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ABSTRACT

Learning causal effects from data is a fundamental and well-studied problem across
science, especially when the cause-effect relationship is static in nature. However,
causal effect is less explored when there are dynamical dependencies, i.e., when
dependencies exist between entities across time. In general, it is not possible
to reconstruct the causal graph from data alone. The conventional static causal
structure recovery algorithms employ tests such as the Fischer-z test and the chi-
square test to assess the conditional independence (CI) of data which forms the
basis for recovering Markov Equivalent Graphs (MEGs) wherein causal structure
can be recovered partially. For data that are dynamically related, multivariate least
square estimation, based on Wiener Filters (WFs) relying on second order statistics
for estimating a data stream from other streams, provides a means of recovering
influence structures of the directed network underlying the data. Here, WF based
projections can be determined in time-domain or in frequency-domain; the question
this article sets out to answer is which is better? Here, we obtain concentration
bounds on the accuracy of the WF estimation in both time and frequency-based
approaches. Exploiting the computation speed of Fast Fourier Transform (FFT),
we establish that the frequency domain provides distinct advantages. Moreover,
frequency domain projections involve complex numbers; we establish that the phase
properties of the resulting estimates can be effectively leveraged for better recovery
of the MEG in a large class of networks; the time-domain has no analogue of phase.
Thus we report the "Wiener-Phase" algorithm provides the best accuracy as well
as computational advantages. We validate the theoretical analysis with numerical
results. Performance comparison with state of the art algorithms are also provided.
Further, the proposed algorithms are validated on a real field dataset known as the
"river-runoff" dataset collected from the online repository of CauseMe, and on
measurement data from transistor based circuits.

1 INTRODUCTION AND LITERATURE SURVEY

Causal identification from data is an active and important research area relevant to multiple domains
including climate science |Pérez-Suay & Camps-Valls| (2018)), economics [Carfi & Caristi| (2008]),
neuroscience Ramirez-Villegas et al.| (2021)), and biology [Hu et al.|(2018)) [Lu et al.|(2023)). There is
considerable prior art on causation especially when the interactions are static in nature (see |Pearl et al.
(2016)), |Peters et al.[(2017), Spirtes et al.|(2000), [Wren et al.|(2022)) and the references therein). In the
cases where the entities are modeled as random variables it is not possible in general to reconstruct the
causal graph from observational data alone. Indeed, Markov equivalent graphs (MEGs) that capture
the same set of conditional independence (CI) relations can be determined from data [Spirtes et al.
(2000). Some recent works on recovering a unique causal graph when the underlying data generative
system is assumed to have more structure are presented in |Peters et al.| (2013), Shimizu et al.| (2006).



Published as a conference paper at ICLR 2026

Causal inference is more challenging in the presence of dynamical (across time) dependencies
Costanzo & Yagan| (2020); [Krishnan et al.| (2023); [Peters et al.| (2013). One of the established
techniques for identifying causation in systems with dynamics is Granger causality Granger| (1969),
Bennett & Yu|(2020), which leverages temporal structure assuming delays are present in interactions.
Such an assumption is rendered problematic when the data is collected at slower rates than the time-
constants at which the dynamics evolve, thus precluding a number of practical scenarios. Another
approach in handling dependencies across times is to consider the series at every time instant as
a random variable thereby mapping the problem to a static version. The difficulties with such an
approach stem from the lack of information on the size of the horizon in the past and future to be
considered and the combinatorial explosion of the number of variables that entail Ghahramani| (2006)),
Lohmann et al.|(2012)). In a class of approaches for unveiling dynamic dependencies, models of how
the data is being generated is assumed and the causal graph structure is recovered via an estimation of
model parameters. Examples of such models include vector auto regressive (VAR) models [Krishnan
et al.| (2023)), Peters et al.| (2013)), additive noise models (ANM) |Costanzo & Yagan| (2020), |Peters
et al.|(2013) and neural network-based models (NNM) Moraffah et al.|(2021). In another recent line
of work, the main gist of the approach is to exploit the asymmetry in the relationships of a dependency
and the inverse of the dependency. These asymmetries can result from nonlinear maps or from linear
filters with inverses that have discernible differences that, for example, are characterizable via power
spectral densities Besserve et al.|(2022), [Shajarisales et al.|(2015)). Here, it is to be noted that works
such as Besserve et al.| (2022) and [Shajarisales et al.[(2015) try to infer cause and effect relationship
between two variables; however, the causal graph structure recovery entails determining how the
influence flows from a variable to another with the possibility of intermediate variables between the
cause and the effected variables.

Compared to the case when interactions are static, the literature on causal structure recovery for
systems with dynamic interactions is sparse. Several recent works have bridged the causality literature
(Spirtes et al. (2000)) with multivariate projections of dynamically related time-series data|Costanzo
& Yagan| (2020), Materassi & Salapakal (2016), Materassi & Salapaka) (2019). It was shown in
Materassi & Salapakal (2012)) that the Wiener Filter (WF)-based projections can be employed to
recover the moral graph of entities interacting via linear time-invariant dynamics. |Materassi &
Salapakal (2013)) proposed that the WF-based tests can in principle be employed for performing CI
tests in linear dynamical systems. We emphasize that effective and implementable methodologies for
causal inference in linear dynamical systems remain much less developed than their static dependency
counterparts. Moreover, WF based projections are often determined in the time-domain; as we
demonstrate TD based approaches can be computationally burdensome.

This article develops a framework to reconstruct the MEG for a system with dynamical interactions
using a frequency domain (FD) approach. The main contributions are: 1) It is shown with examples
that the WF-based reconstruction techniques provide superior performance in systems with linear
dynamical interaction when compared to the conventional static counterpart. For the implementation
of causation algorithms such as PC and FCI|Spirtes et al.|(2000). WF-based CI tests are provided.
2) To reduce the computational complexity of the WF implementation, an FFT-based approach is
proposed which is proved both theoretically and in simulations to have faster run times than TD
based approaches. 3) The pairwise CI test-based algorithms such as PC is combinatorial in nature,
which is intractable in bigger networks. To tackle this issue a computationally attractive algorithm
called Wiener-Phase is proposed to reconstruct the MEG, albeit under some assumptions that is
applicable in systems such as power-grid, consensus dynamics, and chemical reactions. 4) For
estimating Wiener coefficients from time-series data, a non-asymptotic concentration bound and a
sample complexity analysis are provided for both the time and FFT-based approaches. The results
show that the FFT-based approach is computationally superior to time-based approach by a factor of
O(L?/1og N), where L is the number of future and past samples used for WF TD estimation and N
is the FFT window length. The simulation results corroborate the conclusion that the FFT approach
gives better reconstruction error as well.

Notations: R, C, Z, N denote the set of real numbers, complex numbers, integers and natural numbers
respectively; [N] := {0, ..., N—1}; For any time signal, z := {z(t) : ¢ € Z}, X denotes the Fourier
transform of z, X (w) := > 07 x(n)e~7¥"; for a stochastic processes, x, ®,,(w) denotes the
power spectral density (PSD) of x; for a complex number, z = x g +ix, Zx denotes arctan(zy/xR);
) denotes the interval [0, 27] and Q2 denotes {0, 27/N, ..., 2w (N —1)/N}; for a transfer function,
X, X # 0 means X is not identically zero. In a given directed graph, Pa(i), Ch(i), Sp(i) denotes
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the set of parents, children, and spouses of node 7 respectively. ¢! denotes the space of absolutely
summable sequences.

2 PRELIMINARIES AND RESULTS ON WIENER FILTER COMPUTATIONS

2.1 LINEAR DYNAMIC INFLUENCE MODELS (LDIM)
Consider a network with n nodes, each node ¢ € {1,...,n} having the time-series measurements,
x; := {z;(k) }rez, governed by the convolutional model,

x(k) = > h()x(k—1) +e(k), 1)
l=—o0
where x(k) := [z1(k) ... z,(k)]T € R, h(¢) € R**", and e(k) := [e1(k) ... e,(k)]T € R™is
the vector of exogenous noise sources with e;, e; jointly wide sense stationary. That is, for every
i,7 € {1,...,n}, there exists an ¢; € R such that Ele; (k)] = «; for every k, and Ele;(k)e; (£)] =
Ele;(k — £)e;(0)] =: R;;(k — (). Taking Discrete Time Fourier Transform (DTFT), equation [I|can
be represented using the following linear dynamical influence model (LDIM),

X(w) = Hw)X(w) + E(w), Yw € Q, 2)

where X(w) = [X1(w) ... X,(w)]" € C", and E(w) = [E1(w) ... E,(w)]T € C". H(w) €
C"*™ is a well posed transfer function, (I—H(w)) is invertible as well as every entry of (I-H(w)) !
is analytic, and H;;(w) = 0 for every w € 2. Moreover, it is assumed that the power spectral density
matrix (PSDM) of e, Pg(w) := Y, oy Ree(k)e 7, is positive definite and diagonal for every
w € Q.

