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ABSTRACT

Entailment vectors are a principled way to encode in a vector what information is
known and what is unknown. They are designed to model relations where one vec-
tor should include all the information in another vector, called entailment. This pa-
per investigates the unsupervised learning of entailment vectors for the semantics
of words. Using simple entailment-based models of the semantics of words in text
(distributional semantics), we induce entailment-vector word embeddings which
outperform the best previous results for predicting entailment between words, in
unsupervised and semi-supervised experiments on hyponymy.

1 INTRODUCTION

Modelling entailment, is a fundamental issue in the semantics of natural language, and there has
been a lot of interest in modelling entailment using vector-space representations. But, until recently,
unsupervised models such as word embeddings have performed surprisingly poorly at detecting en-
tailment Weeds et al. (2014); Shwartz et al. (2017), not beating a frequency baseline Weeds et al.
(2014). Entailment is the relation of information inclusion, meaning that y entails x if and only
if everything that is known given x is also known given y. As such, representations which sup-
port entailment need to encode not just what information is known, but also what information is
unknown. The results on lexical entailment seem to indicate that standard word embeddings, such
as Word2Vec, do not reflect the relative abstractness of words, and in this sense do not reflect how
much information is left unspecified by a word.

In contrast with the majority of the work in this area, which simply uses existing vector-space em-
beddings of words in their models of entailment, recent work has addressed this issue by proposing
new vector-space models which are specifically designed to capture entailment. In particular, Vil-
nis & McCallum (2015) use variances to represent the uncertainty in values in a continuous space,
and Henderson & Popa (2016) use probabilities to represent uncertainty about a discrete space. We
will refer to the latter as the “entailment-vectors” framework. In this work, we use this framework
from Henderson & Popa (2016) to develop new entailment-based models for the unsupervised learn-
ing of word embeddings, and demonstrate that these embeddings achieve unprecedented results in
predicting entailment between words.

Our unsupervised models use the distribution of words in a large text corpus to induce vector-space
representations of the meaning of words. This approach to word meaning is called distributional
semantics. The distributional semantic hypothesis (Harris, 1954) says that the meaning of a word
is reflected in the distribution of text contexts which it appears in. Many methods (e.g. (Deerwester
et al., 1990; Schütze, 1993; Mikolov et al., 2013a) and this paper) have been proposed for inducing
vector representations of the meaning of words (word embeddings) from the distribution of word-
context pairs found in large corpora of text.

In the framework of Henderson & Popa (2016), each dimension of the vector-space represents some-
thing that might be known, and continuous vectors represent probabilities of these features being
known or unknown. Henderson & Popa (2016) illustrate their framework by proposing a reinter-
pretation of existing Word2Vec (Mikolov et al., 2013a) word embeddings which maps them into
entailment vectors, which in turn successfully predict entailment between words (hyponymy). To
motivate this reinterpretation of existing word embeddings, they propose a model of distributional
semantics and argue that the Word2Vec training objective approximates the training objective of this
distributional semantic model given the mapping.
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In this paper, we implement this distributional semantic model and train new word embeddings
using the exact objective. Based on our analysis of this model, we propose that this implementa-
tion can be done in several ways, including the one which motivates Henderson & Popa (2016)’s
reinterpretation of Word2Vec embeddings. In each case, training results in entailment vector em-
beddings, which directly encode what is known and unknown given a word, and thus do not require
any reinterpretation to predict hyponymy.

To model the semantic relationship between a word and its context, the distributional semantic model
postulates a latent pseudo-phrase vector for the unified semantics of the word and its neighbouring
context word. This latent vector must entail the features in both words’ vectors and must be consis-
tent with a prior over semantic vectors, thereby modelling the redundancy and consistency between
the semantics of two neighbouring words.

Based on our analysis of this entailment-based distributional semantic model, we hypothesise that
the word embeddings suggested by Henderson & Popa (2016) are in fact not the best way to extract
information about the semantics of a word from this model. They propose using a vector which rep-
resents the evidence about known features given the word (henceforth called the likelihood vectors).
We propose to instead use a vector which represents the posterior distribution of known features for
a phrase containing only the word. This posterior vector includes both the evidence from the word
and its indirect consequences via the constraints imposed by the prior. Our efficient implementa-
tion of this model allows us to test this hypothesis by outputting either the likelihood vectors or the
posterior vectors as word embeddings.

