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Figure 1: We introduce MLLM-Guided Image Editing (MGIE) to improve instruction-based image
editing for various editing aspects. The top is the input instruction, and the right is the jointly derived
expressive instruction by MGIE.

ABSTRACT

Instruction-based image editing improves the controllability and flexibility of im-
age manipulation via natural commands without elaborate descriptions or regional
masks. However, human instructions are sometimes too brief for current methods
to capture and follow. Multimodal large language models (MLLMs) show promis-
ing capabilities in cross-modal understanding and visual-aware response genera-
tion via LMs. We investigate how MLLMs facilitate edit instructions and present
MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instruc-
tions and provides explicit guidance. The editing model jointly captures this visual
imagination and performs manipulation through end-to-end training. We evaluate
various aspects of Photoshop-style modification, global photo optimization, and
local editing. Extensive experimental results demonstrate that expressive instruc-
tions are crucial to instruction-based image editing, and our MGIE can lead to a
notable improvement in automatic metrics and human evaluation while maintain-
ing competitive inference efficiency.

1 INTRODUCTION

Visual design tools are widely adopted in various multimedia fields nowadays. Despite considerable
demand, they require prior knowledge to operate. To enhance controllability and accessibility, text-
guided image editing has obtained popularity in recent studies (Li et al., 2020; Patashnik et al., 2021;
Crowson et al., 2022; Gal et al., 2022). With an attractive ability to model realistic images, diffusion
models (Ho et al., 2020) are also adopted in image editing (Kim et al., 2022). By swapping the latent
cross-modal maps, models can perform visual manipulation to reflect the alteration of the input-goal
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caption (Hertz et al., 2023; Mokady et al., 2022; Kawar et al., 2023). They can further edit a specific
region by a guided mask (Nichol et al., 2022; Avrahami et al., 2022). Instead of relying on elaborate
descriptions or regional masks, instruction-based editing (El-Nouby et al., 2019; Li et al., 2020; Fu
et al., 2020) allows human commands that directly express how and which aspect of an image to edit.
This flexibility also benefits practicality as such guidance is more aligned with human intuition.

Due to the data scarcity of the input-goal-instruction triplet, InsPix2Pix (Brooks et al., 2023) collects
a curated IPr2Pr dataset. The instruction is generated by GPT-3 (Brown et al., 2020), and the input-
goal image pair is synthesized from Prompt-to-Prompt (Hertz et al., 2023). InsPix2Pix then applies a
pre-trained CLIP text encoder (Radford et al., 2021) to lead the diffusion model along with the input
image. Although having feasible results, CLIP is trained for static descriptions, which is challenging
to capture the essential visual transformation in editing. Furthermore, the instruction is too brief but
ambiguous and insufficient to guide toward the intended goal. The deficiency limits the effectiveness
of InsPix2Pix in instruction-based image editing.

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023) have shown significant ad-
vancement in diverse language tasks, including machine translation, text summarization, and ques-
tion answering. Learning from large-scale corpora with diverse content, LLMs contain latent visual
knowledge and creativity, which can assist various vision-and-language tasks (Wu et al., 2023; Feng
et al., 2023; Chakrabarty et al., 2023). Upon LLMs, multimodal large language models (MLLMs)
can treat images as input naturally and provide visual-aware responses to serve as multimodal assis-
tants (Zhang et al., 2023b; Liu et al., 2023; Zhu et al., 2023; Koh et al., 2023).

Inspired by MLLMs, we incorporate them to deal with the insufficient guidance issue of instructions
and introduce MLLM-Guided Image Editing (MGIE). As demonstrated in Fig. 2, MGIE consists of
an MLLM and a diffusion model. The MLLM learns to derive concise expressive instructions and
offers explicit visual-related guidance. The diffusion model is jointly updated and performs image
editing with the latent imagination of the intended goal via end-to-end training. In this way, MGIE
benefits from the inherent visual derivation and addresses ambiguous human commands to achieve
reasonable editing. For the example in Fig. 1, it is difficult to capture what “healthy” means without
additional context. Our MGIE can precisely connect “vegetable toppings” with the pizza and lead
to the related editing as human expectation.