2.2 GRAPH DEFINITIONS

The structure induced by LDIM equationcan be represented using a graph G = (V, £), where
V={1,...,n} and € = {(u,v) : Hyy # 0}, that is, there exists an edge © — v in fivau(w) #0
for some w € Q. If u — v exists in £ then u is called parent of v (u € Pa(v)) and v is called child
of u (v € Ch(u)). If u — i + v exists in £ then u and v are spouses (u € Sp(v)). If u € Sp(v)
but u ¢ Pa(v) U Ch(v) then w is a strict spouse of v. w is said to be a kin of v in G, denoted,

u € king(v), if at least one of the following exist in £: u — v, v — u, u — @ < v for some i € V.
king(j) denotes the set of kins of j in G. A chain from node i to node j is an ordered sequence of

edges in g ((Lo, 01), (£1,02) ..., (bn—-1,0y)), where £y =i, £,, = j, and ({g, lxy1) € E. Skeleton
(topology), Skel(G), of a directed graph, G = (V, ), is an undirected graph; Skel(G) := (V, &)
where an edge (u,v) € £ if either (u,v) € € or (v,u) € £. A path from node i to node j in the
directed graph G is an ordered set of edges ((£o, ¢1), (¢1,42)...,(€n—1,£,)) with &y = 4, £, = j
in its skeleton, (V, &), where {({, lk+1)} € E. A path of the form ((g,¢1), ..., (bn—1,¢r)) hasa
collider at ¢y, if £;_1 — £} < {41 exists in G. Consider disjoint sets X,Y,Z C V in a directed

graph G = (V, ). Then, X and Y are d-separated given Z in G, denoted d-sep, (X, Z,Y') if and
only if every path between z € X and y € Y satisfies at least one of the following: 1) The path
contains a non-collider node z € Z. 2) The path contains a collider node w such that neither w nor

the descendants of w are present in Z. In-nodes of i are given by the set {j : (4, ) € £ }.

2.3 WIENER FILTER-BASED GRAPH/SKELETON LEARNING

Here we first present a method for estimating the ¥ time-series from another set of time-series.
Let x := {z(t) : t € Z} and y := {y(t) : t € Z} be p and ¢ dimensional random processes
with z(¢) = [x1(t) x2(t) --- :1cp(75)]T and y(t) = [y1(t) y2(t) - - yq (t)] . Consider the problem of
finding the minimum mean square error (MMSE) estimate of y given x, defined by:

y:=arg min _E[[ly(n) —g(n)[3], n € Z, 3)

gi=[g1(n) - gq(n)]

gjeM, j=1,....q
where M = span{z;j(k) : j = 1,...,p,—00 < k < oo}. The solution, y(n) :=
[1(n) g2(n) --- Z/go(n)]T is given by the Wiener filter (WF) Kailath et al. (2000), described
by: yi(n) = > ,__hi(k)z(n — k), ¢ = 1,...,q, where h;(k) € RP are the WF co-
efficients, with ;(k) = & [27 @, ()0} (w)e/Fdw; Byp(w) = S50 Ryul(k)e 99F,

Ry,+(k) := Elyi(k)z " (0)]. Alternately, the optimal solution is described in the FD by Y(w) =
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xTrxr

if ., (w) is positive definite for every w € Q. In the above description if we let C C V' \ {i} and
instantiate y = x; and * = x¢, then the MMSE estimator, Z;, of the process x;, given the time-series

e satisfies X;(w) = Wi.c(w)Xe(w) where Wi (w) = ®pyup (@)1, (w). Here Wi.c(w) is
the multivariate WF obtained while projecting the time-series x; onto x¢ |[Kailath et al.[|(2000). The

entry of W;.c(w) corresponding to j time-series in the set C' is denoted by W;.c[1](w).

Py (W) Pt (W)X (w),V w € Q, where ?(w) is the Fourier transform of 3. The solution is unique

2.4 TD APPROACH TO DETERMINING WF

Next, we briefly outline the conventional 7D-based approach of estimating the multivariate WF
coefficients from finite data. Given the time-series data {x(t)}1_, consider the projection of z;(t)
to the present, the past L values, and the future L values of z;(t), j € C C V '\ {i} with m := |C]|.
That is, forevery t = L,...,T — L, project z;(t) to span{z;(k) :t — L <k <t+ L,j € C}.
A TD estimate of the WF, WE%L) € RLHDxm can be computed using the following least square
formulation,

B* = arg 1% — yeBl3, )

min = ———
BeR™(2L+1) T —+ 1

where x; := [2;(T — L) ;(T — L — 1) ... 2;(L)]" and y, is given by

xey (T) Ty (T — 1) T @, (T —2L) T Teyp, (T) te Ty, (T — 2L)
e (T =1) e (T—-2) -+ 2;(T=2L—-1) -+ @, (T—=1) -+ 1z, (T—-2L-1)
yc = : BNG)]
2o, (2L)  me (2L—1) - ze, (0) cme, (2L) - 2, (0)
(T,L)

The WF estimate, w, ;" , is obtained by reshaping 5* into a matrix of the dimension (2L + 1) x m,
where the i-th (2L + 1) entries correspond to the coefficient of ¢;. Without loss of generality, the

rows of wE%L) are indexed from — L to L and the columns from 1 to m. The Fourier transform of
WE%L), WE%L) (w) e C™is WE%L) W :=r | WE%L) (k)e™7«*, where WE%L) (k) is k-th row

of WE,TC’L). The sample complexity of estimating WE,TC’L) (w) using equationscales asT =0 (Ln)

as provided in Theorem [5.1]

2.5 FFT-BASED COMPUTATION OF WF

Another approach for determining the WF coefficients is to first transform every time-series to its Fast
Fourier Transform (FFT) representation, followed by projections in the FD. This approach involves
sampling = [0, 27| at N, equally spaced points, Qny = {wo,...,wn_1}, where wy = %
with N = 2% a € N, as shown in Appendix [D} This process of transforming the time-series
to FFT representation is as follows. Consider the i*" time-series 2; which is partitioned to R
segments, each of length N, with the r*" segment denoted by z := {x;((r — 1)N), z;((r —

)N +1),..., 2;((r = 1)N 4+ N —1)}. Thus, the time-series ; is given by { (7 (£))N5" 2, where

27 (t) := z;((r—1) N +t). Using the r*" segment of the z; trajectory, given by 7 (0), ..., x5 (N —1),
the FFT, X7 (wy) = LN g;ol x7(n)e”“s" is computed. Let C' = {c1,¢2,...,¢n} C V where
V is the set of nodes. Let X7 (wy,) € C™ be the vector | X7 (wr) X7, (w)... XL (wr) ]T

obtained by stacking the Fourier coefficients from the 7" segment of the time-series in the set C'. Let
Xi(wk) = [le(wk) Xf(wk)]T S (CR and let Xc(wk) = [ch(wk) Xg(wk,)]T S (CRxm,
where C' C V. Then, for any wj, € €, the least square formulation described by,
. N
W (wi) == arg S ([ (wi) — Xo(wi)Bll; , (6)

eclc

computes an estimate of the WF coefficients in the FD (see|Doddi et al.| (2022) for details). Notice
that/Doddi et al.| (2022) provided the FD computation of the Lasso-based representation of the WF for
a special case of our general model. In this article we emphasize on 1) the computational advantages
of employing FFT, and 2) the non-penalized MMSE estimate of the WF. In Appendix [D.T]an explicit

convergence result of FFT to DTFT is provided, which shows a convergence rate of 1/ V'N. The
sample complexity of estimating Wl(fc) (wy) scales as O(Nn) as shown in Theorem

2.6 COMPUTATIONAL COMPLEXITY OF ESTIMATING WF

The first major contribution of the article is the characterization of the computational efficiency in
computing the multivariate WFs in FD when compared to the TD projections. In the TD, for m = |C|,
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the dimension of y. in equationd]is (I" — 2L + 1) x (2L + 1)m. Here the complexity of computing
the least square estimate for node 7 using equationis O((T —2L+1)m?(2L+1)?) =~ O(Tm?*L?),
since L < T'. On the other hand, computing the FFT for a window size of N samples takes N log N
computations |(Oppenheim & Verghese| (2017). Notice that we compute the FFT with N samples
per segment, and so the number of effective samples in the regression computation of equation [6]is
R = T/N. Thus the dimension of X Ej‘k) is (T'/N) x m. Computing the Wiener co-efficient for a

given wy, using the regression equation |6|takes O( TZLZ ) computations, thus a total of O(T'm? log N)
computations are required to compute the Wiener coefficient for a single frequency. It follows that
the FFT-based computation provides O(L?/log N') improvement compared to TD computation in
the asymptotic worst case computation complexity. For the settings with large number of samples
(large T") or with longer delays (large L) the improvement is significant.