To evaluate these word embeddings, we predict hyponymy between words, in both an unsupervised
and semi-supervised setting. Given the word embeddings for two words, we measure whether they
are a hypernym-hyponym pair using an entailment operator from (Henderson & Popa, 2016) applied
to the two embeddings. We find that using the likelihood vectors performs as well as reinterpreting
Word2Vec embeddings, confirming the claims of equivalence by Henderson & Popa (2016). But
we also find that using the posterior vectors performs significantly better, confirming our hypothesis
that posterior vectors are better, and achieving the best published results on this benchmark dataset.
In addition to these unsupervised experiments, we evaluate in a semi-supervised setting and find a
similar pattern of results, again achieving state-of-the-art performance.

In the rest of this paper, section 2 presents the formal framework we use for modelling entailment
in a vector space, the distributional semantic models, and how these are used to predict hyponymy.
Section 3 discusses additional related work, and then section 4 presents the empirical evaluation
on hyponymy detection, in both unsupervised and semi-supervised experiments. Some additional
analysis of the induced vectors is presented in section 4.4.

2 DISTRIBUTIONAL SEMANTIC ENTAILMENT

Distributional semantics uses the distribution of contexts in which a word occurs to induce the
semantics of the word (Harris, 1954; Deerwester et al., 1990; Schütze, 1993). The Word2Vec model
(Mikolov et al., 2013a) introduced a set of refinements and computational optimisations of this idea
which allowed the learning of vector-space embeddings for words from very large corpora with
very good semantic generalisation. Henderson & Popa (2016) motivate their reinterpretation the
Word2Vec Skipgram (Mikolov et al., 2013a) distributional semantic model with an entailment-based
model of the semantic relationship between a word and its context words. We start by explaining
our interpretation of the distributional semantic model proposed by Henderson & Popa (2016), and
then propose our alternative models.

Henderson & Popa (2016) postulate a latent vector y which is the consistent unification of the fea-
tures of the middle word x′e and the neighbouring context word xe, illustrated on the left in figure 1.1
We can think of the latent vector y as representing the semantics of a pseudo-phrase consisting of
the two words. The unification requirement is defined as requiring that y entail both words, written
y⇒x′e and y⇒xe. The consistency requirement is defined as y satisfying a prior θ(y), which em-
bodies all the the constraints and correlations between features in the vector. This approach models
the relationship between the semantics of a word and its context as being redundant and consistent.

1Note that “xe” is being used here as the name of a whole vector, not to be confused with “xi”, which refers
to element i in vector x.
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Figure 1: The distributional semantic model of a word and its context (left), and its approximation
in the word2hyp models (right).

If x′e and xe share features, then it will be easier for y to satisfy both y⇒x′e and y⇒xe. If the
features of x′e and xe are consistent, then it will be easier for y to satisfy the prior θ(y).

2.1 THE REINTERPRETATION OF WORD2VEC

Henderson & Popa (2016) formalise the above model using their entailment-vectors framework.
This framework models distributions over discrete vectors where a 1 in position i means feature i is
known and a 0 means it is unknown. Entailment y⇒x requires that the 1s in x are a subset of the
1s in y, so 1⇒1, 0⇒0 and 1⇒0, but 0 /⇒1. Distributions over these discrete vectors are represented
as continuous vectors of log-odds X , so P (xi=1) = σ(Xi), where σ is the logistic sigmoid. The
probability of entailment y⇒x between two such “entailment vectors” Y,X can be measured using
the operator >©:2

logP (y⇒x | Y,X) ≈
Y >©X ≡ σ(−Y ) · log σ(−X) (1)

For each feature i in the vector, it calculates the expectation according to P (yi) that, either yi=1
and thus the log-probability is zero, or yi=0 and thus the log-probability is logP (xi=0) (noting that
σ(−Xi) = (1− σ(Xi)) ≈ P (xi=0)).

Henderson & Popa (2016) formalise the model on the left in figure 1 by first inferring the opti-
mal latent vector distribution Y (equation (3)), and then scoring how well the entailment and prior
constraints have been satisfied (equation (2)).

max
Y

(EY,X′e,Xe
logP (y⇒x′e, y⇒xe, y))

≈ Y >©X ′
e + Y >©Xe + (−σ(−Y )) · θ(Y ) (2)

where

Y = − log σ(−X ′
e) +− log σ(−Xe) + θ(Y ) (3)

where EY,X′e,Xe
is the expectation over the distribution defined by the log-odds vectors Y,X ′

e, Xe,
and log and σ are applied componentwise. The term θ(Y ) is used to indicate the net effect of the
prior on the vector Y . Note that, in the formula (3) for inferring Y , the contribution − log σ(−X)
of each word vector is also a component of the definition of Y >©X from equation (1). In this way,
the score for measuring how well the entailment has been satisfied is using the same approximation
as used in the inference to satisfy the entailment constraint. This function − log σ(−X) is a non-
negative transform of X , as shown in figure 2. Intuitively, for an entailed vector x, we only care
about the probability that xi=1 (positive log-odds Xi), because that constrains the entailing vector
y to have yi=1 (adding to the log-odds Yi).