To learn instruction-based image editing, we adopt IPr2Pr as our pre-training dataset. We consider
different editing aspects in EVR (Tan et al., 2019), GIER (Shi et al., 2020), MA5k (Shi et al., 2022),
and MagicBrush (Zhang et al., 2023a). MGIE performs Photoshop-style modification, global photo
optimization, and local object alteration. All should be guided by human instructions. Experimental
results indicate that our MGIE significantly strengthens instruction-based image editing with reason-
able expressive instructions in automatic metrics and human evaluation, and visual-aware guidance
is crucial to this improvement. In summary, our contributions are three-fold:

• We introduce MLLM-Guided Image Editing (MGIE), which jointly learns the MLLM and editing
model with visual-aware expressive instructions to provide explicit guidance.

• We conduct comprehensive studies from various editing aspects, including Photoshop-style mod-
ification, global photo optimization, and local editing, along with qualitative comparisons.

• Extensive experiments demonstrate that visual-aware expressive instructions are crucial for image
editing, and our MGIE effectively enhances editing performance.

2 RELATED WORK

Instruction-based Image Editing. Text-guided image editing can significantly improve the con-
trollability and accessibility of visual manipulation by following human commands. Previous works
built upon the GAN frameworks (Goodfellow et al., 2015; Reed et al., 2016) to alter images but are
limited to unrealistic synthesis or specific domains (Nam et al., 2018; Li et al., 2020; El-Nouby et al.,
2019; Fu et al., 2020; 2022). With promising large-scale training, diffusion models (Ho et al., 2020;
Ramesh et al., 2022; Sahari et al., 2022; Rombach et al., 2022) can accomplish image transformation
via controlling the cross-modal attention maps for the global caption (Meng et al., 2022; Hertz et al.,
2023; Kawar et al., 2023; Gu et al., 2023). Local image editing allows fine-grained manipulation by
inpainting target regions with user-provided (Nichol et al., 2022; Avrahami et al., 2022; Wang et al.,
2023b) or predicted masks (Bar-Tal et al., 2022; Couairon et al., 2023) while preserving the remain-
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Figure 2: Overview of MLLM-Guided Image Editing (MGIE), which leverages MLLMs to enhance
instruction-based image editing. MGIE learns to derive concise expressive instructions and provides
explicit visual-related guidance for the intended goal. The diffusion model jointly trains and achieves
image editing with the latent imagination through the edit head in an end-to-end manner. and
show the module is trainable and frozen1, respectively.

ing areas. Different from them, instruction-based image editing accepts straight commands, such as
“add fireworks to the sky”, which is not restricted to elaborate descriptions or regional masks. Recent
methods learn from synthetic input-goal-instruction triples (Brooks et al., 2023) and with additional
human feedback (Zhang et al., 2023c) to follow editing instructions. However, the frozen CLIP text
encoder is pre-trained for static descriptions but not the crucial transformation in editing. Moreover,
the instructions are sometimes ambiguous and imprecise for the editing goal. In this paper, we learn
with multimodal large language models to perceive images along with given prompts for expressive
instructions, which provides explicit yet detailed guidance, leading to superior editing performance.

Large Language Models for Vision. Large language models (LLMs) have demonstrated impres-
sive capabilities for text generation and generalizability in various tasks (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023). With robust text understanding, previous works adapt LLMs
for input prompts and reason downstream vision-and-language tasks (Zhang et al., 2023d; Wu et al.,
2023; Lu et al., 2023; Yang et al., 2023; Chakrabarty et al., 2023). They further produce pseudocode
instructions or executable programs by LLMs (Huang et al., 2022; Gupta & Kembhavi, 2023; Surı́s
et al., 2023; Feng et al., 2023; Lian et al., 2023). Through visual feature alignment with instruction
tuning, multimodal large language models (MLLMs) can perceive images and provide adequate re-
sponses (Li et al., 2023b; Zhang et al., 2023b; Liu et al., 2023; Zhu et al., 2023). Recently, studies
also adopt MLLMs for generating chat-related images (Koh et al., 2023; Sun et al., 2023). However,
they can only produce images from scratch, which are distinct from inputs. Our proposed MGIE is
the first to leverage MLLMs and improve image editing with derived expressive instructions.

