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ABSTRACT

Current approaches for Knowledge Distillation (KD) either directly use training
data or sample from the training data distribution. In this paper, we demonstrate
effectiveness of ’mismatched’ unlabeled stimulus to perform KD for image classi-
fication networks. For illustration, we consider scenarios where this is a complete
absence of training data, or mismatched stimulus has to be used for augmenting a
small amount of training data. We demonstrate that stimulus complexity is a key
factor for distillation’s good performance. Our examples include use of various
datasets for stimulating MNIST and CIFAR teachers.

1 INTRODUCTION AND RELATED WORKS

Knowledge Distillation (KD) is the process of transferring the generalization ability of a teacher
model (usually large neural network) to a student model (usually a small neural network). Hinton
et al. (2015) demonstrated that the student network can be trained using an input data with combina-
tion of hard labels as well as soft labels. The hard labels are the ground truth labels (one-hot vectors)
available for the training data while the soft labels are the output of the teacher network on the input
data. Most of the distillation approaches either directly use training data or device a strategy to learn
the training data distribution and then sample from it. However, the assumption of availability of
labeled training data may not always hold true, due to various reasons.

In this paper, we investigate an effectiveness of ’mismatched’ unlabeled stimulus for KD when
the training data of the teacher is not available. Specifically, for the MNIST teacher, we utilize
mismatched stimulus such as CIFAR(Krizhevsky & Hinton (2009)), STL(Coates et al. (2010)),
Shape(Bengio et al. (2009)) and Noise. For a CIFAR teacher, we use stimulus such as 120k Tiny
Imagenet(Torralba et al. (2008),tin), MNIST (LeCun et al. (1998)), Shape, SVHN (Netzer et al.
(2011)), DTD-Texture (Cimpoi et al. (2014)). We observe that for CNN architectures these stimuli
provide a surprisingly efficient distillation to student networks. We study an effect of complexity
of the stimulus dataset on the distillation performance by using stimulus of varied complexity. Ex-
perimental results clearly demonstrate that the complexity of stimulus plays an important role in
distillation, where more complex dataset appear to give better generalization performance. We also
consider a scenario where a small labeled training set is available. In such cases, unlabeled stimulus
can be very effective for data augmentation.

2 PRELIMINARIES

2.1 METHODOLOGY

The training objective of the distillation process Romero et al. (2014) can be written as follows

L(WS) = H(PT , PS) + βH(ytrue, PS) (1)

where WS indicates weights of the student network, H indicates the cross entropy and β is the
relative weights of two terms. The second term in the equation corresponds to a traditional cross
entropy loss between output of a student network and labels (ytrue). Let D denotes the data used for
distillation. PT is the posterior output of the teacher network on D while PS is the posterior output
of the student. The first term in the equation attempts to make the posterior of the student similar to
that of teacher for the input data D. If the training data is not available, second term in the Eq. 1
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cannot be used. A student is trained to optimize only the first term in Eq. 1. In case of availability of
a small labeled training set, we use combination of this labeled set and unlabeled stimulus to train a
student. For the unlabeled stimulus, we assume an uniform distribution over all classes while using
it in the second term of Eq. 1.

2.2 DESCRIPTION OF DATASETS AND NETWORKS

We use teachers trained on two well known image classification datasets, MNIST and CIFAR-10.

2.2.1 MNIST

A CNN is trained on the dataset which has approx. 478k params. We experiment with two student
architectures. In the first experiment, we use a student with the same architecture as the teacher.
In the second experiment, we attempt to distill the teacher network into a relatively smaller student
CNN. The student network has approx. 35% less parameters than the teacher. The details of the
teacher and student architectures are provided in appendix. For MNIST teacher, we use mismatched
stimulus such as CIFAR-10 , STL-10, Shape dataset and uniform random noise [-0.3,0.7]. In case
of CIFAR and STL data, images are converted to grayscale and resized appropriately.