The above model cannot be mapped directly to the Word2Vec model because Word2Vec has no way
to model the prior θ(Y ). On the other hand, the Word2Vec model postulates two vectors for every
word, compared to one in the above model. Henderson & Popa (2016) propose an approximation
to the above model which incorporates the prior into one of the two vectors, resulting in each word
having one vector Xe as above plus another vector Xp with the prior incorporated.

Xp ≈ − log σ(−Xe) + θ(Y ) (4)

2We use lowercase variables x, y to refer to discrete vectors and uppercase variables X,Y to refer to their
associated entailment vectors. Entailment vectors represent the factorised distributions which result from a
variational Bayesian approximation. In this paper we only review the results of this approximation which are
necessary for our models, including this scoring function (1) and the following inference formula (3).
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Figure 2: The function − log σ(−X) used in inference and the >© operator, versus X .

Both vectors Xe and Xp are parameters of the model, which need to be learned. Thus, there is no
need to explicitly model the prior, thereby avoiding the need to choose a particular form for the prior
θ, which in general may be very complex.

This gives us the following score for how well the constraints of this model can be satisfied.

max
Y

(EY,X′e,Xp
logP (y⇒x′e, y⇒xe, y))

≈ Y >©X ′
e + (−σ(−Y )) ·Xp (5)

where

Y = − log σ(−X ′
e) +Xp (6)

In (Henderson & Popa, 2016), score (5) is only used to provide a reinterpretation of Word2Vec word
embeddings. They show that a transformation of the vectors output by Word2Vec (“W2V u.d.>©”
below) can be seen as an approximation to the likelihood vector Xe. In Section 4, we empirically
test this hypothesis by directly training Xe (“W2H likelihood” below) and comparing the results to
those with reinterpreted Word2Vec vectors.

2.2 NEW DISTRIBUTIONAL SEMANTIC MODELS

In this paper, we implement distributional semantic models based on score (5) and use them to train
new word embeddings. We call these models the Word2Hyp models, because they are based on
Word2Vec but are designed to predict hyponymy.

To motivate our models, we provide a better understanding of the model behind score (5). In partic-
ular, we note that although we wantXp to approximate the effects θ(Y ) of the prior as in equation 4,
in fact Xp is only dependent on one of the two words, and thus can only incorporate the portion
of θ(Y ) which arises from that one word. Thus, a better understanding of Xp is provided by equa-
tion (7).

Xp ≈ − log σ(−Xe) + θ(Xp) (7)

In this framework, equation (7) is exactly the same formula as would be used to infer the vector for
a single-word phrase (analogously to equation (3)).

This interpretation of the approximate model in equation 5 is given on the right side of figure 1.
As shown, Xp is interpreted as the posterior vector for a single-word phrase, which incorporates
the likelihood and the prior for that word. In contrast, X ′

e is just the likelihood, which provides the
evidence about the features of Y from the other word, without including the indirect consequences of
this information. This model, as argued above, approximates the model on the left side in Figure 1.
But the grey part of the figure does not need to be explicitly modelled becauseXp is trained directly.

This interpretation suggests that the posterior vectorXp should be a better reflection of the semantics
of the word than the likelihood vectorXe, since it includes both the direct evidence for some features
and their indirect consequences for other features. We test this hypothesis empirically in Section 4.

To implement our distributional semantic models, we define new versions of the Word2Vec code
(Mikolov et al., 2013a;b). The Word2Vec code trains two vectors for each word, where negative
sampling is applied to one of these vectors, and the other is the output vector. This applies to both
the Skipgram and CBOW versions of training. Both versions also use a dot product between vectors
to try to predict whether the example is a positive or negative sample. We simply replace this dot
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product with score (5) directly in the Word2Vec code, leaving the rest of the algorithm unchanged.
We make this change in one of two ways, one where the output vector corresponds to the likelihood
vector Xe, and one where the output vector corresponds to the posterior vector Xp. We will refer
to the model where Xp is output as the “posterior” model, and the model where Xe is output as the
“likelihood” model. Both these methods can be applied to both the Skipgram and CBOW models,
giving us four different models to evaluate.