3 METHOD

3.1 BACKGROUND: MULTIMODAL LARGE LANGUAGE MODELS (MLLMS)

Large language models (LLMs) have shown impressive capabilities for natural language generation.
Multimodal large language models (MLLMs) empower LLMs to perceive images and provide rea-
sonable responses. Initialized from a pre-trained LLM, the MLLM contains a visual encoder (e.g.,

CLIP-L (Radford et al., 2021)) to extract the visual features f , and an adapter W to project f into
the language modality. We follow the training of LLaVA (Liu et al., 2023), which is summarized as:

C = {x1, x2, ..., xl},

f = Encvis(V),

xt = MLLM({x1, ...xt�1} | W(f)),

(1)

1We adopt Flan-T5-XXL (Chung et al., 2022), which has been specifically fine-tuned for summarization, as
our summarization model for the original MLLM (MLLM*).
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where l is the length of the word token in C. C can be the image caption (Features Alignment) or the
multimodal instruction-following data (Instruction Tuning). The MLLM follows the standard auto-
regressive training for the next token prediction and then can serve as a visual assistant for various
tasks such as visual question answering and complex reasoning. Although the MLLM is capable of
visual perception via the above training, its output is still limited to text.

3.2 MLLM-GUIDED IMAGE EDITING (MGIE)

As illustrated in Fig. 2, we propose MLLM-Guided Image Editing (MGIE) to edit an input image V
into a goal image O, by a given instruction X . To handle imprecise instructions, MGIE contains the
MLLM and learns to derive explicit yet concise expressive instructions E . To bridge the language
and visual modality, we add special [IMG] tokens after E and adopt the edit head T to transform
them. They serve as the latent visual imagination from the MLLM and guide our diffusion model F
to achieve the intended editing goal. MGIE is then able to comprehend ambiguous commands with
visual-related perception for reasonable image editing.

Concise Expressive Instruction. From features alignment and instruction tuning, the MLLM can
offer visual-related responses with its cross-modal perception. For image editing, we use this prompt
“what will this image be like if [instruction]” as the language input with the image and derive
a detailed explanation of the editing command. However, those explanations are always too lengthy
and involve redundant descriptions, which even mislead the intention. To obtain succinct narrations,
we apply a pre-trained summarizer 1 and make the MLLM learn to generate the summarized outputs.
We treat this explicit yet concise guidance as expressive instruction E :

E = Summ(MLLM*([prompt,X ] | W(f)))

= {w1, w2, ..., wl},

w
0
t = MLLM({w1, ..., wt�1} | W(f)),

Lins =
Xl

t=1
CELoss(w0

t, wt),

(2)

where we apply the cross-entropy loss (CELoss) to train the MLLM via teacher forcing. E can pro-
vide a more concrete idea than X such as linking “dessert” with “sand dunes” and “cacti or small

shrubs”, which mitigates the comprehension gap for reasonable image editing. This strategy further
enhances our efficiency. During inference, the trained MGIE straightforwardly derives concise E in-
stead of rolling out lengthy narrations (22.7 vs. 64.5 tokens) and relying on external summarization.
MGIE now can acquire a visual imagination of the editing intention but is confined to the language
modality. To bridge the gap, we append N visual tokens [IMG] after E , where their word embed-
dings are trainable, and the MLLM also learns to generate them through its language modeling (LM)
head. Inspired by GILL (Koh et al., 2023), the visual tokens are treated as visual-related instruction
understanding in E and establish a connection between the language and vision modalities.

Image Editing via Latent Imagination. We adopt the edit head T to transform [IMG] into actual
visual guidance. T is a sequence-to-sequence model, which maps the sequential visual tokens from
the MLLM to the semantically meaningful latent U = {u1, u2, ..., uL} as the editing guidance:

ut = T ({u1, ..., ut�1} | {e[IMG] + h[IMG]}), (3)
where e is the word embedding and h is the hidden state (from the last layer of MLLM before the LM
head) of [IMG]. Specifically, the transformation over e can be treated as a general representation in
the visual modality, and h is an instance-aware visual imagination for such editing intention. Our T
is similar to GILL and BLIP-2 (Li et al., 2023b;a) for extracting visual features.