3 IDENTIFICATION OF MARKOV EQUIVALENCE GRAPH OF SPS

In the previous preliminaries section we described two methods of determining the WF coefficients
from finite data; the first via projections in TD and the second via projections in the FD. We would
like to emphasize that the focus of the article is on detection rather than estimation wherein we are
interested in determining whether a WF coefficient is zero or not. The WF coefficient being zero
or not will be used to retrieve the causal structure corresponding to the underlying data generative
process. In general, it is not possible to reconstruct the exact and the complete structure of the
directed graph G, (the generative graph), associated with an LDIM from data alone without actively
intervening. Instead, in many scenarios the best one can do is to retrieve the Markov Equivalence
Graph (MEG) which is the set of graphs that satisfy the same conditional dependence property as
that of the true generative DAG |Ghoshal & Honorio| (2018]).

3.1 REALIZING THE ESSENTIAL GRAPH OF SPS USING WIENER FILTERING

In the static DAGs, reconstruction of MEG is well explored |Spirtes et al.|(2000). One of the popular
approaches in the static setting is the Peter-Clarke (PC) algorithm, which is performed using pairwise
conditional independence (CI) tests [Kalisch & Biihlman|(2007). In static settings, tests such as the
Fischer-z test and the chi-square test are performed to assess CI. However, the static CI tests fail in
the dynamic setting because of the temporal dependency in the time-series as shown in Table[T]in
the experimental results section. However, WF-based techniques can be applied on time-series with
dynamical dependencies to obtain better results, as suggested by the following result from Materassi
& Salapakal (2013).

Lemma 3.1 (Materassi & Salapakal (2013)). Consider a well-posed LDIM given by equation
Leti,j € Vandlet Z C V \ {i,j}. Let W;; z be the WF coefficients of estimating the time-

-

series x; from the time-series x; and xz. If i and j are d-separated given Z in G = (V,E), then
Wi, z1lil(w) = 0, for every w € Q. The converse holds almost always.

Inspired by the above result, we implement a modified PC algorithm, where the WF is employed to
test the CI on data with dynamical dependencies, to reconstruct the MEG. This proposed algorithm,
called Wiener-PC (W-PC) is provided in Algorithm[I] where the CI is performed by applying Lemma
[3.1] Recall that the WF can be computed using either equation | or equation [6]

The following are the notations used in Algorithm q denotes the maximum d-separating set
size. combinations(D, k) lists all the k-length tuples in D, in a sorted order, without any repeated
elements present, and DS(4, j) denotes the d-separating set identified for ¢ and j.

3.2 COMPUTATIONAL COMPLEXITY OF W-PC

As shown inKalisch & Biihiman|(2007), PC algorithm requires O(n?) tests. From Section[2.6] we
have that computing WZ(Q (w) using FFT takes a complexity of O(T|C|?log N) ~ O(Tn?log N),
since |C| < m. Thus the overall worst case complexity of W-PC when implemented in FD using equa-
tion|6is O(Tn?*3 log N), in contrast to the TD approach, which has the complexity O(Tn?+3L?).

4 WIENER-PHASE ALGORITHM

In this section, we propose a computationally attractive algorithm to reconstruct the MEG by
exploiting certain properties of the WE, which are not present in any prior static approaches. Towards
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this, we provide some useful lemmas and preliminaries below. The following Lemma shows that the
set of kins in GG can be reconstructed from the support of WF.

Lemma 4.1 (Materassi & Salapaka) (2012)). Consider a well-posed LDIM given by equation[2] Let
W, z, where i = V' \ {i}, be the WF coefficients of estimating the time-series x; from the time-series
xz If W, ;[7](w) # 0 then i € king(j). The converse holds almost always.

In many applications (see Remark 17 in|Veedu et al.|(2021)), it is possible to retrieve Skel(G) exactly
from the imaginary part of the WF. The following assumptions are required to obtain this result.

Assumption 1. If a node k has multiple incoming edges in G, then for every pair of in-nodes ¢, j of k
and for every w € Q, ZHy;(w) = £Hy;(w), where ¢, 5,k € V.
Assumption 2. If H;;(w) # 0 then S{H,;(w)} # 0, forevery ¢,j € V and w € Q.

Assumption [T says that the phase angle of all the incoming edges must be the same. This assumption
seems restrictive; surprisingly a large class of problems satisfy this assumption. Applications
satisfying Assumption [I]are provided in the supplementary material. Assumption [2]is required for
the consistency of the reconstruction of the skeleton.

Lemma 4.2. [Veedu et al.|(2021)) Consider a well-posed LDIM given by equation2|and satisfying
Assumptionsand@ For any w € Q, if S{W, ;[j](w)} # 0 then either (i, j) € € or (j,i) € E. The

converse holds almost always.

Thus, by analyzing the real and imag-
inary part of W, separately, one
can extract the strict spouse edges.
This information can in turn be em-
ployed to identify the colliders in G
in an efficient way. We call this al-
gorithm (Algorithm [2) Wiener-Phase
here. The worst case asymptotic
computational complexity of Wiener-
Phase algorithm is O(n3(T log N +
q%)) (see Section [4.1), which is ad-
vantageous, especially in highly con-
nected graphs (with large q). We
demonstrate the advantages of the
Wiener-phase algorithm in Section [6]

4.1 ANALYSIS OF
THE WIENER-PHASE ALGORITHM

In here, we analyze the Wiener-Phase
algorithm (Algorithm [2). As shown
in Lemma[4.2] in many applications
Veedu et al.| (2021)), support of the
imaginary part of the frequency depen-
dent WF retrieves Skel(G) exactly.
Further, as shown in Lemma[4.1] the
support of W, - retrieves the Markov
blanket structure in G. Combin-
ing both, the Wiener-Phase algorithm
identifies the colliders and thus the
MEG:s efficiently. Here, KC is the set of
kin edges obtained using Lemmaf4.1
and S is the skeleton obtained from
Lemma[4.2] Consider any edge (4, j)
that belongs to K but does not belong
to S. Then ¢ and j share a common
child without a direct link between
them (thus are strict spouses) in G.

Algorithm 1 Wiener-PC algorithm
Input: Data X(w), wr € Qn, ¢
Output: G
1. Initialize the sets, S <fully connected undirected edge set,
Col < {}, DS + {}, Eest < ()
2. Fori=1,...,n
(@) Forj=1,...,n,and j <1
i. Initialize D < V' \ {4, 5}
ii. Fork=0,...,q—1
* For z in combinations(D, k)
- 1 (WD [l(we)| <7
* DS(1,7) =
x delete (¢, j) from S
* break
- If|z] >=¢—-1
x DS(i,7) + —1
3. For (i,5) € V x Vandi < j:
o If{i,j} €S
- Fest(i,7) < 1
— Eest(7,1) + 1
4. For (i,j) € V. xVandi < j
(@ Fork=j5+1,...,n
L If{i,k}eS&{i,j}eS&id¢ {4k}
e fDS(j,k) > —-1&1i ¢ DS(j, k)
- Col + Col U {i}
— Eest[j,i] + 0O
- Eegtlk,t] <0
5. For every undirected edges, i.e., if (i,j) € Ees and (j,1) €

Ecs:, fix the orientation of as many as possible such that 1)
there are no directed cycles 2) there are no collider.

6. Return G = (V, Eest)

Following this procedure, we can construct all the strict
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spouses. Let this set be SP. Recall from Sectionthat the complexity of computing Wl({) (w)is

O(n®Tlog N). Repeating this process n times gives O(n®T log N). Thus, the total complexity in
finding K and S using FFT approach is O(n3T log N).

Now consider the skeleton S. In Step
4, we il(]ientify the common lelﬂlcll be-  Algorithm 2 Wiener-Phase algorithm
tween the strict spouses i, j as follows. Input: Data X Q

For any {i,j} € SP, let C;; := {k : (;1ptu ‘t' ga (). wi € Ay

{i,k} € §,{j,k} € S}, which s a set up.u..- _
that contains all nodes k& which has a 1. Initialize the ordering, § + ()
link to both 7 and j in the skeleton. Note 2. Fori=1,...,n

that the set C;; can contain non-colliders, ) . .
which will be eliminated using the fol- ) ZomPue Wi («) using equation(f]

lowing steps. For any {i,j} € SP, (b) Forj = EJ;)"’”

if |C;;| = 1, then ¢ € C;; is a col- i I W [f](we)| > 7, then K = KCU i, 5}
lider (because the link between 7 and i. If \%{W.(‘f)[j](wk)}l > 7, then S + S U {i, j}
j in K is formed by at least one col- . o

lider). If |C;;| > 1, then for every 3. Compute SP := K\ S

¢ € C;j, we can compute w) [4]. 4. For {i,j} € SP

) 1s . ”“’?] (@ Fork=1,...,n
If Wit g [4] # 0, then c is a collider i 1 {5k} € Sand {j,k} € S
since {i,j} ¢ S. The complexity of o Cij « Ci; ULk}
computing K and S is O(n3T' log N). (b) Tf|Ciy| = 1: Col = Col U {k}

Step 4 is repeated O(ng) times and Step . s
4(a) which checks for potential collid- () Else: for ¢ € Cy; compute Wi/

ers among the common neighbors of ¢ i If \Wi('{?c] [7]| > 7: Col + Col U{c}
and j takes O(n?q) operations. Steps . g

4(b) and 4(c) take O(n). Thus the com- - Return G

plexity in computing Step 4 is O(n3¢?),
giving the overall complexity of O(n®(T'log N + ¢2)). It is sufficient to compute Algorithm 2] for
O(1) number of w. Thus, the final complexity remains same.