2.3 MODELLING HYPONYMY

The proposed distributional semantic models output a word embedding vector for every word in the
vocabulary, which are directly interpretable as entailment vectors in the entailment-vectors frame-
work. Thus, to predict lexical entailment between two words, we can simply apply the >© operator
to their vectors, to get an approximation of the log-probability of entailment.

We evaluate these entailment predictions on hyponymy detection. Hyponym-hypernym pairs should
have associated embeddings Y,X which have a higher entailment scores Y >©X than other pairs.
We rank the word pairs by the entailment scores for their embeddings, and evaluate this ranked list
against the gold hyponymy annotations. We evaluate on hyponymy detection because it reflects a
direct form of lexical entailment; the semantic features of a hypernym (e.g. “animal”) should be
included in the semantic features of the hyponym (e.g. “cat”). Other forms of lexical entailment
would benefit from some kind of reasoning or world knowledge, which we leave to future work on
compositional models.

3 RELATED WORK

In this paper we propose a distributional semantic model which is based on entailment. Most of the
work on modelling entailment with vector space embeddings has simply used distributional semantic
vectors within a model of entailment, and is therefore not directly relevant here. See (Shwartz et al.,
2017) for a comprehensive review of such measures. Shwartz et al. (2017) evaluate these measures
as unsupervised models of hyponymy detection and run experiments on a number of hyponymy
datasets. We report their best comparable result in Table 1.

Vilnis & McCallum (2015) propose an unsupervised model of entailment in a vector space, and
evaluate it on hyponymy detection. Instead of representing words as a point in a vector space, they
represent words as a Gaussian distribution over points in a vector space. The variance of this dis-
tribution in a given dimension indicates the extent to which the dimension’s feature is unknown, so
they use KL-divergence to detect hyponymy relations. Although this model has a nice theoretical
motivation, the word representations are more complex and training appears to be more compu-
tationally expensive than the method proposed here. We empirically compare our models to their
hyponymy detection accuracy and find equivalent results.

The semi-supervised model of Kruszewski et al. (2015) learns a discrete Boolean vector space for
predicting hyponymy. But they do not propose any unsupervised method for learning these vectors.

Weeds et al. (2014) report hyponymy detection results for a number of unsupervised and semi-
supervised models. They propose a semi-supervised evaluation methodology where the words in
the training and test sets are disjoint, so that the supervised component must learn about the unsu-
pervised vector space and not about the individual words. Following Henderson & Popa (2016),
we replicate their experimental setup in our evaluations, for both unsupervised and semi-supervised
models, and compare to the best results among the models evaluated by Weeds et al. (2014), Shwartz
et al. (2017) and Henderson & Popa (2016).

4 EVALUATION OF WORD EMBEDDINGS

We evaluate on hyponymy detection in both a fully unsupervised setup and a semi-supervised setup.
In the semi-supervised setup, we use labelled hyponymy data to train a linear mapping from the
unsupervised vector space to a new vector space with the objective of correctly predicting hyponymy
relations in the new vector space. This prediction is done with the same (or equivalent) entailment
operator as for the unsupervised experiments (called “map >©” in Table 2).
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embeddings operator 50% Acc Ave Prec
Weeds et.al., 2014 58% –

Shwartz et.al., 2017 – 44.1%
W2V GoogleNews u.d.>© 64.5%* –
W2V CBOW u.d. >© 53.2% 55.2%
W2H Skip likelihood >© 59.5% 57.8%
W2H CBOW likelihood >© 61.8% 66.4%
W2V Skip u.d.>© 62.1% 67.6%
W2H CBOW posterior >© 68.1%* 70.8%
W2H Skip posterior >© 69.6% 68.9%

Table 1: Hyponymy detection accuracies (50% Acc) and average precision (Ave Prec), in the unsu-
pervised experiments. For the accuracies, * marks a significant improvement over the higher rows.

We replicate the experimental setup of Weeds et al. (2014), using their selection of hyponym-
hypernym pairs from the BLESS dataset (Baroni & Lenci, 2011), which consists of noun-noun
pairs, including 50% positive hyponymy pairs plus 50% negative pairs consisting of some other
hyponymy pairs reversed, some pairs in other semantic relations, and some random pairs. As in
(Weeds et al., 2014), our semi-supervised experiments use ten-fold cross validation, where each fold
has items removed from the training set if they contain a word that also occurs in the testing set.