To guide image editing with the visual imagination U , we consider a latent diffusion model F (Rom-
bach et al., 2022), which includes the variational autoencoder (VAE) and addresses denoising diffu-
sion in the latent space. Our goal of F is to generate the latent goal o = EncVAE(O) from preserving
the latent input v = EncVAE(V) and following the editing guidance {u}. The diffusion process keeps
adding noises to o as zt, where the noise level is increasing over timesteps t. We then learn the UNet
✏✓ to predict the added noise (Ho et al., 2020). As LDM, we inject the visual imagination into ✏✓ via
the cross-attention layer Attention(Q,K, V ) = softmax(QKT

p
dim

) · V with

Q = W
(i)
Q · 'i(zt),K = W

(i)
K · {u}, V = W

(i)
V · {u}, (4)
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Method EVR GIER MA5k MagicBrush

L1# DINO" CVS" L1# SSIM" CVS" L1# SSIM" LPIPS# L1# DINO" CVS" CTS"

InsPix2Pix 0.189 67.82 81.38 0.144 57.51 86.63 0.176 58.92 0.359 0.101 71.46 85.22 29.34
LGIE 0.159 69.71 82.04 0.152 56.86 86.99 0.144 64.60 0.327 0.084 80.90 88.87 30.10
MGIE 0.163 71.49 81.73 0.135 59.24 88.59 0.133 66.25 0.298 0.082 82.22 91.14 30.40

Table 1: Zero-shot editing results. All models are only pre-trained on IPr2Pr (Brooks et al., 2023).

Method EVR GIER MA5k MagicBrush

L1# DINO" CVS" L1# SSIM" CVS" L1# SSIM" LPIPS# L1# DINO" CVS" CTS"

InsPix2Pix 0.166 70.79 82.76 0.111 64.86 91.49 0.122 67.12 0.267 0.063 87.99 93.83 30.93
LGIE 0.147 74.71 85.06 0.104 65.30 90.61 0.094 71.47 0.246 0.058 88.09 93.57 31.33
MGIE 0.146 75.65 85.28 0.105 68.68 92.42 0.082 72.91 0.235 0.057 90.65 95.28 31.73

Table 2: Fine-tuned editing results. All models are further fine-tuned and adapted to each dataset.

where ' is the flattened operation, W (i)
Q , W (i)

K , and W
(i)
V are learnable attention matrices. Following

InsPix2Pix, we also concatenate v with zt. In this way, our F can condition both V and U to perform
image editing. We take classifier-free guidance (Ho & Salimans, 2021), and the score estimation s✓

is extrapolated to keep away from the unconditional ?, where the editing loss Ledit is calculated as:

s✓(zt, v, {u}) = s✓(zt,?,?)

+ ↵V · (s✓(zt, v,?)� s✓(zt,?,?))

+ ↵X · (s✓(zt, v, {u})� s✓(zt, v,?)),

Ledit = Eo,v,{u},✏⇠N (0,1),t

⇥
||✏� ✏✓(zt, t, v, {u})||

2
2

⇤
,

(5)

where ↵V and ↵X are the weights of the guidance scale for the image and the instruction. Similar to
InsPix2Pix, we randomly make v = ?, {u} = ?, or both = ? for 5% of data during training. After
we have the generated latent o0 through the denoising process by ✏✓, we can obtain the editing result
O

0 = DecVAE(o0). During inference, we use ↵V = 1.5 and ↵X = 7.5.

3.3 LEARNING OF MGIE

Algorithm 1 MLLM-Guided Image Editing
1: while TRAIN MGIE do
2: V , X , O input/instruction/goal triple
3: {w} summarized explanation
4: {w0

} = MLLM(V | X )
5: Lins  instruction loss . Eq. 2
6: U = T ({[IMG]})
7: O

0 = F(V,U)
8: Ledit  editing loss . Eq. 5
9: Lall  overall training loss

10: end while

Algo. 1 presents the learning process of the proposed
MGIE. The MLLM learns to derive concise E via the
instruction loss Lins. With the latent imagination from
[IMG], T transforms their modality and guides F to
synthesize the resulting image. The editing loss Ledit
is applied for diffusion training. Most weights can be
frozen (self-attention blocks inside the MLLM), lead-
ing to parameter-efficient end-to-end training. Over-
all optimization of Lall = Lins + 0.5 · Ledit can be:

