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ABSTRACT

Time trends can be classified into intrinsic (real) and measurement (false) trends.
There has long been a critical need for techniques to discern them, especially
in investment decision-making. In causal discovery, these measurement trends,
essentially measurement errors, can significantly impact the performance of algo-
rithms, making it crucial to identify and eliminate them before analysis as well.
Recognizing this need, we present a novel algorithm, termed Trend Differentiator
(TrendDiff). It is capable of detecting all trend-influenced variables and differenti-
ating between those affected by measurement trends and those displaying intrinsic
trends, relying on changing causal module detection and trend-influenced vari-
ables’ structural properties, respectively. Extensive experiments on synthetic and
real-world data demonstrate the efficacy of this approach.

1 INTRODUCTION

Emerging in the early 1990s, causal discovery algorithms have undergone substantial growth in
the past decades (Spirtes and Zhang, 2016). These algorithms strive to infer causality from purely
observational data, serving as valuable instruments in situations where randomized controlled trials
are rendered impractical due to ethical concerns, financial constraints, and other obstacles. Standing
at the intersection of explosive data volumes and advancements in computational capabilities, a
surge in theoretical and applied causal research has ensued. However, the rapid accumulation of data
presents not only exciting possibilities but significant challenges in causal discovery.

A prevalent challenge is the presence of time trends, frequently encountered in time series. As
articulated by Phillips (2005), “No one understands trends, but everyone sees them in data”. Prior
research has extensively investigated the impact of trends on the efficacy of conventional statistical
algorithms (White and Granger, 2011; Wu et al., 2007). Yet their influence on causal discovery
remains largely unexplored. Based on the origin, trends can be classified into two distinct categories:
intrinsic (real) and measurement (false) trends. In this context, we define the terms "trend", "intrinsic
trend", and "measurement trend" as follows:

Definition 1. A trend is a function concerning time within a given data span. Specificly, time trend
T = f(t), for tstart ≤ t ≤ tend .

Definition 2. An intrinsic trend is inherent to the fundamental mechanisms governing the variables
(e.g., global warming, the temperature is really increasing).

Definition 3. A measurement trend is essentially an observation error unique to the recorded values
(e.g., an observed increase in diagnosed thyroid nodule patients due to enhanced medical techniques,
despite a stable real incidence rate over time, see Figure 1).

The two types of trends originate from distinct sources, exert disparate impacts, and necessitate
differential treatment.

However, there is this impression – time trends, be it an intrinsic trend, or a measurement trend,
should be removed before analyses – which is not accurate. Undoubtedly, measurement trends, being
a form of measurement error, necessitate removal. Take constraint-based causal discovery methods,
which rely on conditional independence tests, for example. Figure 2 (a) shows the true causal graph,
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Figure 1: The true and observed incidence of the thyroid nodule along time – a typical example of
measurement trends.

the variables X2 and X3 are not observable, with a measurement trend exhibited in the observed X2

and X3. These measurement trends greatly increase the noise in these variables. For X2, this rise in
noise alters its relationship with its neighbors X1 and X3, weakening the observed dependencies as
the measurement trends intensify. Additionally, the inability to accurately observe X2’s true values
hampers its capacity to d-separate X1 and X3, due to the challenge in precisely controlling for X2.
Analogous phenomena transpire for another measurement-trend variable X3. The causal network
identified in Figure 2 (b) diverges significantly from the ground truth in such scenarios. To summarize,
measurement trends, inherently measurement errors, introduce two issues for constraint-based causal
discovery: 1. the dependence between measurement-trend variables and their neighbors weakens with
increasing trends; 2. the conditional independence given the measurement-trend variables vanishes,
yielding increasing dependence (Scheines and Ramsey, 2016; Zhang et al., 2017). As highlighted
in earlier research regarding measurement error in causal discovery, this influence is not limited to
constraint-based causal algorithms but also extends to other methodologies, including those based on
functional causal models (Zhang et al., 2017). Conversely, intrinsic trends are integral components
of the variables and mechanisms, facilitating the identification of underlying causal relationships.
Removal of intrinsic trends would decrease the signal-to-noise ratio, leading to lower detection power,
and thus should be avoided. Consequently, discerning between intrinsic and measurement trends is
crucial before conducting causal discovery analyses.

Figure 2: An illustration of how ignoring measurement trends in causal discovery may lead to
spurious connections by constraint-based methods. (a) The true causal graph. Variables whose actual
values do not match the observed ones are underlined to indicate their true values. Encircled variables
signify their unobservability. Here, the circled X2 and X3 represent the true, but unobservable, values
of the measurement-trend variables. (b) The estimated skeleton based on observed data.