5 SAMPLE COMPLEXITY ANALYSIS

So far, we have discussed about estimation of WFs using TD and FD approaches and its use in
causal inference algorithms. However, it is to be noted that in practice, due to finite sample effects,
the estimated WFs using either equation [ or equation [6] will deviate from the true WF shown in
equation[3] A quantification of these errors is necessary for better understanding and implementation
of WF-based algorithms. In this section, we characterize the error in estimating the WF coefficients
from data, and consequently, the number of samples required to estimate the WF reliably. The first
step in bounding the error in the WF estimation is bounding the error in estimating the PSDM.

The error in estimating the PSDM in TD is a special case of the Blackman-Tukey estimator (Veedu
et al.|(2021), Lamperski| (2023)). They compute the Fourier transform of the autocorrelation estimates
to obtain the PSDM estimates. The following theorem provides sample complexity for estimating
W;.c from equation by using the PSDM concentration bound from [Lamperski (2023). The proof
is provided in Appendix

Theorem 5.1. Consider a linear dynamical system governed by equation |2} Suppose that the auto-
correlation function Ry (k) satisfies exponential decay, || R, (k)| < Cp~¥! and that there exists M

such that ﬁ < Anin(Px) < Mpae(Px) < M. Then for any 0 < €,0 and L > log, ((12776‘3)6) and
w e if

(6n — log(8)) (2L + 1)M*)

TZO ( + L) , thenVw € Q, P (||vvi.c ~-WEH| > e) <4

The following theorem, based on the PSDM estimator in [Veedu et al.[(2024) provides the sample
complexity for estimating W . from equation[6] The proof is provided in the Appendix

Theorem 5.2. Consider a linear dynamical system governed by equation Suppose that the auto-
correlation function R (k) satisfies exponential decay, ||R,(k)| < Cp~V*| and that there exists
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M such that % < Anin(Px) < Anaz (Px) < M. Let 0 < e1,e9 < € be such that e9 = £ — €.
-1
Suppose that N > 1 2Cp . ThenVw € Qand 0 < 0, if

—p )2,

(6n — log()) NM*
o2

TZO ( > , thenVw € Q, P (||ch(w) — WE’E(w)H > E) < 0.

Comparing Theorem [5.1] with Theorem [5.2] it can be observed that number of samples required for
a given error performance is comparable when N ~ L. That is, T = O(Ln) for the TD whereas
T = O(Nn) for the FD computation. In addition, simulation results in Section E] show that the FD
approach shows better reconstruction accuracy than TD approach at smaller range of samples.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate that FFT-based approach provides superior computational advantages
while having comparable reconstruction accuracy, if not better, in networks with dynamics using
synthetic data as well as real field data.

The data generation and algorithm execution were performed in a computer with intel core 19-14900K,
3200 Mhz, 24 cores, 32 logical processors. The generative model for the synthetic datasets were
vector auto-regressive (VAR) model as shown below

xl(t) + ai(l)xi(t — 1) + ai(2)1:i(t — 2) + ai(3)xi(t -3) = me‘l‘j(lf — 1) + ei(t),
J#i

(N

where i € {1, 2,..., 6}, and e;(-) are

zero mean 1.i.d Gaussian noise with 14 ‘\ o e o
. - -x= m-rh - -= m-rn
dlagonal PSDM and ¢; (t) ~ N(O, 1) h2 N~ TDWrC > —— TDWPC

The coefficients of the VAR model
were generated in accordance with
the graphical structure of the corre-
sponding DAGs i.e. b;; was set to
zero if a link from j to ¢ does not
exist in the corresponding DAG. The
non-zero b;; coefficients in the VAR
model were randomly generated with
bi; ~ U(0.2,0.4), and a,(-) were

£10
5

& 0.6
0.4
0.2

10° 10 10°
Number of samples
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10° 10* 10°
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Figure 1: Comparison of (a) average error rate (b) average
computation time for 25 random networks generated accord-

fixed. A more detailed description of
the data generation process is given in
Appendix [C] For the FD based algorithms we averaged the magnitude and phase of the Wiener filters,
obtained from data, over a set of frequency ¥ = {wy,...ws}, where N > a € N. The average
magnitudes were then compared to the chosen thresholds in the algorithms.

ing to equation

6.1 RANDOM NETWORKS

Fig shows the average error rate for 25 randomly generated DAGs with dynamics described
by equation [/|for the three algorithms, namely, W-PC with TD-based WF estimation, W-PC with
FD-based WF estimation, and Wiener-phase algorithm. Here, error rate is the ratio of the total
number of wrong edges (both false positive and false negative) to the number of edges in the actual
DAG. It can be observed that FD-based W-PC outperforms the TD-based W-PC in terms of average
error. Moreover, the FD-based W-PC algorithm requires much smaller sample size compared to
the TD-based W-PC algorithm for similar reconstruction accuracy.We note that the Wiener-phase
algorithm also outperforms the TD-based W-PC algorithm. It can be observed that the average
computation time for the TD-based W-PC algorithm is significantly larger compared to the FD-based
W-PC and Wiener-phase algorithms (see Fig. [I(b)). This difference is stark at higher number of
samples where there is around an order of magnitude difference between the computation time
required for the TD-based W-PC and the FD based W-PC.

To choose the thresholds for the randomly generated network we use a sparsity metric based approach.
Bounds on sparsity metrics such as average, maximum, and minimum degree are typically available
apriori. As described in Appendix [C.2} given a dataset and an algorithm, we use an iterative search
method to obtain the smallest value of thresholds that produce networks which satisfies the given
bounds on average degree, and minimum degree.
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Table 1: Comparison of algorithms on 20 nodes network and river-runoff dataset

20 Nodes synthetic dataset Real-world river-runoff dataset
Algorithm Fy CS TPR | FPR | RunTime Fy CS TPR | FPR | RunTime
Fisher-Z PC 24.44 | 21.73 | 35.48 | 86.25 0.625 52.63 | 64.32 | 76.92 87.4 0.526
CD-NOD 23.80 | 19.93 | 32.25 | 87.68 0.421 54.05 | 65.16 | 76.92 | 88.24 0.1794
GC 48.65 50.9 58.06 | 92.84 0.939 33 28.37 | 38.46 | 89.92 0.22
TPC 78.57 | 70.12 | 70.97 | 99.15 4016.57 | 43.64 67.1 92.31 | 74.79 1548.29
FFT-WPC 100 100 100 100 1011.62 75 67.5 69.2 98.3 9.041
Wiener Phase | 93.55 | 92.97 | 93.54 | 99.43 1.37 48.3 46.29 | 53.85 | 92.44 0.02593

6.2 COMPARISON WITH STATE OF THE ART METHODS AND SCALABILITY

To further demonstrate the efficacy we present comparative results for network with 20 nodes. The
details of the network under consideration is given in Appendix [C.3] We compare the performance
of our FD method based algorithms with state of the art methods, namely, Fisher-Z test based
PC [Kalisch & Biihlman| (2007), CD-NOD |Huang et al.| (2020), Granger Causality (GC) |Granger
(1969), and Time Aware PC (TPC) Biswas & Shlizerman| (2022), on synthetic data. The Fisher-Z
PC, and CD-NOD algorithms were obtained from causal-learn library Zheng et al.| (2024), and
the TPC and GC algorithms were obtained from the TimeAwarePC library Biswas & Shlizerman
(2022)). To compare the algorithms, we define the following metrics: True positive rate (IT'PR)

:Tri% x 100%, 1—False Positive Rate (}%) = (1 — FPZ%) x 100%, Combined Score

(CS)=TPR—FPR, and F-1 score (F}) = % x 100%, where TP, FP, TN, and N

stand for T'rue Positive, False Positive, True Negative, and False Negative respectively.
We also report the run times in seconds. A dataset containing 128000 samples was generated using
the model of equation[/|for a 20 nodes network with 22 edges. The accuracy metrics and the runtime
of each algorithm using the dataset of 20 nodes is shown in Table{I] The thresholds for the FFT-WPC
and Wiener Phase algorithms were chosen to be 0.034 in both algorithms which were determined
using the sparsity based threshold tuning algorithm in Appendix [C.2] For the GC and Fisher-Z PC
significance levels of 0.106 and 0.01 were used respectively. The TPC algorithm was implemented
with maximum time-delay of interaction to be 5, and a significance level a = 0.1 for kernel-based
conditional independence tests. For the bootstrap procedure in TPC, 50 bootstrap iterations with
bootstrap window length of 50 recordings and bootstrap stability threshold v = 0.01 were chosen. It
can be observed that FFT-WPC and Wiener Phase algorithms outperform TPC, Fisher-Z based PC,
and GC in terms of accuracy. Also observe that FFT based WPC beats TPC in terms of speed also.
Moreover Wiener-phase beats both TPC and GC in speed of execution.