2.2.2 CIFAR

We train a 12 layer CNN on the CIFAR dataset which has approx.3M params. Here as well, we
experiment with two student architectures, one which is same as the teacher and other smaller CNN
which has approx. 10 times less parameters than the teacher. For CIFAR teacher, we use mismatched
stimulus such as MNIST, SVHN, Shape, Texture, uniform noise and a slightly similar dataset, 120k
TinyImagenet. As pointed out by the reviewer, a subset of 80M unlabeled TinyImagenet is been
used for CIFAR distillation Ba & Caruana (2014). However, we demonstrate the result on 120k
TinyImagenet which contain labeled examples belonging to 200 classes. We observe that there is no
significant overlap between the classes of CIFAR and 120k TinyImagenet.

3 EXPERIMENTAL RESULTS

3.1 PERFORMANCE OF MISMATCHED STIMULUS AND EFFECT OF ITS COMPLEXITY

3.1.1 MNIST

Fig. 1(a) shows the performance of mismatched stimulus on the student network which has same
architecture as the teacher. The teacher accuracy on the test is 99.1% (90 errors). The best accuracy
obtained with CIFAR, STL and random stimulus is 98.1% (190 test errors), 97.7% (228 test errors)
and 84.5% respectively. The result seems interesting because, though MNIST is a digit dataset, a
mismatched object dataset CIFAR works very well as the stimulus. Fig. 1(b) shows the test accuracy
performance for a smaller student network.

Shape dataset was previously used for demonstrating an effectiveness of Curriculum learning Bengio
et al. (2009). The dataset consist of 10k examples of simple shape images. Due to small variability,
the dataset is simpler than CIFAR or STL. From the plots in Fig. 1(a)(b), it can be seen that Shape
stimulus performs inferior to CIFAR and STL.

For the sake of completeness, we also performed experiment with DNN teacher-student for MNIST.
The details of the experiment are given in Appendix.

3.1.2 CIFAR

Fig. 1(c) shows the result when teacher and student are identical. Teacher accuracy is 81.1% while
the best accuracy with 120k TinyImagenet stimulus was 74%. Fig. 1(d) shows the performance with
a (10 times) smaller student CNN. The maximum accuracy here with TinyImagenet is 71.4%.

For CIFAR teacher, we additionally perform experiment with MNIST, Shape, SVHN, Texture
datasets on the smaller student CNN. We use 5k samples from each dataset as the stimulus. Table
1 shows the result of the experiment. The datasets are of varied ’complexity’ (variations). Visually,
the order of complexity is MNIST< Shape< SVHN< Texture< Tiny Imagenet. A trend similar to
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(a) (b) (c) (d)

Figure 1: Distillation result with MNIST and CIFAR teachers.(a) MNIST test accuracy where
teacher and student architectures (CNNs) are identical, (b) MNIST test accuracy where student is
smaller than the teacher (CNNs), (c) CIFAR test accuracy when student is same as teacher, (d)
CIFAR test accuracy when student is 10 times smaller than teacher.

MNIST is observed where a more complex dataset performs better than the relatively less complex
stimulus. We explored one of the quantification approach for complexity and results are reported in
Appendix.

Noise MNIST Shape SVHN Texture TinyImagenet

CIFAR Test acc 0.125 0.161 0.228 0.304 0.371 0.429

Table 1: CIFAR test acc with 5k samples from different stimuli.

3.2 UNLABELED STIMULUS FOR DATA AUGMENTATION

Though we have shown results under the assumption of no training data, mismatched stimulus can
also be effective for data augmentation. To validate this, we performed following experiments. For
the MNIST teacher, we used 500 labeled samples from MNIST and (optionally) augmented it with
3k unlabeled samples from various stimuli. Results are given in the Table 2.

No augmentation Noise(3k) CIFAR(3k) Shape(3k)

MNIST Test acc 0.955 0.956 0.972 0.973

Table 2: MNIST teacher data augmentation results.

For CIFAR teacher, we used 5k labeled samples from CIFAR dataset and (optionally) augmented it
with 5k samples from various stimuli. The Table 3 shows the results. It can be seen that, in both the
cases data augmentation helps the student to generalize better.

No augmentation Noise MNIST Shape SVHN Texture TinyImagenet

CIFAR Test acc 0.548 0.583 0.594 0.593 0.586 0.632 0.634

Table 3: CIFAR test acc with data augmentation.

