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Abstract— Many commodity sensors that measure the robot
and dynamic obstacle’s state have non-Gaussian noise char-
acteristics. Yet, many current approaches treat the underlying
uncertainty in motion and perception as Gaussian, primarily to
ensure computational tractability. On the other hand, existing
planners working with non-Gaussian uncertainty do not shed
light on leveraging distributional characteristics of motion and
perception noise, such as bias for efficient collision avoidance.

This paper fills this gap by interpreting reactive collision
avoidance as a distribution matching problem between the
collision constraint violations and Dirac Delta distribution. To
ensure fast reactivity in the planner, we embed each distri-
bution in Reproducing Kernel Hilbert Space and reformulate
the distribution matching as minimizing the Maximum Mean
Discrepancy (MMD) between the two distributions. We show
that evaluating the MMD for a given control input boils
down to just matrix-matrix products. We leverage this insight
to develop a simple control sampling approach for reactive
collision avoidance with dynamic and uncertain obstacles.

We advance the state-of-the-art in two respects. First, we
conduct an extensive empirical study to show that our planner
can infer distributional bias from sample-level information.
Consequently, it uses this insight to guide the robot to good
homotopy. We also highlight how a Gaussian approximation
of the underlying uncertainty can lose the bias estimate and
guide the robot to unfavorable states with a high collision
probability. Second, we show tangible comparative advantages
of the proposed distribution matching approach for collision
avoidance with previous non-parametric and Gaussian approx-
imated methods of reactive collision avoidance.

I. INTRODUCTION

Collision avoidance under uncertainty has been well stud-
ied in existing literature [1], [2], [3]. Most of them assume
Gaussian perturbation in estimating robot and obstacles’ state
and motion commands executed by the robot for collision
avoidance. Recent works like [4], [5] are capable of planning
and control under non-Gaussian noise motion and perception
noise. Some recent approaches like [6], [7], [2] specifically
deal with reactive collision avoidance in a similar vein to
our current work. These methods highlight the reduction in
collision probability and control effort achieved by adopting
a more sophisticated vies of the underlying uncertainty. How-
ever, they do not provide a fine-grained analysis of how dis-
tributional characteristics like bias affect collision avoidance
and how we can leverage it to reduce collision probabilities.
The bias we refer to can be described through figure 1
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Fig. 1: Examples of Non-Gaussian distribution and their Gaussian
approximations.

Fig. 2: Left and right figures show collision avoidance under Non-
Gaussian and Gaussian approximation of uncertainty respectively

wherein a bi-modal distribution obtained from a commodity
GPS is not mean-centered. In other words, the presence of the
second mode provides for an unequal spread on either side
of the mean, unlike its Gaussian approximation. As shown
in Fig.2, the unequal spread of distribution mass naturally
creates a notion of favorable and unfavorable homotopies.
The former corresponds to the side where there would be
less overlap between robot and obstacles uncertainty. In this
paper, we fill this current knowledge gap by analyzing in
diverse ways why a particular control action is chosen for
a given obstacle configuration and how they depend on the
nature of the underlying uncertainty and any approximation
we make on it.

II. RELATED WORK

Chance constrained optimization has emerged as the pop-
ular paradigm and framework for collision avoidance under
uncertainty [1], [2], [8]. Most such formulations model
the original distribution to be a Gaussian and resort to
linearization [1] or manage closed form solutions when the
collision avoidance constraints can be posed as convex or
affine constraints [9], [10]. Recently there has been a growing
trend towards non-parametric chance constraints [6], [7], [2]
acknowledging that most sensor noise are more often non-
parametric [6], [5]. These methods have not indulged in an
analysis that pinpoints how and why non parametric model-



ing actually is beneficial. We fill this gap in this paper by
providing detailed empirical analysis as to how the inherent
bias prevalent in non-parametric noise is leveraged which
does not happen in case Gaussian approximation. We are also
contributing to our prior works [6], [11] by circumventing the
need for estimating the desired distribution. We also extend
[12] to reactive navigation in dynamic environments.

III. PRELIMINARIES AND PROBLEM FORMULATION

Details regarding symbols and notations can be found at
section III of [13]. Descriptions of the common symbols used
in this paper can be found in Table I of [13].

A. Motion and Perception Model

We assume that the robot has the following discrete time
stochastic motion model, wherein ∆t represents the time
duration between two consecutive steps.

xt+1 = xt + vt∆t, θt+1 = θt + ωt∆t, (1)

vt =
[
vt cos(θt + ωt∆t)
vt sin(θt + ωt∆t)

]
, (2)

[
vt
ωt

]
=

ut︷︸︸︷[
vt
ωt

]
+ϵ (3)

xo,t+1 = xo,t + vo,t∆t (4)

B. Velocity Obstacle Constraints

In deterministic noise-less setting, reactive collision avoid-
ance between disk shaped robots and obstacles is often for-
mulated in terms of velocity obstacle (VO) [14] constraints
defined in the following manner:

f(·) ≤ 0 :
(rT v)2

∥v∥2
− ∥r∥2 +R2 ≤ 0,∀j (5a)

r = xt − xo,t, v = vt − vo,t (5b)

where, R represents the combined radii of the robot and the
obstacle. For the ease of exposition in the latter sections, we
formulate the VO constraints for a single obstacle. Extension
to multiple obstacles is trivial.