To further examine the scalability of the proposed algorithms, we applied the FFT based Wiener-
PC and the Wiener phase algorithm to a network with 50 nodes and 54 edges. The details of the
generative graph is given in Appendix [C.4] The FFT based Wiener PC algorithm with a threshold of
0.035 resulted in TPR = 97.62%, (1 — FPR) = 99.88%, and C'S = 97.5%, with a total runtime
of 142652 seconds (= 40 hours). The Wiener Phase algorithm with a threshold of 0.051 resulted in
TPR =100%, (1 — FPR) = 99.83%, and C'S = 99.83%, with a total runtime of 19.49 seconds.

6.3 RESULTS ON REAL FIELD DATA

In this section we demonstrate the performance of the proposed method on a real-world benchmark
dataset, the river-runoff dataset, obtained from online repository of CauseMe Runge et al.|(2019).
The river runoff data has 4600 samples of average daily river runoff of the upper Danube basin Ji
et al.| (2024). The graphical interpretation of the river runoff data was taken from |Ji et al.| (2024)
as the ground truth. The dataset was used in the FFT-WPC, Wiener Phase, Fisher-Z test based PC,
CD-NOD, GC, and TPC algorithms. For the FFT-WPC and Wiener Phase the thresholds were chosen
to be 0.404 and 0.108. The significance level parameter for GC and Fisher-Z-PC were taken to be
0.112 and 0.01 respectively. The parameters for the TPC algorithm were taken from Appendix-D of
Biswas & Shlizerman)| (2022). The comparative results are shown in Tablem Observe that, FFT-WPC
was able to obtain comparable error performance with the best algorithm reported in |Biswas &
Shlizerman|(2022), TPC, while run time was orders of magnitude faster. Wiener phase was the fastest
with a runtime of 26 milliseconds, but the CS was lower than FFT-WPC and TPC. However, Wiener
phase was able to beat GC in CS and F-1 score.

6.4 APPLICATION ON CIRCUITS

In this section, we demonstrate the application of the proposed methods in circuits that employ
transistors, capacitors, and resistors. In|Rana et al.|(2025)) it has been shown that electronic circuits
can be represented as LDIM. To demonstrate the effectiveness of the proposed algorithms in this
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Table 2: Comparison of algorithms on analog electronic circuit dataset

MOSFET Hardware Circuit Dataset BJT Hardware Circuit Dataset

Algorithm Fy (o) TPR | FPR | RunTime Fy CS TPR | FPR | RunTime
Fisher-Z PC 40 11.11 66.67 | 44.44 0.021 40 0 100 0 0.019
CD-NOD 66.67 | 66.67 100 66.67 0.0323 40 0 100 0 0.0309
GC 85.71 88.89 100 88.89 0.0389 75 77.78 100 77.78 0.0391
TPC 75 77.78 100 77.78 20.816 60 55.56 100 55.56 23.641
FFT-WPC 100 100 100 100 0.0842 100 100 100 100 0.0798
Wiener Phase 100 100 100 100 0.0464 100 100 100 100 0.0419

article over state-of-the-art methods, we collected two datasets, one containing measured data from
bipolar junction transistor (BJT) based physical hardware set-up and another containing measured
data from metal-oxide-semiconductor field-effect transistor (MOSFET) based hardware set-up.

First, we present results on the dataset collected from BJT based physical hardware circuit im-
plemented on a printed circuit board (PCB). Fig. [2] shows the circuit schematic along with the
PCB and generative graph. To de-
velop the circuit, MMBT2222ATTI1G
BIJT units were used along with resis-
tors and capacitors. The node voltages
{v1, ...v4} were measured at 1IMS/s
rate using a Ni-cRio data acquisition
system and AD8421 instrumentation
amplifiers. A detailed description of
the hardware set-up is given in Ap-
pendix [C:9] A total of 500000 sam-

ples were collected for each node volt-  Fjgyre 2: Schematic of BIT based hardware implemented

age. The results of reconstruction are  ¢jrcyit showing PCB implementation, circuit under test, and
shown in Table 2l Observe that the geperative graph

proposed method outperforms state-
of-the-art methods in terms of both accuracy and speed.

Next, we present results on the dataset collected from a MOSFET based hardware circuit
implemented on a printed circuit board (PCB). Fig. [3] shows the circuit schematic along
with the PCB and generative graph.
To develop the circuit, 2N7002E n-
channel MOSFETS units from On-
semi were used along with resistors
and capacitors. The node voltages
{v1, ...v4} were measured at 1IMS/s
rate using the set up described in the
previous section. A total of 500000
samples were collected for each node L ;
voltage. The results of reconstruction

are shown in Table 2l Observe that Figure 3: Schematic of MOSFET based hardware imple-
similar to the BJT circuit results, the mented circuit showing PCB implementation, circuit under
proposed method outperforms state- test, and generative graph

of-the-art methods in terms of both

accuracy and speed. This demonstrates the dominance of our proposed method for the tested
real-world dynamical systems.

CONCLUSIONS

This article answers the question of whether time-domain (TD) or frequency-domain (FD) approach
to reconstruct causal structure of dynamical networks is better. It is established through theory
and simulation results that FD approach is better than the TD approach in terms of computational
complexity. Further, simulation results show that the FD approach outperforms TD. In addition, the
superiority of the WF-based causal inference over traditional static CI test-such as Fischer-Z test,
and state of the art methods such as Time aware PC, and Granger Causality is demonstrated through
simulation. As a third contribution, an algorithm for causal structure recovery using magnitude
and phase properties of the WFs is developed. This algorithm provides significant computational
advantages over traditional causal inference algorithms by ruling out the combinatorial explosion of
required CI tests.

10
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APPENDIX

A WHICH FREQUENCY TO CHOOSE?

Most practical systems are finite dimensional with finite dimensional realizations. These admit
rational transfer functions. The following Lemma proves that, in identifying the CI, graph/moral
graph, and skeleton, it is sufficient to work with one frequency selected arbitrarily, in order to get
meaningful result, when we have access to large enough data.

Lemma A.1. Consider any rational polynomial transfer function
(z—a1)(z—a2)...(z—ap)
i(2) (z—=b1)(z —b2)...(2 —by)

For any distinct wy,ws € Q, Hj(e7*') # 0 if and only if H;;(e7*?) # 0 almost surely w.r.t. a
continuous probability measure.

,p<gq, CeC.

Proof: By the fundamental theorem of algebra|Cox et al.[(2007)), there exists at most p complex
zeros for H;;(z), if H;;(z) is not identically zero, which form a set of Lebesgue measure zero.
Suppose H;;(e7“1) = 0, which implies that H;; is not identically zero. Thus, H;;(e/*2) # 0 almost
everywhere. |

B PROOF OF THE RESULTS IN SECTION[3]

IWic = Wic| = [®ic®5t — Bic®pt |2
<[ Bic(Pol — Bob)llo + [[(Bic — Pic)PoL) |2
< [Bicl2l| ot — Pogll + [Pic — Ricll2@s |
< [Bicll2l| @t — Pogll + M|®ic — Picll2
< (|1®ic — Ricll2 + |@ic|l2)|Pot — Poill + M|Bic — Pic |2
= [ @ic — Picll2|Pat — Poill + |1 Ricll 66 — Poill
+ M@0 — Bic|2

<l®co - @ocll|®oc — ool + Ml®oe — Poll
S €1.€iny + Meinv S (M + 1)67

where we have used triangle inequality, - || and Euclidean norm || - ||2.
From Section 5.8 in|Horn & Johnson! (2012),
~ e _ M?
I2cc — @ccll < [@cclll®ze] ™ Poe — ‘I’cch e
zw
I2ccl
M4H(T)Elc_q)6é'“ -1 1 € €
= <e = ||Par Pl £ ——F——F- < —.
1- M||ogL — oL I*ce =®ocll < 37z < 3

Therefore, to guarantee that H(I;alc — 54| < e itis sufficient to guarantee that ||‘f>cc — Dol <€
since M > 1. Hence,

—~ ~ €
]P’(Wi. - W, )<IP> doe — . 8
IWic - Wacl > ¢) < P (e - Fccl > 3757 ®

For Blackman-Tuckey,

Lemma B.1 (Lamperski (2023)). Consider a linear dynamical system governed by equation 2
Suppose that the auto-correlation function R, (k) := E{X(n )X T(n + k)} satisfies exponential
decay, | R, (k)|| < Cp~ ¥ and that there exists M such that - 7 < Amin(Px) < Amae (Px) < M.

