current state-action
pair (s, a). The reward penalty is computed as the standard deviation of the estimated Q-value tar-
gets across different ensemble members.

With this modification, BA-MCTS achieves improved performance in several environments (com-
pared to Table 1), as indicated by * in Table 11, and demonstrates state-of-the-art (SOTA) overall
performance on the D4RL MuJoCo benchmark. Among the baselines in Table 11, APE-V and
MAPLE employ adaptive policies implemented with RNNs10, while RAMBO, CBOP, and MO-
BILE are more recent baselines. Comparing BA-MCTS to these baselines showcases its SOTA
performance. Note that for results marked with *, the same ensemble of world models and hyperpa-
rameter setup as MOBILE are used, and further fine-tuning is likely to enhance the performance of
BA-MCTS.

10APE-V is a model-free algorithm and MAPLE does not leverage a Bayesian RL framework, which are
different from our algorithm design.
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