C. Reactive Navigation Through CCO

We formulate one-step reactive navigation in uncertain envi-
ronment as the following CCO:

min
ut

w1∥vt − vd∥22 + w2 ∥ut∥2 (6a)

Pr(f(xt, θt,ut, xo,t, vo,t) ≤ 0) ≥ η, ∀j, ut ∈ C (6b)

vt =
[
vt cos(θt + ωt∆t)

vt sin(θt + ωt∆t)

]
, (7)

The first term in the cost function (6a) ensures that the
nominal velocity is aligned with some desired velocity vector
vd [15]. The C represents the set of feasible control inputs
and we assume that it is convex formed by affine constraints

on vt, ωt. The set of inequalities (6b) represent the so-called
chance constraints [7].

The main computational challenge in solving (6a)-(6b)
stems from the computational intractability of chance con-
straints. Thus, existing works heavily focus on replacing (6b)
with other feasible options. However, most of the existing
reformulations assume that the underlying uncertainty is
Gaussian [16]. Since our aim in this paper is to analyze
the effect of Gaussian approximation, we next present our
reactive planner that can work with arbitrary uncertainty
distribution.

IV. METHODS

At an intuitive level CCO (6a)-(6b) has the following inter-
pretation [7]. We seek to compute a nominal control ut that
modifies the shape of the distribution of f(.) in a way that
most of its mass lies on the left of the line fj(.) = 0. An
alternate interpretation can be derived by defining a function
h in the following manner.

h(xt, θt, ut, xo,t, vo,t) = max(0, f(xt, θt, ut, xo,t, vo,t)) (8)

As clear, h(.) measures constraint violation. It is zero if
the VO constraints are satisfied and equal to f(.) otherwise.
In the stochastic setting where xt,ut, xoj,t, voj,t are random
variables, h(.) defines the distribution of constraint viola-
tions.

With respect to (8), we can interpret CCO as the problem
of finding an appropriate control input ut such that the
distribution of h(.) becomes similar to that of a Dirac-Delta.
Using this interpretation, we can reformulate (6a)-(6b) in the
following manner:

min
ut

ldist(ph, pδ) + w1∥vt − vd∥22 + w2 ∥ut∥2 (9)

ut ∈ C, (10)

where ph, pδ represents the probability distribution of h(.)
and Dirac-Delta respectively. The function ldist measures the
similarity between ph, pδ and it decreases as the distribution
becomes similar. One possible option for ldist is the KL
divergence. However, it cannot operate at purely sample level
and requires the parametric form of the distributions to be
known. Thus, we define ldist as MMD between ph and pδ
defined in the following manner.

ldist(ut) =

MMD︷ ︸︸ ︷
∥µph

(ut)− µpδ
∥22, (11)

where, µph
and µpδ

represent the RKHS embedding of ph
and pδ respectively.

We solve (9)-10 through a simple control sampling ap-
proach. We draw several samples of ut from a uniform distri-
bution and then evaluate the cost (9) on them. Subsequently,
we choose the sample corresponding to the lowest cost. Our
control sampling relies on efficient evaluation of MMD term
to retain online performance. The MMD value for a given ut

can be reduced to computing matrix-matrix products. This is
done in section IVB of [13].



(a) This bar plot depicts the
frequency of choosing favorable
homotopy with MMD Non-
Gaussian in a single obstacle
benchmark shown in Fig.4b,4c

(b) This bar plot depicts the fre-
quency of choosing favourable
homotopy for MMD Gaussian
in case of single obstacle bench-
mark shown in Fig.4b,4c

(c) Effect of non-gaussian na-
ture collision probability

(d) Effect of non-gaussian na-
ture on control costs.

Fig. 3: Quantitative Analysis on non-gaussian nature of distribution. The x-axis shows the distribution number from Fig. 5 from [13]

V. RESULTS AND DISCUSSION

The implementation details and baselines are explained at
the beginning of section V of [13]. The validation of our
approach can be seen at section VA from [13]. Further results
can be found at https://github.com/anishgupta31296/MMD-
with-Dirac-Delta-Distribution.

