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ABSTRACT

We apply multi-task learning to image classification tasks on MNIST-like datasets.
MNIST dataset has been referred to as the drosophila of machine learning and has
been the testbed of many learning theories. The NotMNIST dataset and the Fash-
ionMNIST dataset have been created with the MNIST dataset as reference. In this
work, we exploit these MNIST-like datasets for multi-task learning. The datasets
are pooled together for learning the parameters of joint classification networks.
Then the learned parameters are used as the initial parameters to retrain disjoint
classification networks. The baseline recognition model are all-convolution neu-
ral networks. Without multi-task learning, the recognition accuracies for MNIST,
NotMNIST and FashionMNIST are 99.56%, 97.22% and 94.32% respectively.
With multi-task learning to pre-train the networks, the recognition accuracies are
respectively 99.70%, 97.46% and 95.25%. The results re-affirm that multi-task
learning framework, even with data with different genres, does lead to significant
improvement.

1 INTRODUCTION

Multi-task learning (Caruana (1998)) enjoys the idea of pooling information that can be learned from
data collected for multiple related tasks. Multiple sources of information can stem from multiple
datasets, or even a single dataset, for multiple tasks. In this work, we focus on the case of using
multiple datasets for multiple tasks. Namely, we use MNIST, FashionMNIST, and NotMNIST image
datasets collected for digit recognition, fashion item recognition, and letter recognition, respectively.

Information sharing in multi-task training can be achieved in various formality. For neural-network
based deep learning, the sharing can happen at the input layer, the hidden layers, or the output
layer. Input-layer multi-tasking combines heterogeneous input data, hidden-layer multi-tasking
shares multiple groups of hidden layer units, and output-layer multi-tasking pools multiple out-
put groups of categories. The implementation of a multi-task learning system depends on the data
and the tasks at hand.

Multi-task learning has been successfully applied to many applications of machine learning, from
natural language processing (Collobert & Weston (2008)) and speech recognition (Deng et al.
(2013)) to computer vision (Ren et al. (2015)) and drug discovery (Ramsundar et al. (2015)). A
recent review of multi-task learning in deep learning can be found in (Ruder (2017)).

2 MNIST DATASETS

2.1 MNIST

The MNIST dataset (LeCun et al. (1998)) consists of a training set of 60,000 images, and a test
set of 10,000 images. MNIST is often referred to as the drosophila of machine learning, as it is
an ideal testbed for new machine learning theories or methods on real-world data. Table 1 lists the
state-of-the-art performance on MNIST dataset. A few examples of MNIST dataset are shown in
Table 2, alongside with examples of the other MNIST-like datasets.
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Table 1: Recognition error rates on MNIST task of state-of-the-art systems

Method Error rate

Wan et al. (2013) 0.21%
Ciregan et al. (2012) 0.23%
Sato et al. (2015) 0.23%
Chang & Chen (2015) 0.24%

2.2 FASHIONMNIST

Xiao et al. (2017) presents the FashionMNIST dataset. It consists of images from the assortment
on Zalandos website. As given out by name, the configuration of the FashionMNIST dataset com-
pletely parallels the configuration of the MNIST dataset. FashionMNIST consists of a training set
of 60,000 images and a test set of 10,000 images. Each image is a 28 × 28 grayscale image as-
sociated with a label from 10 classes. FashionMNIST poses a more challenging classification task
than the MNIST digits data. A leaderboard for FashionMNIST has been created and maintained at
https://github.com/zalandoresearch/fashion-mnist.

Table 2: Image examples of MNIST-like datasets

MNIST FashionMNIST NotMNIST
class example class example class example

0 T-Shirt/Top A

1 Trouser B

2 Pullover C

3 Dress D

4 Coat E

5 Sandals F

6 Shirt G

7 Sneaker H

8 Bag I

9 Ankle boots J

2.3 NOTMNIST

Bulatov (2011) presents the NotMIST dataset. NotMNIST dataset consists of more than 500k 28×28
greyscale images of English letters from A to J , including a small hand-cleaned subset and a large
uncleaned subset. From the uncleaned subset, we randomly select 60,000 examples as train set and
10,000 examples as test set.