Then for any 0 < ¢ and L > log,, <(1 p)6>,

2(1— )
o0~ cep(-tT =D g
P(I cell>¢) < eXp( eI VER
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Table 3: Coefficients used in data generation for random networks experiment of Section

E=1 k=2 k=3
a1(k) | 1.739381261594696859 x 10 2 | 1.043628756956818150 x 10 | 5.218143784784090751 x 10 °
az(k) | 3.415208172002098808 x 10 ' | 1.366083268800839523 x 10 | | 6.830416344004197615 x 10~
as(k) | 8.289102927104288199 x 10 | | 5.802372048973001295 x 10 | | 3.315641170841715502 x 10 |
as(k) | 8.846579905691620560¢ x 10 > | 4.423289952845810280 x 10 2 | 2.653973971707486099 x 10~
as(k) | 8.562817629518102436 x 10 ' | 5.137690577710861684 x 10 | | 2.568845288855430842 x 10 |
as(k) | 1.630296867565628104 x 10 | | 1.141207807295939597 x 10_ | | 4.890890602696884581 x 10~
Applying this,
(T L) T L) €
P([Wic - WG > ¢) <P ([0cc - 8" >
M+1
2
e(T - L)
<exp|— + 6n
- 32(2L + 1)M?(M + 1)?

= N A Clut) +6n

< exp 32(2L + 1)(M + 1)2 .
Thus, an upper bound on the sample complexity is

(T - L)
exp (_32(2L—|— EE +6n) =0
(T - L)
32020 + )(M + 1) (log(0) — 6n)

(log(8) — 6n) ((2L + 1)M4))

C))

€2

= (T—L)zO(

For Bartlett estimator,

Lemma B.2 (Veedu et al| (2024). Consider a linear dynamical system governed by equation 2]
Suppose that the auto-correlation function R, (k) := E{X(n)X " (n + k)} satisfies exponential

decay, |Ry(k)|2 < C6~ ¥ and that there exists M such that 5, 1 < )\mzn((I)X) < Amaz(Px) < M.
Let 0 < e1,69 < € be such that eo = € — 1. Suppose that N > m, where 0 < 1. Then
Yw € §,
P(||<f> Dol > )< T g
cc cc €) =exp| = oenare n).
Then,
= ~ €
IP’( o — Wi ><]P’ oo — B
IWic - Wacl > ¢) < P (|#ce - Fccl > 3757 )
< T +6
exp | — n
=P\ T8N (M + 122

2T

C EXPERIMENTS

In this section, we provide the details on data generation, threshold tuning, and simulation results on
statistical significance.

C.1 DATA GENERATION

For MEG reconstruction of random networks, we performed the experiments over 25 random
networks with n = 6 nodes. For each network iteration, a random DAG is first generated with at most

15
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2 parents for each node. In this graph, the data is generated using the AR model, with the non-zero
entries that respect the graph structure of the random DAG generated, using

Q?i(t) + U,i(l)l‘i(t — 1) + ai(Q)x,»(t — 2) + ai(3)xi(t — 3) = Z bijxj (t — 1) + ei(t), (11
J#i
where e;(t) is zero mean i.i.d. Gaussian noise with diagonal covariance matrix and i = 1, ..., n. The
data is generated continuously according to the AR model in equation Thatis, fort =0to T,
X(t) is computed based on equation which satisfies Assumptions|l{and |2} Hence Lemma and
Algorithm 2] can be applied to reconstruct the essential graph.

The coefficients a;(-) used for the data generation are shown in Table[3] It is to be noted that that
for the random networks the b;; coefficients were generated randomly from unif[0.2,0.4]. The
coefficients are chosen this way to stop the time-series from becoming unbounded. In IID exogenous
noise setting, e;(t) ~ N(0, 1) is used. Given the coefficients, the data is generated according to
equation [[T]for every ¢ € V.

C.2 RANDOM NETWORK RECONSTRUCTION FROM DATA

The datasets for the 25 random DAGs were used in FD based W-PC, TD based W-PC, and Wiener-
phase algorithm. The average error rate and computation plots are shown in Fig. [[(a)and[I(b)] In
this section, we quantify the performance of the algorithms statistically. The box and whisker plot
of error rates for the 25 random networks are shown in Fig[] As expected the error reduces as the
number of samples increases.

As mentioned in Section [0 the performance of the proposed algorithms in this article depend on
the choice of the thresholds. To tune the thresholds we use a sparsity based tuning approach. This
approach uses bounds on the average, maximum, and minimum degree of the reconstructed topology
to choose a threshold. The algorithm is shown in Algorithm 3| Such sparsity related information are
typically be available in practice for DAG models.

Algorithm 3 Threshold tuning-based on sparsity metric

Input: Data, upper limit of average degree d,,, lower limit of average degree d;, maximum degree
dmaz, minimum degree d,,;,, lower limit of threshold 7;, upper limit of thresholdr,,, resolution for
tuning (.

Output: Optimal choice of threshold 7

1. Initialize threshold 7 < 77, 7 < 7

2. p« floor |[(tu — 1) /(]
3. Fori=1,...,p

(a) Estimate G using reconstruction algorithm and 7

(b) Compute average degree (d), maximum degree (dynqz ), minimum degree (dpiy, ) for
skeleton of G.
(©) Ifd; < d < dy and dyas < dymas and dimin > dmin
LTT
ii. break.
@ 7 (140

4. Return 7

C.3 DETAILS OF 20 NODES NETWORK

The 20 nodes network used in this article is a directed acyclic graph shown in Fig. [5] The network
consists of 20 vertices, and 22 edges, with maximum and minimum degree of the nodes being 5
and 1. The maximum number of incoming edges at any specific node is 2 and maximum number of
outgoing edges from any specific node is 3. As discussed earlier the data generative model for the 20
nodes network was taken to be of the form in equation The a;(+) coefficients for the 20 nodes
network were chosen as shown in Table 4]
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Figure 4: Box and whisker plots showing statistical performance of the (a) FD based W-PC (b) TD
based W-PC (c) Wiener-Phase over 25 networks for the results presented in Section |§|

Figure 5: Generative graph of 20 nodes network

C.4 DETAILS OF 50 NODES NETWORK

The 50 nodes network used in this article is a directed acyclic graph shown in Fig. [6] The network
consists of 50 vertices, and 54 edges, with maximum and minimum degree of the nodes being 5
and 1. The maximum number of incoming edges at any specific node is 2 and maximum number of
outgoing edges from any specific node is 3. The a;(+) coefficients for the 50 nodes network were
chosen as shown in Table

17
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Table 4: Coefficients used in data generation for 20 nodes network

k=1 k=2 k=3
a (k) 1.739381261594696859¢ — 02 1.043628756956818150e — 02 | 5.218143784784090751e — 03
as (k) 3.415208172002098808e — 01 1.366083268800839523e — 01 6.830416344004197615e — 02
a3 (k) 8.289102927104288199¢e — 01 5.802372048973001295e — 01 3.315641170841715502e — 01
as(k) 8.846579905691620560e — 02 | 4.423289952845810280e — 02 | 2.653973971707486099¢e — 02
as (k) 8.562817629518102436e — 01 5.137690577710861684e — 01 2.568845288855430842¢ — 01
ag (k) 1.630296867565628194e — 01 1.141207807295939597e — 01 | 4.890890602696884581e — 02
a7 (k) 1.739381261594696859¢ — 02 1.043628756956818150e — 02 | 5.218143784784090751e — 03
ag (k) 3.415208172002098808e — 01 1.366083268800839523e — 01 6.830416344004197615e — 02
ag (k) 8.289102927104288199e — 01 5.802372048973001295e — 01 3.315641170841715502e — 01
aio(k) 8.846579905691620560e — 02 | 4.423289952845810280e — 02 | 2.653973971707486099e — 02
a1 (k) 8.562817629518102436e — 01 5.137690577710861684e — 01 2.568845288855430842e — 01
ai2(k) 1.630296867565628194e — 01 1.141207807295939597e — 01 | 4.890890602696884581e — 02
a13(k) 1.739381261594696859¢ — 02 1.043628756956818150e — 02 | 5.218143784784090751e — 03
a14(k) 3.415208172002098808e — 01 1.366083268800839523e — 01 | 6.830416344004197615e¢ — 02
a5 (k) 8.289102927104288199e — 01 | 5.802372048973001295e — 01 | 3.315641170841715502¢ — 01
a6(k) 8.846579905691620560e — 02 | 4.423289952845810280e — 02 | 2.653973971707486099e — 02
a7 (k) 8.562817629518102436e — 01 5.137690577710861684e — 01 2.568845288855430842e — 01
a1s(k) 1.630296867565628194e — 01 1.141207807295939597e — 01 | 4.890890602696884581e — 02
aio (k) 1.739381261594696859¢e — 02 1.043628756956818150e — 02 | 5.218143784784090751e — 03
azo (k) 3.415208172002098808e — 01 1.366083268800839523e — 01 6.830416344004197615e¢ — 02