This study introduces the Trend Differentiator (TrendDiff) algorithm, designed to pinpoint variables
influenced by trends and differentiate between those affected by measurement trends and those
displaying intrinsic trends. It is not only critical in data pre-processing for causal discovery but carries
substantial practical importance in decision-making. Discerning true market trends from transient
fluctuations is essential for avoiding misallocation of resources in non-viable market opportunities.
The ability to accurately identify trend types is key to reducing such investment risks.

The principal contributions of our work are shown below:

• Problem Formulation. We parameterize variables with intrinsic and measurement trends using
graphical models. While there has already been research regarding measurement errors in causal
discovery, no attention has been paid to differentiating time trends. However, as we motivated
above, distinguishing intrinsic from measurement trends is of great theoretical and practical value.
To the best of our knowledge, this work is the first to formally propose this problem.

• TrendDiff Algorithm. Employing the method of detecting changing causal modules, we can
efficiently identify all variables affected by trends. Subsequently, by harnessing the unique causal
structures under intrinsic and measurement trends, we are able to distinguish between them.
Integrating these technologies, we present the TrendDiff algorithm, a novel solution specifically
designed for the discernment of time trends.

• Experimental Validation. We use extensive experimental evaluations, including analyses of a
real-world dataset, to demonstrate the robustness and utility of our algorithm.
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2 PARAMETERIZING TRENDS AND RELATED WORK

2.1 PARAMETERIZING TIME TRENDS

To put intrinsic and measurement trends clearer, we resort to structural equation models (SEMs),
where each variable Vi is formulated as a function of its direct causes and an error term εi. Here
εi encapsulates all other unmeasured causes of Vi, with the εi values for different variables being
mutually independent. Figure 3 (a) depicts a simple causal model, where a direct causal chain is
established from variable X1, leading to X2, and subsequently to X3. Each variable is associated
with a structural equation, and the model can be parameterized by assigning exact functions to
f (Vi), as well as a joint normal distribution to ε1, ε2, ε3∼ N (µ,Σ2). In this case, Σ2 is diagonal,
reflecting the independence among the error terms ε1, ε2, and ε3. Regardless of the functions
and free parameter values assigned, the model in Figure 3 (a) exhibits conditional independence:
X1 ⊥⊥X3 |X2. In Figure 3 (b), we present the same model as in Figure 3 (a) but with an added
intrinsic trend T2 affecting X2. The intrinsic trend T2 impacts the generation of X2 and is an inherent
part of its underlying mechanisms. In this case, the observed and real values of X2 are identical. The
added intrinsic time trend can go into the causal network through X2 without altering the original
causal structure. Consequently, a trend in X3 can be observed, which arises due to the influence
of T2. In Figure 3 (c), we depict the same model but with true values X2 being “measured" as
X2, accompanied by a measurement trend T2. In this case, the real and observed values of X2

differ. The measurement trend T2 is present only in the observed X2. Due to the collider at X2, T2

cannot influence the real values X2 and is unable to propagate through the original causal network.
To summarize, intrinsic and measurement trends are fundamentally the same in form (a function
concerning time within a given data span). However, intrinsic trends affect the true value of variables,
whereas measurement trends do not.

Figure 3: Causal models for variables with trends and corresponding equations. (a) A chain graph
without trend. (b) X2 with an intrinsic trend. (c) X2 with a measurement trend.

2.2 RELATED WORK

Measurement error in causal discovery. Fundamentally, measurement trends represent a problem
of measurement error, which adversely affects causal discovery performance. There has already been
some research on measurement error in causal discovery. In linear Gaussian contexts, Scheines and
Ramsey (2016) parameterized measurement error using SEMs and explored the effect of Gaussian
measurement error on fast greedy equivalence search (FGES). Then identifiability conditions in linear
Gaussian situations are discussed in Zhang et al. (2017) through factor analysis, with a key identified
challenge being the unknown variances of measurement errors E. If known, the covariance matrix
of X̃ would be easily accessible and readily used. To address this, Blom et al. (2018) offers an
estimate for the upper bound of E, while Saeed et al. (2020) proposes a consistent partial correlations
estimator. In linear non-Gaussian scenarios, Zhang et al. (2018) demonstrates the identifiability of
the ordered group decomposition of G̃, which contains crucial causal information. However, this
method depends on over-complete independent component analysis (OICA (Hyvärinen and Oja,
2000)), hindered by issues of local optima and high computational complexity (Hoyer et al., 2008;
Shimizu et al., 2009), making the practical application of Zhang et al. (2018)’s theoretically sound
results challenging. Given this, Dai et al. (2022) defined the Transformed Independent Noise (TIN)
condition and exploited it to identify the ordered group decomposition by independence tests.