min
MLLM,W,T ,F

Lall . (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. We use IPr2Pr (Brooks et al., 2023) as our pre-training data. It
contains 1M CLIP-filtered data, where instructions are extracted by GPT-3 (Brown et al., 2020), and
images are synthesized by Prompt-to-Prompt (Hertz et al., 2023). For a comprehensive evaluation,
we consider various editing aspects. EVR (Tan et al., 2019) collects 5.7K triples from PhotoshopRe-
quest. We treat the standard pixel difference (L1) and visual feature similarity from DINO (Caron
et al., 2021) or the CLIP visual encoder (CVS) between generated images and ground-truth goals as
the evaluation metrics. GIER (Shi et al., 2020) crawls a larger-scale 29.9K triples also from online
forums. Since there are more examples about global optimization, we apply L1, CVS, and Structural
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Figure 3: Trade-off curve for im-
age editing. We set ↵X as 7.5 and
vary ↵V in [1.0, 2.2]. For both edit
(X-axis) and input consistency (Y-
axis), higher is better.

Arch. Method MA5k MagicBrush

L1# SSIM" LPIPS# L1# DINO" CVS" CTS"

InsPix2Pix 0.176 58.92 0.359 0.101 71.46 85.22 29.34

FZ LGIE 0.178 57.26 0.372 0.133 67.53 82.49 28.79
MGIE 0.163 57.54 0.366 0.128 71.65 86.00 29.43

FT LGIE 0.166 60.11 0.357 0.124 71.04 85.47 29.37
MGIE 0.163 61.38 0.348 0.101 74.79 87.12 29.68

E2E LGIE 0.144 64.60 0.327 0.084 80.90 88.87 30.10
MGIE 0.133 66.25 0.298 0.082 82.22 91.14 30.40

Table 3: Ablation study. We attempt FZ, FT, or E2E to utilize
expressive instructions. FZ directly treats expressive instruc-
tions as the inputs to frozen InsPix2Pix. FT further fine-tunes
InsPix2Pix and makes it adapt to expressive instructions. Our
E2E learns expressive instructions along with the MLLM and
trains the diffusion model in an end-to-end manner.

Similarity Index (SSIM). MA5k (Shi et al., 2022) consists of 24.8K triples and aims at changing the
contrast, brightness, or saturation of a whole photo. We leverage L1, SSIM, and Learned Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018) as the photo difference2. MagicBrush (Zhang
et al., 2023a) annotates 10.5K triples. We follow them to use L1, DINO, CVS, and text-visual feature
similarity (CTS) (Hessel et al., 2021) between goal captions and resulting images. We treat the same
training/validation/testing split as the original settings. Without specific mention, all evaluations are
averaged from 5 random seeds in a zero-shot manner, where models are only trained on IPr2Pr.

Baselines. We treat InsPix2Pix (Brooks et al., 2023), built upon the CLIP text encoder with a diffu-
sion model for instruction-based image editing, as our baseline. We consider a similar LLM-guided
image editing (LGIE) model, where LLaMA-7B (Touvron et al., 2023) is adopted for expressive
instructions E from instruction-only inputs but without visual perception.

Implementation Details. The MLLM and diffusion model F are initialized from LLaVA-7B (Liu
et al., 2023) and StableDiffusion-v1.5 (Rombach et al., 2022). We jointly update both for the image
editing task. Note that only word embeddings and LM head in the MLLM are trainable. Following
GILL (Koh et al., 2023), we use N=8 visual tokens. The edit head T is a 4-layer Transformer, which
transforms language features into editing guidance. We adopt AdamW (Loshchilov & Hutter, 2019)
with the batch size of 128 to optimize MGIE. The learning rates of the MLLM and F are 5e-4 and
1e-4, respectively. All experiments are conducted in PyTorch (Paszke et al., 2017) on 8 A100 GPUs.

4.2 QUANTITATIVE RESULTS

Table 1 shows the zero-shot editing results, where models are trained only on IPr2Pr. For EVR and
GIER that involve Photoshop-style modifications, expressive instructions can reveal concrete goals
instead of brief but ambiguous commands, which makes the editing results more similar to intentions
(e.g., higher 82.0 CVS on EVR by LGIE and higher 59.2 SSIM on GIER by MGIE). For global photo
optimization on MA5k, InsPix2Pix is hard to deal with due to the scarcity of related training triples.
Though trained from the same source, LGIE and MGIE can offer detailed explanations via learning
with the LLM, but LGIE is still confined to its single modality. With access to images, MGIE derives
explicit instructions such as which regions should brighten or what objects are more distinct. It can
bring a significant performance boost (e.g., higher 66.3 SSIM and lower 0.3 photo distance). Similar

2As there is no object alteration in MA5k, feature-based DINO and CVS cannot clearly tell the difference.
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Figure 4: CLIP-S across im-
ages (input / goal) and expres-
sive instructions.