(9
D

Figure 6: Generative graph of 50 nodes network

C.5 ROBUSTNESS OF WIENER PHASE ALGORITHM TO PHASE CONDITION VIOLATION

In addition to the results in the main article, our algorithm remains robust to assumption violation
as demonstrated through example here. To study the robustness of the Wiener Phase algorithm we
employed the Wiener phase algorithm on synthetic data that violates the phase alignment assumption.
The model was taken to be of the following form: a; oz;(t) + a;12:(t — 1) + a;22:(t — 2) =
Zj?gi(bijpa?j (t — 1) + bij)l.’lﬁj (t — 2) + bij’ng(t - 3)) + ei(t), where the coefficients bij,k: were
chosen randomly from [0.1, 0.9], and a; ;, were chosen such that the time-series remain bounded. The
network was taken to be a 20 nodes network shown in Appendix [C.3] For the 20-node network with
22 edges, and an N=32 point FFT, and threshold of 0.15 the results are shown in Table@
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Table 5: Coefficients used in data generation for 50 nodes network

k=1

k=2

k=3

al(k)

1.739381261594696859¢ — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

az(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

ag(k)

8.289102927104288199e — 01

5.802372048973001295e — 01

3.315641170841715502e — 01

a4(k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099e — 02

as (k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842¢ — 01

ag (k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

az (k)

1.739381261594696859¢ — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

as (k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

ag(k)

8.289102927104288199e — 01

5.802372048973001295e — 01

3.315641170841715502e — 01

alo(k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099e — 02

all(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842¢ — 01

alg(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

ala(k)

1.739381261594696859¢ — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

014(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e¢ — 02

a15(k)

8.289102927104288199¢ — 01

5.802372048973001295¢ — 01

3.315641170841715502¢ — 01

a16(k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099¢e — 02

a17(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842¢ — 01

alg(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

alg(k)

1.739381261594696859¢e — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

agg(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

a21(k)

1.739381261594696859¢ — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

a22(k>

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e¢ — 02

az3 (k)

8.289102927104288199¢ — 01

5.802372048973001295¢e — 01

3.315641170841715502e — 01

a24(k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099e — 02

a25(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842e — 01

agﬁ(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

a27(k)

1.739381261594696859¢e — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

azs (k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

az9 (k)

8.289102927104288199¢ — 01

5.802372048973001295e¢ — 01

3.315641170841715502e¢ — 01

azo (k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099¢e — 02

agl(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842¢ — 01

agz(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

a33(k)

1.739381261594696859¢e — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

a34(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

a35(k)

8.289102927104288199¢e — 01

5.802372048973001295e — 01

3.315641170841715502e — 01

aze (k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099¢e — 02

az7(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842¢ — 01

azs (k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

azg (k)

1.739381261594696859¢ — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

a40(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

a41(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842e — 01

a42(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

a43(k)

1.739381261594696859¢e — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

a44(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e¢ — 02

ays (k)

8.289102927104288199¢ — 01

5.802372048973001295e — 01

3.315641170841715502e — 01

aq6 (k)

8.846579905691620560e — 02

4.423289952845810280e — 02

2.653973971707486099¢e — 02

a47(k)

8.562817629518102436e — 01

5.137690577710861684e — 01

2.568845288855430842e — 01

a4g(k)

1.630296867565628194e — 01

1.141207807295939597e — 01

4.890890602696884581e — 02

a49(k)

1.739381261594696859e — 02

1.043628756956818150e — 02

5.218143784784090751e — 03

aso(k)

3.415208172002098808e — 01

1.366083268800839523e — 01

6.830416344004197615e — 02

Table 6: Performance of Wiener Phase Algorithm on Phase Violation

Sample Count | CS% | TPR% | (1 — FPR)% | Run Time (s)
6400 86.52 87.09 99.43 0.117
32000 88.89 90.32 98.57 0.2298

128000 92.69 93.55 99.14 1.279
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It can be observed from the above results that even though the phase alignment assumption is violated
the Wiener phase algorithm produces highly accurate results. This shows that the algorithm is robust
to the assumption being violated.

C.6 APPLICATIONS SATISFYING ASSUMPTION[I]

Any network whose states evolve according to the following dynamics,

Z amz +a() Ly = ZCU +p1( )

satisfies Assumption[I} Some examples include Talukdar et al.| (2020)

1. Consensus dynamics: In multi-agent systems, distributed decision making often follows
the following first order consensus dynamics, where each agent ¢ updates its states according
to

dl"z Z c” — 2 +pi(h),

where p; denotes the receiver noise for agent j Siami et al.|(2017)). Identifying the commu-
nication topology of a network of agents in a multi-agent system is a relevant objective of a
cyber attacker, and appropriate hardware/software tools need to be designed to avert such
attacks.

2. Thermal Resistance Capacitance (RC) networks: One of the popular approaches in
modeling the real-time control of building is the gray box modeling with lumped parameters.
Here, the discretized physical spaces are modeled as RC models, where each discretized
physical space is represented by a common temperature. An example lumped parameter
model is

AT, =Ty - T,

dt & Ry

Ci + pj (t)

where T; denotes the temperature, C; > 0 denotes the capacitance and p; denotes the total
internal heat generated of zone j. R;; > 0 is the thermal resistance between zones ¢ and j.

3. Power Grid Dynamics: When the disturbances in the power grid are small, the deviation in
voltage phase angle dynamics at bus j, denoted by ¢;, can be modeled by a swing equation,
for example,

d?z; dx;
Mzﬁ +D7‘,d7tv = Z ‘Cij(xj = i) +pjs
J=Lj#i

where p; denotes the receiver noise for agent j.

4. Linearized Chemical Reaction networks: Chemical engineering processes often operate
in transient states and are generally governed by ordinary differential equations (ODEs).
ODEs are used in applications such as chemical stirring tank design, heat exchangers, or
biological cell growth. Example, see herel

C.7 EXAMPLE WHERE GRANGER CAUSALITY FAILS

An essential assumption for applying Granger causality is that the underlying influence dynamics
should be temporally strict causal. That is, if « influences y, then “only” the “past” values of x in
time should influence y. Granger causality will fail if the present value of y depends on the present
value of = as well. However, our approach can accommodate any linear dynamical system where the
present value of y can depend on present, past, or future values of z. We generated a 6-node synthetic
network with zero lag dependency between the nodes that follow the dynamics described as below

() +a;(Dzi(t — 1) + a;(2)zi(t — 2) + a;(3)x; ZZb”xj T)+ei(t). (12)

7=0 j#i
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Table 7: Algorithm performance on non-linear system

Algorithm TPR% | (1— FPR)Y% | CS%
FFT-WPC 100 100 100
Wiener Phase 100 100 100

The following results show that the GC fails to reconstruct the full network even at 10° samples. Our
algorithms achieve zero reconstruction error with fewer samples.

* Wiener Phase: perfect reconstruction at 6400 samples with a N = 32 point FFT and a
threshold of 0.1.

* FFT-WPC: perfect reconstruction at 15000 samples with a N = 32 point FFT and a threshold
of 0.074.

* Granger Causality: CS = 80% at 3.2 x 105 samples, with significance level a = 0.086.

C.8 APPLICATION OF ALGORITHMS TO NON-LINEAR SYSTEMS

Note that the proposed algorithms are purely data driven and thus are applicable to any set of
time-series data; the underlying data generative system does not determine the applicability of our
algorithms. This is in contrast to other methods, for example, where the algorithm depends on a
parametrized model, and the parameters are determined via data. To demonstrate that our algorithms
may be effective in many non-linear system we present an example below.

We used a generative model of the form

ai,oxi(t) + ai,lxi(t — 1) + &i,gﬂii(t — 2)) + a,'733:i(t — 3) = Z bTJ (Jij(t) + Olﬂjg(t - 1)) + 61,(25),
J#i

13)
where e;(t) is standard Gaussian noise. b;; are uniform random numbers, and a; are chosen such that
the time series remains bounded (poles of the transfer functions remain within the unit circle). The
above model was used to generate data for the 20 nodes network of Appendix [C.3] The generated
data was then used in the FFT based Wiener PC and the Wiener Phase algorithm with thresholds 0.04
and N = 32 point FFT in both algorithms. The results are as shown in Table[7]

It can be observed that the algorithm produce almost perfect reconstruction results for the nonlinear
system described above.