The word embedding vectors which we train have 200 dimensions and were trained using our
Word2Hyp modification of the Word2Vec code (with default settings), trained on a corpus of half a
billion words of Wikipedia. We also replicate the approach of Henderson & Popa (2016) by training
Word2Vec embeddings on this data.

To quantify performance on hyponymy detection, for each model we rank the list of pairs according
to the score given by the model, and report two measures of performance for this ranked lists. The
“50% Acc” measure treats the first half of the list as labelled positive and the second half as labelled
negative. This is motivated by the fact that we know a priori that the proportion of positive examples
has been artificially set to (approximately) 50%. Average precision is a measure of the accuracy
for ranked lists, used in Information Retrieval and advocated as a measure of hyponymy detection
by Vilnis & McCallum (2015). For each positive example, precision is measured at the threshold
just below that example, and these precision scores are averaged over positive examples. For cross
validation, we average over the union of positive examples in all the test sets. Both these measures
are reported (when available) in Tables 1 and 2.

4.1 UNSUPERVISED HYPONYMY DETECTION

The first set of experiments evaluate the different embeddings in their unsupervised models of hy-
ponymy detection. Results are shown in Table 1. Our principal point of comparison is the best
results from (Henderson & Popa, 2016) (called “W2V GoogleNews” in Table 1). They use the pre-
existing publicly available GoogleNews word embeddings, which were trained with the Word2Vec
software on 100 billion words of the GoogleNews dataset, and have 300 dimensions. To provide a
more direct comparison, we replicate the model of Henderson & Popa (2016) but using the same
embedding training setup as for our Word2Hyp model (“W2V Skip”). Both cases use their pro-
posed reinterpretation of these vectors for predicting entailment (“u.d.>©”). We also report the best
results from Weeds et al. (2014) and the best comparable results from (Shwartz et al., 2017). For
our proposed Word2Hyp distributional semantic models (“W2H”), we report results for the four
combinations of using the CBOW or Skipgram (“Skip”) model to train the likelihood or posterior
vectors.

The two Word2Hyp models with likelihood vectors perform slightly better than the best unsuper-
vised model of Weeds et al. (2014), but similarly. The reinterpretation of Word2Vec vectors (“W2V
GoogleNews u.d.>©”) performs significantly better, but when the same method is applied to the
smaller Wikipedia corpus (“W2V Skip u.d.>©”), this difference all but disappears. This confirms
the hypothesis of Henderson & Popa (2016) that the reinterpretation of Word2Vec vectors and the
likelihood vectors from Word2Hyp are approximately equivalent.
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embeddings operator 50% Acc Ave Prec
Weeds et.al., 2014 75% –

W2V GoogleNews map >© 80.1% –
W2V Skip map >© 81.9% 88.3%
W2H CBOW likelihood map >© 83.3% 90.3%
W2V CBOW map >© 84.6% 91.5%
W2H Skip likelihood map >© 84.8% 90.9%
W2H Skip posterior map >© 85.5% 91.3%
W2H CBOW posterior map >© 86.0% 92.8%

Table 2: Hyponymy detection accuracies (50% Acc) and average precision (Ave Prec), in the semi-
supervised experiments.

However, even with this smaller corpus, using the proposed posterior vectors from the Word2Hyp
model are significantly more accurate than the reinterpretation of Word2Vec vectors. This confirms
the hypothesis that the posterior vectors from the Word2Hyp model are a better model of the seman-
tics of a word than the likelihood vectors suggested by Henderson & Popa (2016).

Using the CBOW model or the Skipgram model makes only a small difference. The average preci-
sion score shows the same pattern as the accuracy.

To allow a direct comparison to the model of Vilnis & McCallum (2015), we also evaluated the
unsupervised models on the hyponymy data from (Baroni et al., 2012), which is not as carefully
designed to evaluate hyponymy as the (Weeds et al., 2014) data. Both the likelihood and poste-
rior vectors of the Word2Hyp CBOW model achieved average precision (81%, 80%) which is not
significantly different from the best model of Vilnis & McCallum (2015) (80%).

4.2 SEMI-SUPERVISED HYPONYMY DETECTION

The semi-supervised experiments train a linear mapping from each unsupervised vector space to a
new vector space, where the entailment operator >© is used to predict hyponymy (“map >©”).