Figure 5: Human eval of ex-
pressive instructions quality.

Figure 6: Human eval of image edit-
ing results in terms of instruction fol-
lowing, ground-truth relevance, and
overall quality.

results are found on MagicBrush. MGIE also achieves the best performance from the precise visual
imagination and modifies the designate targets as the goals (e.g., higher 82.2 DINO visual similarity
and higher 30.4 CTS global caption alignment).

To investigate instruction-based image editing for the specific purpose, Table 2 fine-tunes models on
each dataset. For EVR and GIER, all models obtain improvements after the adaptation to Photoshop-
style editing tasks. Since fine-tuning makes expressive instructions more domain-specific as well,
our MGIE increases the most via learning with domain-related guidance. This also helps our diffu-
sion model to demonstrate concrete edited scenes from the fine-tuned MLLM, which benefits both
global optimization and local modification (e.g., notably lower 0.24 LPIPS on MA5k and higher
95.3 CVS on MagicBrush). MGIE is consistently superior to LGIE in all aspects of editing since
our visual-aware guidance is more aligned with the intended goal. From the above experiments, we
illustrate that learning with expressive instructions can effectively enhance image editing, and visual
perception plays a crucial role in deriving explicit guidance for the greatest enhancements.

Trade-off between ↵X and ↵V . There are two goals in image editing: manipulate the target as the
instruction and preserve the remaining as the input image. Fig. 3 plots the trade-off curves between
the instruction (↵X ) and input consistency (↵V ). We fix ↵X as 7.5 and vary ↵V in [1.0, 2.2]. Higher
↵V will make an editing result more similar to the input but less aligned with the instruction. X-axis
calculates the CLIP directional similarity as how much the editing follows the instruction; Y-axis is
the feature similarity to the input image from the CLIP visual encoder. Through concrete expressive
instructions, we surpass InsPix2Pix in all settings. Our MGIE additionally results in comprehensive
enhancements by learning with explicit visual-related guidance. This supports robust improvement,
whether requiring higher input correlation or edit relevance.

4.3 ABLATION STUDY

MLLM-Guided Image Editing exhibits encouraging improvement in both zero-shot and fine-tuning
scenarios. Now, we investigate different architectures to use expressive instructions. Table 3 consid-
ers FZ, FT, and our E2E. FZ directly uses the derived expressive instructions3 as the input prompts
to the frozen InsPix2Pix. In spite of having additional guidance, the scenario still differs from the
trained editing instructions, which makes it difficult to deal with. LGIE even hurts the performance
as it may mislead due to the shortage of visual perception. FT fine-tunes InsPixPix and adapts it to
expressive instructions. These results support that image editing can benefit from explicit guidance
along the derivation of instructions from the LLM/MLLM. E2E updates the editing diffusion model
in conjunction with the LM, which learns to extract applicable guidance and discard irrelevant nar-
ration simultaneously through the end-to-end hidden states. In addition, our E2E can also avoid the
potential error that may be propagated from the expressive instructions. Hence, we observe the most
enhancements in both global optimization (MA5k) and local editing (MagicBrush). Among FZ, FT,
and E2E, MGIE consistently surpasses LGIE. This indicates that expressive instructions with crucial
visual perception are always advantageous across all ablation settings.