C.9 DESCRIPTION OF SETUP FOR EXPERIMENTS ON CIRCUITS

As described in [Rana et al.| (2025)), the experimental setup for data acquisition from transistor based
circuits that was described in Section [6.4]consists of the following hardware sub components:

* a computer station with LabVIEW 2021,
¢ an NI-cRIO 9054 equipped with Xilinx Artix-7 A100T FPGA,

* an NI-9223 module with 4 +10V isolated analog input channels, 16-bit simultaneous
sampling of all channels at maximum 1MS/s rate,

* a 600W Multi-Range 150V/10A bench-top DC Power Supply (Model 9206) from BK
Precision,

e a 12V 50W AC/DC Converter (LRS-50-12) from Mean Well USA Inc,
* low noise instrumentation amplifier (AD8421) based custom made measurement circuits,

* hardware under test (HUT) which was either a BJT or MOSFET amplifier circuit. The PCB
implementations of the hardware under tests are shown in Fig[2]and Fig.

The circuit under test were energized using the bench-top DC supply from BK Precision and the

NI-cRIO DAQ system was power from the 12V AC/DC converter from Mean Well USA. The node
voltages, {v1, va, v3, v4}, as shown in Fig. [2]and Fig. [3| were then first amplified using the AD8421

21



Published as a conference paper at ICLR 2026

Table 8: Comparison of algorithms on simulated analog electronic circuit dataset

Algorithm Py cs TPR | FPR | RunTime
Fisher-Z PC 37.84 | 37.74 70 67.74 0.1897
CD-NOD 37.84 | 37.74 70 67.74 0.298

GC 80 91.94 100 91.94 0.0928
TPC 60.61 79.03 100 79.03 97.84
FFT-WPC 100 100 100 100 10.97
Wiener Phase | 90.91 96.8 100 96.8 0.153

instrumentation amplifier. The amplified signals were recorded using the NI-cRio and NI-9223 based
data acquisition system. The LabVIEW software was used to deploy the data acquisition algorithms
required for the NI-cRio. A screen capture of a segment of the recorded voltage measurements are
shown in Fig.

GWINSTEK 18k pts 28HSa-s

) = SPEnY @& = 588nYU f) = 58BnU][ SPus  B.B8A8As)|

Figure 7: Waveforms of recorded voltage measurements for the experiments on physical hardware
circuits displayed on an oscilloscope.

C.10 RESULTS ON LARGER CIRCUIT SIMULATED IN CADENCE

In this section, we demonstrate the application of the proposed methods in larger circuits that employ
transistors, capacitors, and resistors. To demonstrate the effectiveness of the proposed algorithms in
this article over state-of-the-art methods on larger circuits, we collected a dataset containing high
fidelity simulation data. A schematic of the circuit simulated in Cadence virtuoso, which is a high
fidelity circuit simulator, is shown in Fig. |8} A spice model of a commercial bipolar junction transistor
(BJT) (MMBT2222ATT1G) was used for the simulation. The circuit contains multiple transistor
amplifier stages connected in common emitter configuration with bypass capacitors at the emitter.
Also, the different stages are connected through capacitors leading to dynamic nature of the circuit. A
total of 799999 samples were collected for each of the node voltages {v1, ...vg} shown in Fig. [8} The
comparative results using the data collected from the simulated dynamic circuit is shown in Table
It can be observed that our proposed approach outperforms state-of-the-art methods. Note that
the FFT-WPC and the Wiener-Phase produce almost perfect reconstruction, and the Wiener-Phase
algorithm is the fastest. The FFT-WPC achieves the highest F1 score followed by Wiener-Phase, GC,
TPC, CD-NOD, and Fisher-Z PC in descending order.

C.11 EFFECT OF FREQUENCY DISCRETIZATION ON ALGORITHM PERFORMANCE AND
CHOICE OF N

In this section, we present results showing the effects of the frequency discretization and sampling
on the proposed algorithm. As described earlier, to compute the FD based Wiener filters we sample
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Figure 8: Schematic and generative graph of simulated transistor amplifier
Rana et al.| (2025))

the frequency interval Q@ = [0, 2] at N evenly spaced points. To quantify the effects of frequency
discretization and sampling, we evaluated the performance metrics of the algorithms at different
values of N. The data generative model of equation[TT]used for generating data for 25 random DAGs
each containing 10 nodes and randomly generated edges. The datasets, each containing 128000
samples, were used in Algorithms|[T]and 2] with the sparsity based threshold tuning Algorithm [3|for
different values of V. The average error rates and £} scores over the 25 random DAGs are shown in
Fig.[9] It can be observed that the algorithms perform better as the value of IV increases. However,
note that for N > 32 the improvement in algorithm performance with increasing NV is incremental.
Although increasing the value of N may increase the performance beyond 32 for the presented
example, it would also increase the computational burden as the complexity of the algorithms is
O(log N). Therefore, to maintain an acceptable tradeoff between complexity and performance we
choose N = 32.

Average Error Rate Comparison, n =10 Average F; Score Comparison, n =10
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== Wiener Phase
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Figure 9: (a) Average error rate and (b) F} score for different values of N for FD Wiener PC and
Wiener-Phase over 25 random networks
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D FREQUENCY DISCRETIZATION

The LDIM in equation [2|can be sampled at frequencies w in Qx = {wo, . ..,wn_1}, where wy, :=
2”’“ , thus converting the continuous frequency model to a practical model 1nv01v1ng a finite set of
frequen(:les In TD this is equivalent to the finite impulse response model

Zh x(n —1) + e(n), (14)

where n = 0,...,N — 1, x(n) and e(n) are periodic with period N, and h(l) is non-
Zero for at most N — 1 lags. For the circular convolution model equation X(wg) =
\F Zn s ' x(n)e=27kn/N | = 0,...,N — 1, provides the Discrete Fourier Transform (DFT)
of the sequence x(n). Slmllar DFT expressions hold for H(wy,) and E(wk) as well assuming h(n)
and e(n) are periodic. The directed graph associated with equation 4G = ) is defined such

that the edge u — v exists in Eif H,,(wy) # 0 for some k. It is well known that the Fourier coeffi-
cients can be approximated via discretization |Grafakos| (2008)). A uniform and explicit convergence
rate for signals with bounded variation is ovided below in Section[D.T|that shows a convergence

rate of 1/ V/N for approximating equation |1| with equation

D.1 CONVERGENCE OF DFT O DTFT

Notation: For a continuous function f, f denotes the Fourier transform of f.

Proof:

Definition 1. |Grafakos| (2008) The total variation of a continuous complex-valued function f, defined
np—1

on [a,b] C R is the quantity, V’(f) := sup Z |f(zs41 — f(2)], where P = {x¢,...,2,, 1} is
peEP

a partition and P is the set of all partitions of [_a, bl.

A continuous complex-valued function f is said to be of bounded variation on a chosen interval
[a,b] C R if its total variation is finite, i.e. if V*(f) < +o0.

Lemma D.1. For a function fof bounded variation V, on [0,2x] and N > 1, the estimation of

fln) = 027T f(w)ejw”dw given by fMNV)(n) = & Zi\:()l eﬂ’mk/Nf(?Wk/N) for |n| < VN and

zero otherwise, satisfies || f — f(N)HgW(Q) < C/v/N.
Proposition 1. For f with bounded variation, Vb(f), on [a,b] and t € [a,b]

/f Jdo — (b— a) f(1)| <

~

< (b—a)Vy(f).

~

Proof: Since f has bounded variation, M := SUPy€a,0] flz) and m = infgeq,) f () are both
finite. Thus,

/f o — (b— ) f(1)| <

Corollary 1. For f a function of bounded variation on [0, 1], given by V(! (f), the error in a Riemann
sum approximation,

~ ~ ~

(2) = F©)| do < (M = m)(b — @) < (b~ V().

<V (H)/N.

aN—‘/f m——an/N

Proof: Note that

N-1 n+1/N
en< Y. / Fla)dz — < Fin/N) Z VOSIINE N < VE(F/N,
n=0 n/N n=0

where the second inequality follows from Proposition
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Proposition 2 (Proposition 3.2.14,|Grafakos| (2008)). If fis of bounded variation, then
A

= 2mn|’

f(n) n # 0.

Corollary 2. Forn € N, and € > 0 fixed. the estimation of the Fourier series f(n) given by

FO () = [0S0 PN F(k/N) || < N1
0 otherwise

converges uniformly to f(n).

Proof: For |n| < N'~¢, it follows by Corollary [2] that

2 o L
’f(n) —f(N)(n)’ < ol fllee? |nN|+VO 5

o V2Ulle2r VIV ()
- Ne N

Similarly, for n > N1—¢

_WD D
~ 27n| T 2wN1-E

[£(n) = FM )

The proof of Theorem follows by letting e = 1/2.
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