3 METHOD

In short, we apply multi-task learning to learn from the MNIST-like datasets to pre-train the pa-
rameters of the all-convolution neural networks for individual image recognition tasks. The overall
framework is depicted in Figure 1.
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Figure 1: The proposed multi-task learning framework

3.1 ALL-CONVOLUTION NEURAL NETWORKS

A convolutional neural networks (CNN) (LeCun et al. (1998)) usually consists of alternating convo-
lution layers and pooling layers. In contrast, an all-convolution neural network (Springenberg et al.
(2014)) replace pooling layers by convolution layers. A feature map f created at a convolution layer
can be represented by a three-dimensional tensor of order W × H × N , where W and H are the
width and height, N is the number of channels. A pooling operation with a size of k×k and a stride
of r applied to a three-dimensional tensor results in another tensor s with

si,j,n =

 ⌊k/2⌋∑
w=−⌊k/2⌋

⌊k/2⌋∑
h=−⌊k/2⌋

|fr·i+w,r·j+h,n|p
1/p

(1)

where the first 2 subscripts index position in the map, and the third subscript indexed the channel. If
a convolution operation with the same stride were applied to f , we would have a tensor c with

ci,j,o = σ

 ⌊k/2⌋∑
w=−⌊k/2⌋

⌊k/2⌋∑
h=−⌊k/2⌋

N∑
n=1

tw,h,n,ofr·i+w,r·j+h,n

 (2)

where t is the convolution kernel tensor, and σ(·) is an activation function. Thus, a pooling operation
can be seen as a convolution operation with uniform kernel tensor and with Lp-norm as the activation
function.

4 EXPERIMENT

4.1 CLASSIFIER ARCHITECTURE AND MULTI-TASK LEARNING

The architecture of an all-convolution neural network for a single task is shown in Figure 2. The
multi-task learning classifier has the same architecture as a single-task classifier except that the width
of the output layer is proportional to the number of tasks. The target label is enhanced accordingly
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Figure 2: The architecture of an all-convolution neural network for a single task

Figure 3: The architecture of all-convolution neural network for multi-task learning

by zero-padding. As mentioned before, we combine the training data together, so that the training
label dimension is increased from [1× 10] to [1× 20] by zero-padding. This is shown in Figure 3.

Multi-task learning with different combination of datasets are evaluated, namely 3 bi-task learning
and 1 tri-task learning. For example, we combine the MNIST train dataset and FashionMNIST train
dataset together. Thus, there are 120,000 examples to the bi-task learning network for MNIST and
FashionMNIST. Each training example has an input image size of 28×28 and an output 1-hot vector
size of 20.

Each network is trained with 50 epochs. A two-stage learning rate decay scheme is implemented.
The initial learning rate is 10−3 for the first stage of 25 epochs, and 10−5 for the second stage of 25
epochs. When training a model, it is often recommended to lower the learning rate as the training
progresses. So, we let learning rate decay in each epochs. The decay rate is 1

1+d×n where d is the
learning rate set in the begin divided by 25. n is the number of current epochs. Figure 4 shows the
learning rate scheme. The size of a mini-batch is set to 100, and the Adam optimizer is used.

When multi-task learning is complete, the parameters in the network is used to initialize single-task
classifiers. Figure 5 illustrates how parameters are handed over. The single-task classifiers are then
re-trained to perform their respective classification tasks.

Figure 4: The learning rate scheme.

4.2 RESULTS

The experimental results are summarized in Table 3. We are happy to see that multi-task learning
works, even though the MNIST, NotMNIST, and FashionMNIST datasets are images from totally
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Figure 5: Passing parameters from multi-task learning network to single-task networks

Table 3: Image recognition accuracy rates for MNIST tasks with multi-task learning

dataset single-task F+N M+F M+N F+N+M

MNIST 99.56% – 99.71% 99.70% 99.70%
NotMNIST 97.22% 97.38% – 97.40% 97.46%
FashionMNIST 94.32% 95.20% 95.18% – 95.25%

different classes. The bi-task learning systems are always better than the single-task systems. Fur-
thermore, the tri-task learning systems are the best, except for the MNIST (0.01% difference). The
relative reduction in error rates by tri-task learning are respectively 31.8% for MNIST (99.56%
to 99.70%), 16.4% for FashionMNIST (94.32% to 95.25%), and 8.6% for NotMNIST (97.22% to
97.46%). The results confirm that multi-task learning is able to learn representation which is univer-
sal and robust to different tasks.

To better understand the effect of multi-task learning, we plot the distribution of the high
dimensional-data of the classes by the t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten & Hinton (2008)). Figure 6 shows the t-SNE of the output values of several hidden layers
of the classifiers. The separation between the learned class manifolds appears to increase with the
integration of multi-task learning. The representation learned with multi-task learning in the loop
looks better indeed.

5 CONCLUSION

In this paper, we use multi-task learning in pre-training an all-convolution neural network model.
We pass the parameters of trained multi-task models to single-task models. Evaluation on MNIST-
like datasets show that using multi-task learning can improve image recognition accuracy. The more
data we use, the better results we get. This agrees with statistical learning theory that using more
data reduces the generalization gap, thus improving test set performance, even if the data comes
from a different domain. The classification tasks of the images of digits, letters, and fashion items
share parts of their hierarchical representations. By multi-task learning, it is possible to make such
common representation robust to help individual classification tasks.
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Figure 6: Visualization of data manifolds with t-SNE. The left column is the case with multi-task
learning, and the right column is the case without multi-task learning.
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