4 DISCUSSION AND CONCLUSION

As mentioned in Bucilu et. al. Bucilu et al. (2006), though collecting synthetic stimulus is easy for
images, it is crucial that the data should match the training data distribution. If the training data is
not available, mismatched images surprisingly, turn out to be a good stimulus. Experimental results
demonstrate that the complexity of the stimulus plays a major role and a more complex dataset
provides better performance. We explored a quantification approach for dataset complexity. When
a small training set is available, an unlabeled stimulus is also effective for data augmentation .
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5 APPENDIX

5.1 DETAILS OF TEACHER AND STUDENT ARCHITECTURES

5.1.1 MNIST

The architecture of the teacher network is [Conv1(32,5,5)-MaxPool(2)-Conv2(64,5,5)-MaxPool(2)-
FC(128)-Softmax(10)]. The architecture of smaller student network is [Conv1(16,5,5)-
Conv2(16,5,5)-Conv3(16,5,5)-MaxPool(2)-Conv4(16,5,5)-MaxPool(2)-FC(128)-Softmax(10)].

5.1.2 CIFAR

The architecture of the teacher network is [Conv1(32,3,3)- Conv2(32,3,3)-MaxPool(2)-
Conv3(64,3,3)- Conv4(64,3,3)- MaxPool(2)-Conv5(128,3,3)- Conv6(128,3,3)-MaxPool(2)-
FC(1024)-FC(512)-Softmax(10)]. The architecture of smaller student network is [Conv1(32,5,5)-
Conv2(32,5,5)-MaxPool(2)-Conv3(32,5,5)- Conv4(32,5,5)- MaxPool(2)-Conv5(32,5,5)-
Conv6(32,5,5)-MaxPool(2)- Conv7(32,3,3)- FC(1000)-Softmax(10)].
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5.2 RESULT OF DNN TEACHER-STUDENT FOR MNIST TEACHER

We experimented with DNN teacher-DNN student scenario similar to Papamakarios (2015). We
train a single DNN teacher on MNIST data [784 - Dense(500) - Dense(300) - Softmax(10)]. The
student is a DNN with only 10% hidden nodes as compared to teacher. We perform distillation using
CIFAR, STL and a normal Gaussian noise stimulus. Fig. 2 shows the result of the experiment.

Note that, though natural image stimulus works better than noise, the difference in the performance
is not significant in case of DNN. It is known that the initial layers of CNN learn generic features
such as edges, blobs Yosinski et al. (2014). Since such features are easily found in natural images as
compared to noise images, natural images turn out to be a be a better stimulus than noise. However,
since DNN employs full connection between hidden layers, its hidden nodes get activated even with
random noise and hence noise may be performing well for DNN teacher as reported in Papamakarios
(2015).

Figure 2: DNN teacher-student for MNIST.

5.3 PLOT OF CROSS-ENTROPY LOSS AND TEST ACCURACY

Our objective function is to minimize the cross entropy loss between soft targets of the teacher and
the student on the unlabeled stimulus. We terminate the iterations when the cross entropy loss cease
to change. To visualize possibility of overfitting (if any), we plotted the cross entropy loss and the
test accuracy for two cases: MNIST teacher using 1k CIFAR stimulus and CIFAR teacher using 1k
Texture stimulus. The plots is shown below.

(a) (b)

Figure 3: Plot of cross entropy loss and test accuracy for each epoch.

Note that, the test accuracy and the cross entropy loss settles down with more iterations. Even with
small training size (1k), overfitting is not observed. This could be because of soft labels used in the
optimization.
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5.4 QUANTIFICATION OF COMPLEXITY

We explored one of the quantification approach for complexity. We suspect that a stimulus dataset
which matches the convolution filters as well as have more variations, work better for distillation. To
validate this, we performed an experiment with CIFAR teacher and various 5k stimulus datasets. For
the first convolution layer feature maps, we calculate a mean across the dataset. We also calculate an
average of feature map-wise std. dev. for the dataset. A higher mean value indicates that convolution
filters has better match with the dataset while high value of std.dev. indicates more variations.

SVHN Shapes Noise MNIST TinyImagenet Texture

Mean 0.117 0.134 0.139 0.148 0.165 0.174
Std Dev 0.06 0.08 0.02 0.01 0.09 0.12

Table 4: Mean and avg standard deviation for first layer filter map of CIFAR-teacher for various
datasets.

We observe that a dataset with high value of mean as well as std. dev. works better for distillation.
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