Why MLLM Guidance is Helpful? Fig. 4 presents the CLIP-Score between input or ground-truth
goal images and expressive instructions. A higher CLIP-S to input images indicates that instructions

3During the ablation study, we employ concise summarized expressive instructions for a fair comparison.
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Figure 7: Qualitative comparison between InsPix2Pix, LGIE, and our MGIE. For the 1st example,
MGIE can showcase the clear “lightning” in the sky and its reflection on the water. For the 2nd one,
although LGIE accurately targets the Christmas tree, only MGIE removes it in the background. For
photo optimization (the 3rd example), InsPix2Pix fails to adjust the brightness, and LGIE makes the
whole photo white and obviously distinct. In contrast, MGIE follows the instruction to brighten as
well as sharpen it. Moreover, in the 4th one, MGIE puts the “glaze” only on the donuts, but baselines
even draw the entire image in strawberry pink.

are relevant to the editing source. Better alignment with goal images provides explicit and correlated
edit guidance. Without access to visual perception, expressive instructions from LGIE are limited to
general language imagination, which is not tailored to the source image. The CLIP-S are even lower
than the original instructions. By contrast, MGIE is more aligned with inputs/goals, which explains
why our expressive instructions are helpful. With a clear narration of the intended result, our MGIE
can achieve the greatest improvements in image editing.

Human Evaluation. Apart from automatic metrics, we conduct a human evaluation to study gen-
erated expressive instructions and image editing results. We randomly sample 25 examples for each
dataset (100 in total) and consider humans to rank across baselines and MGIE. To avoid potential
ranking bias, we hire 3 annotators for each example. Fig. 5 plots the quality of generated expressive
instructions. Precise guidance is informative and aligns with the intended goal (More Practicality).
At the same time, it should avoid incorrect or unrelated explanations (Less Hallucination). Firstly,
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Figure 8: Qualitative comparison of expressive instructions by LGIE and our MGIE. Due to the
limitation of the single modality, LGIE can only have language-based insight but may derive irrel-
evant or even wrong explanations for image editing (e.g., “two people still in the foreground” for
GIER). With access to images, MGIE provides explicit visual imagination after the editing such as
“baby on the beach with a shark” or “bring out details of leaves and trunk”. More surprisingly, we
can link “lightsaber or spaceship” from Star Wars and describe “chewing on the stick” for the dog,
which is aligned with the intended goal.

over 53% support that MGIE provides more practical expressive instructions, which facilitates the
image editing task with explicit guidance. Meanwhile, 57% of labelers indicate that our MGIE can
prevent irrelevant descriptions from language-derived hallucinations in LGIE since it perceives the
image to have a precise goal for editing. Fig. 6 compares the image editing results by InsPix2Pix,
LGIE, and our MGIE in terms of instruction following, ground-truth relevance, and overall quality.
The ranking score is ranging from 1 to 3, higher is better. With derived expressive instructions from
the LLM or MLLM, LGIE and MGIE both outperform the baseline and perform image editing that
is correlated with the instruction as well as similar to the ground-truth goal. Additionally, since our
expressive instructions can provide concrete and visual-aware guidance, MGIE has the best human
preference in all aspects, including the overall editing quality. These performance trends also align
with automatic evaluations, which support our usage of metrics.

BS InsPix2Pix MGIE

1 6.8 9.2
4 16.5 20.6
8 31.5 36.9

Table 4: Time cost.

Inference Efficiency. Despite relying on MLLM to facilitate image editing,
MGIE only rolls out concise expressive instructions (less than 32 tokens) and
contains feasible efficiency as InsPix2Pix. Table 4 presents the inference time
cost on an NVIDIA A100 GPU. For a single input, MGIE can accomplish the
editing task in 10 seconds. With greater data parallelization, we take a similar
amount of time (e.g., 37 seconds when batch size 8). The entire process can be
affordable in one GPU (40GB). In summary, our MGIE surpasses the baseline
on quality yet maintains competitive efficiency, leading to effective and practical image editing.

Qualitative Comparisons. Fig. 7 illustrates the visualized comparison on all used datasets. Fig. 8
further compares the expressive instructions by LGIE or MGIE. Our superior performance benefits
from the explicit guidance of visual-related expressive instructions. Please visit our project website4

for more qualitative results.

5 CONCLUSION

We propose MLLM-Guided Image Editing (MGIE) to enhance instruction-based image editing via
learning to produce expressive instructions. Instead of brief but ambiguous guidance, MGIE derives
explicit visual-aware intention and leads to reasonable image editing. We conduct extensive studies
from various editing aspects and demonstrate that our MGIE effectively improves performance while
maintaining competitive efficiency. We also believe the MLLM-guided framework can contribute to
future vision-and-language research.

4Project website: https://mllm-ie.github.io
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