A. Analyzing the Choice of Homotopies

We consider a benchmark with a single obstacle as shown in
Fig.4 to analyze two key questions. First, how is the choice of
homotopy related to the distribution of constraint violations
for a biased non-Gaussian distribution and its Gaussian ap-
proximation. Second, we intend to study the effectiveness of
our MMD Non-Gaussian approach in ensuring the selection
of favorable homotopies during collision avoidance. To these
ends, we sampled two control actions for the scenario shown
in Fig.4 which results in the robot passing the obstacle from
different sides. Clearly, Fig.4a is the favorable homotopy in
this scenario while that shown in Fig.4d leads to a large
overlap between the robot and obstacle position uncertainty.
Fig.4b shows the distribution of constraint violations for
the control input that leads to the favorable homotopy for
the true non-Gaussian distribution. It can be seen that the
distribution of violation is very close to the ideal Dirac-Delta
distribution. Now, contrast this with Fig.4e that recreates
the constraint violation distribution for the control input
leading to unfavorable homotopy. We can clearly see a stark
difference between Fig.4b and 4e. The reason for this can
be seen in Fig4c and 4f which presents the distribution of
constraint violations under Gaussian approximation of the
noise. As it can be seen, both favorable and un-favorable
homotopy shows similar spread of the distribution mass to
the right of zero. As a result, it is not possible to reliably
distinguish between favorable and unfavorable homotopies.
This leads us to hypothesize that any planner that can
capture the true distribution of constraint violation for a given
control input can easily distinguish between a favorable and
unfavorable homotopy.

To further strengthen our claims, we design one more
experiment. In Fig. 5 of [13], we take a Gaussian distribution
and then gradually make it more and more biased and multi-
modal. We simulate the single obstacle avoidance benchmark
of Fig.4 for all these noise distributions added to motion and
perception. We perform 100 Monte-Carlo runs for each noise

distribution using our MMD Non-Gaussian planner. Fig.3a
shows the percentage of times the robot chooses homotopy
of Fig.4a over that of Fig.4d. When the actual noise is
Gaussian, the robot randomly chooses either homotopy. But
as the noise becomes more and more non-Gaussian, we can
clearly see a pattern emerge where the favorable homotopy is
overly preferred by our planner. In contrast when we make a
Gaussian approximation of the true uncertainty, this pattern
is lost, as shown in Fig.3b. Under Gaussian approximation,
the robot always chooses the homotopies randomly.

Fig.3c and 3d co-relates the right choice of homotopy to
collision percentages and control cost. When the underlying
noise is Gaussian, both MMD Non-Gaussian and MMD
Gaussian performs similar. But as the distribution departs
from Gaussian assumptions, the former outperforms the latter
in both collision-rate and control costs.

B. Quantitative Comparisons

In this section, we compare our MMD Non-Gaussian
formulation with MMD Gaussian, KLD and PVO baselines
defined at the beginning of section V of [13]. The compar-
isons are shown in the bar plots of Figure 6. Fig.5 presents
the trajectories observed in a 5 obstacle benchmark for all
the approaches. Our MMD Non-Gaussian is able to leverage
the bias of the distribution and guide the robot towards
homotopies that goes between the obstacles but yet has
minimal overlap of robot and obstacle position uncertainty.
In contrast, both MMD Gaussian and PVO that works with
Gaussian approximation of noise forces the robot to take a
larger detour. This is because the Gaussian approximation
over-approximates the spread of the uncertainty on either
side of the robot mean position. The KLD method shows a
very similar approach since it fits a complicated a GMM to
the motion and perception noise.

Figure 6a compares over L2 norm of control change over
two consecutive instances ∥ut − ut−1∥22 which can be used
to infer the smoothness of a collision avoidance maneuver.
Our approach has the lowest change while all other baselines
have similar trends. Fig.6b shows the comparison between
the deviation that the robot exhibits from an optimal straight
line path to the goal. On an average our approach is 72.84%
better than all the other baselines. Finally, we compare the
collision probabilities in Fig.6c. Our approach maintains a
value of 5% or less, compared to baselines’ 11− 28%.

https://github.com/anishgupta31296/MMD-with-Dirac-Delta-Distribution
https://github.com/anishgupta31296/MMD-with-Dirac-Delta-Distribution


(a) Favorable homotopy chosen by the robot
by leveraging distribution bias

(b) Corresponding VO constraint violation
distribution

(c) Corresponding VO constraint violation
distribution under Gaussian approximation

(d) Unfavorable homotopy chosen by the
robot.

(e) Corresponding VO constraint violation
distribution

(f) Corresponding VO constraint violation dis-
tribution under Gaussian approximation

Fig. 4: These figures illustrate how better favourable homotopy selection will lead to better distribution matching and hence, larger number
of samples will be avoided

(a) MMD Non-Gaussian (b) MMD Gaussian (c) PVO (d) KLD

Fig. 5: Collision avoidance using MMD Non-Gaussian and various baselines for 5 obstacle case

(a) Control Costs comparison (b) Deviation from optimal path comparison (c) Number of colliding samples

Fig. 6: Quantitative comparison with baselines. Our approach MMD Non-Gaussian outperforms other approaches in smoothness (a),
deviation from straight-line path (b) and collision probability (c) metric.
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