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Abstract

Decision support for digital histopathology has increased in an important way
thanks to very good results using deep learning techniques in the past few years
but neural networks have largely remained black boxes. Visualization methods
address the interpretability of neural networks. If applied to histopathology images,
they can improve the trust of pathologists in automated support tools for cancer
diagnosis. We perform model interpretation and decision explanation of our binary
patch-based breast cancer classifier. Experimental results show that morphological
features of the nuclei influence network decisions in an important way.

1 Introduction

Visualizing deep Convolutional Neural Network (CNN) decisions for the determination of cancer
stages can enhance the trust of physicians in automated support tools for cancer diagnosis. The
visualization of input regions meaningful for classification can be obtained through backpropagation of
the network response [2]. For instance, Gradient-weighted Class Activation Mapping (gradCAM) [3]
produces a localization map using the gradients of any target class with respect to the last convolutional
layer. Activation Maximization (AM), first proposed in [1], visualizes patterns sought by neurons
by finding the input that maximizes the neural response. In medical imaging, MDNet was proposed
in [5] to obtain explanations on the diagnosis process of the network by a language model with visual
attention. In this paper, we propose preliminary visualizations of our patch-based tumor classifier for
breast cancer histopathology. Particularly, we interpret deep layers with AM and we explain model
decisions on testing data with gradCAM.

2 Experiments and Results

The grand-challenge dataset Camelyon171 (for classification of breast cancer metastases in lymph
node sections) was used for the experiments. The decision layer of ResNet50 [4] pretrained on
ImageNet was replaced with a single decision node for binary classification of tumor and non-
tumor patches. The network was finetuned for 10 epochs with stochastic gradient descent and
binary cross-entropy loss. For this preliminary investigation, we focused on achieving a model
that performs sufficiently well to obtain meaningful visualizations and we did not target optimal
performance. We sampled 10,390 patches of size 224×224 with uniform probability from non-tumor
and tumor annotated tissues of the Whole Slide Images (WSIs) at resolution level 1. The need for
data augmentation was reduced by using WSIs from only three of the five acquisition centers. Model
performance was validated on 6,483 validation patches, obtaining an AUC of 0.965. In the following
section, we show some of the visualization results on which we based our observations.

1https://camelyon17.grand-challenge.org
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2.1 Model interpretation

We visualize AM inputs that maximize the last and penultimate convolutional feature maps of
ResNet50 before and after finetuning in Figure 1. Complex high-level structures in the pretrained
model such as buildings or mountain patterns as in Figure 1a are finetuned into textures of repeated
nuclei-resembling shapes. A shift of color towards WSI color ranges is noticeable. Round shapes like
the ones shown in Figure 1e are kept, whereas pointed shapes and straight edges tend to be smoothed.
To understand the model discrimination between tumor and non-tumor, we substituted the single

(a) add16 (b) add16, finetuned (c) add16 (d) add16, finetuned

(e) add16 (f) add16, finetuned (g) add15 (h) add15, finetuned

Figure 1: AM of the last (add16) and penultimate (add15) layers of the pretrained Resnet50 and our
tumor classifier after finetuning.

decision node in the prediction layer with two nodes. Input patches that maximally activate either
the tumor class node or the non-tumor class node can be obtained through AM. Figure 2 shows the
AM of the two prediction nodes for different random seeds. Both the tumor and the non-tumor AM
contain nuclei-resembling shapes, although a consistent difference in both classes can be noticed.
The tumor AM seems to contain numerous round shapes which are markedly defined and spread in
the patch. However, more research is needed to clearly interpret the discriminant factors between the
classes.

(a) tumor AM (b) tumor AM (c) non-tumor AM (d) non-tumor AM

Figure 2: AM for tumor and non-tumor tissue. Input patches maximizing the tumor class node
activation are shown in (a) and (b). AM for the non-tumor node is shown in (c) and (d).
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(a) tumor, p = 0.994 (b) tumor, p = 0.999 (c) non-tumor,p = 4.7e−4(d) non-tumor, p = 0.841

Figure 3: GradCAM for testing patches. We report the ground truth class and the probability for a
tumor as p.

2.2 Decisions explanation

GradCAM, sensitivity methods and saliency [2] are powerful tools to identify visual features in
the input that explain the classification. Figure 3 shows gradCAM on testing patches. Nuclei
pleomorphism seems to be the main factor affecting the output tumor prediction. Heatmaps of tumor
patches mostly focus on nuclei with marked variations in size and irregular shapes. Similarly, larger
cells with visible nucleoli or stippled nuclear chromatin explain the tumor prediction in Figure 3a.
Non-tumor nuclei do not have such characteristics, hence non-tumor patches present low activations.
Figure 3d shows the gradCAM for a false positive prediction. The deformation of the nuclei increases
the probability of the classifier for tumor, although the patch belongs to non-tumor tissue.

3 Discussion and Future Work

This paper presents preliminary results for improving the interpretability of patch-based tumor
classifiers. The experiments show that nuclei pleomorphism, especially size and color intensity,
are the main factors affecting the probability of the class tumor. Irregularities of the non-tumorous
tissue, which may be given to artifacts in the acquisition procedure, and the consequent variation
of nuclei shapes, may be one of the causes of false positives. Future work is needed to investigate
misclassification errors and build more robust classifiers with better generalization. Moreover, the
analysis should be extended to different resolution levels to identify differences in the discriminating
features and to visualize classifier decisions, also as a means to remove the black box image of deep
learning in histopathology.
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