The semi-supervised results (shown in Table 2)3 no longer show an advantage of GoogleNews vec-
tors over Wikipedia vectors for the reinterpretation of Word2Vec vectors. And the advantage of
posterior vectors over the likelihood vectors is less pronounced. However, the two posterior vec-
tors still perform much better than all the previously proposed models, achieving 86% accuracy and
nearly 93% average precision. These semi-supervised results confirm the results from the unsu-
pervised experiments, that Word2Vec embeddings and Word2Hyp likelihood embeddings perform
similarly, but that using the posterior vectors of the Word2Hyp model perform better.

4.3 TRAINING TIMES

Because the similarity measure in equation 5 is more complex than a simple dot product, training a
new distributional semantic model is slower than with the original Word2Vec code. In our experi-
ments, training took about 8 times longer for the CBOW model and about 15 times longer for the
Skipgram model. This meant that Word2Hyp CBOW trained about 8 times faster than Word2Hyp
Skipgram. As in the Word2Vec code, we used a quadrature approximation (i.e. a look-up table) to
speed up the computation of the sigmoid function, and we added the same technique for computing
the log-sigmoid function.

4.4 DISCUSSION

The relative success of our distributional semantic models at unsupervised hyponymy detection
indicates that they are capturing some aspects of lexical entailment. But the gap between the unsu-
pervised and semi-supervised results indicates that other features are also being captured. This is
not surprising, since many other factors influence the co-occurrence statistics of words.

3It is not clear how to measure significance for cross-validation results, so we do not attempt to do so.
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most abstract least abstract
something necessity . . . fork
anything sense hockey housing
end back republican elm
inside saw hull primate
good . . . cricket fur

Table 3: Ranking of the abstractness (0 >©X) of frequent words from the hyponymy dataset, using
Word2Hyp-Skipgram-posterior embeddings.

To get a better understanding of these word embeddings, we ranked them by degree of abstractness.
Table 3 shows the most abstract and least abstract frequent words that occur in the hyponymy data.
To measure abstractness, we used our best unsupervised embeddings and measured how well they
are entailed by the zero log-odds vector, which represents a uniform half probability of knowing
each feature. For a vector to be entailed by the zero vector, it must be that its features are mostly
probably unknown. The less you know given a word, the more abstract it is.

An initial ranking found that six of the top ten abstract words had frequency less than 300 in the
Wikipedia data, but none of the ten least abstract terms were infrequent. This indicates a problem
with the current method, since infrequent words are generally very specific (as was the case for these
low-frequency words, submissiveness, implementer, overdraft, ruminant, warplane, and londoner).
Although this is an interesting characteristic of the method, the terms themselves seem to be noise,
so we rank only terms with frequency greater than 300.

The most abstract terms in table 3 include some clearly semantically abstract terms, in particular
something and anything are ranked highest. Others may be affected by lexical ambiguity, since
the model does not disambiguate words by part-of-speech (such as end, good, sense, back, and
saw). The least abstract terms are mostly very semantically specific, but it is indicative that this
list includes primate, which is an abstract term in Zoology but presumably occurs in very specific
contexts in Wikipedia.

5 CONCLUSIONS

In this paper, we propose unsupervised methods for efficiently training word embeddings which cap-
ture semantic entailment. This work builds on the work of Henderson & Popa (2016), who propose
the entailment-vectors framework for modelling entailment in a vector-space, and a distributional
semantic model for reinterpreting Word2Vec word embeddings. Our contribution differs from theirs
in that we provide a better understanding of their distributional semantic model, we choose different
vectors in the model to use as word embeddings, and we train new word embeddings using our mod-
ification of the Word2Vec code. Empirical results on unsupervised and semi-supervised hyponymy
detection confirm that the model’s likelihood vectors, which Henderson & Popa (2016) suggest to
use, do indeed perform equivalently to their reinterpretation of Word2Vec vectors. But these exper-
iments also show that the model’s posterior vectors, which we propose to use, perform significantly
better, outperforming all previous results on this benchmark dataset.

The success of these unsupervised models demonstrates that the proposed distributional semantic
models are effective at extracting information about lexical entailment from the redundancy and
consistency of words with their contexts in large text corpora. The use of the entailment-vectors
framework to efficiently model entailment relations has been crucial to this success. This result
suggests future work using the entailment-vectors framework in unsupervised models that leverage
other distributional evidence about semantics, particularly in models of compositional semantics.
The merger of word embeddings with compositional semantics to get representation learning for
larger units of text is currently an important challenge in the semantics of natural language, and the
work presented in this paper makes a significant contribution towards solving it.
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