Particularly regarding the differentiation of intrinsic and measurement trends, this study stands as the
first to offer a solution. Distinct from the above-mentioned studies on causal discovery in the presence
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of measurement error, our research uniquely: 1) distinguish the two types of trends, facilitating data
preprocessing to significantly improve data quality. It can be integrated with various analytical tools;
2) extends its utility beyond merely enhancing causal discovery. It possesses direct and significant
practical relevance in investment decision-making.

3 ASSUMPTIONS

Instead of relying on the conventional assumption of causal sufficiency, this research adopts a modified
concept, termed “pseudo causal sufficiency" (Huang et al., 2020). Traditional causal sufficiency
assumes that all common causes (confounders) influencing observed variables are captured in the
dataset. However, the occurrence of time trends presents a challenge to this assumption. Time trends
typically emerge from intricate, compounded factors, and time trends across various variables might
be interlinked owing to certain hidden confounders. These confounders could represent high-level
background factors, like economic policies in the stock market. Therefore, rather than assuming the
absence of unobserved confounders, our approach operates under the assumption of pseudo causal
sufficiency. This assumption signifies that the only unobserved confounders are those inherent in
time trends.
Assumption 1 (Pseudo causal sufficiency). Any potential confounders can be encapsulated by a
mathematically smooth time function. It follows that at each time instance, the values of these
confounders are fixed.

Let {gl(C)}Ll=1 represent the set of unobserved variables (potentially empty) underlying time trend
T , in which C is assumed to follow a uniform distribution over the considered period. The data
points associated with C are assumed to be evenly sampled at a specific frequency, making C the
time index. Furthermore, we define that for each variable Vi, its parents are denoted by PAi, and the
local causal processes are represented by the SEM below:

Vi = fi
(
PAi,gi(C), θi(C), εi

)
(1)

Here, gi(C) ⊆ {gl(C)}Ll=1 signifies the unobserved variables influencing Ti (empty when no intrinsic
trend is present behind Vi), while θi(C) represents the effective parameters within the model, also
presumed to be functions of C. εi denotes a disturbance term, independent of C and exhibiting
non-zero variance (i.e., the model is non-deterministic). The mutual independence of εi is also
assumed. Note that, the above function (1) is for variables without trends or affected by intrinsic
trends only. For those influenced by measurement trends, the real variable and observed variable can
be represented by the function (2) and function (3) below, respectively:

Vi = fi
(
PAi, εi

)
(2)

Vi = fi
(
Vi,g

i(C), θi(C), εi
)

(3)

In this work, we consider C as a random variable, yielding a joint distribution over V∪{gl(C)}Ll=1∪
{θm(C)}nm=1. We assume that this distribution adheres to the Markov and faithfulness properties
with respect to the graph resulting from the subsequent modifications to G (G represents the causal
structure over V): add {gl(C)}Ll=1 ∪ {θm(C)}nm=1 to G, and for each i, add an arrow from each
variable in gi(C) to Vi and add an arrow from θi(C) to Vi. This extended graph is denoted as Gaug .
Evidently, G is merely the induced subgraph of Gaug over V.
Assumption 2 (Causal Markov condition and faithfulness). The joint distribution over V ∪
{gl(C)}Ll=1 ∪ {θm(C)}nm=1 is Markov and faithful to the augmented graph Gaug .

To enhance clarity and comprehensibility, this work concentrates on instantaneous causal relationships,
and the strength of the causal relations does not change over time. Nevertheless, it is worth noting
that our framework can be naturally generalized to encompass time-delayed causal relations, akin to
how constraint-based causal discovery has been adapted to manage this (see, e.g. (Chu et al., 2008)).

We further assume that variables influenced by trends do not function as leaf nodes, where leaf
nodes are defined as having no descendants. As depicted in Figure 3, a critical difference exists
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between intrinsic and measurement trends in their interactions with the underlying causal network;
intrinsic trends can be incorporated into this network, whereas measurement trends cannot. This
distinction is crucial for our algorithm’s capability to differentiate between these trend types. However,
when a trend-influenced variable is a leaf node, its trend, whether intrinsic or measurement, is
unable to integrate into the existing causal network. Therefore, distinguishing between intrinsic and
measurement trends becomes problematic in such cases, as both types exhibit similar characteristics.

4 THE PROPOSED ALGORITHM

In this section, we introduce the proposed algorithm, TrendDiff, designed to identify all variables
influenced by trends (phase 1) and distinguish between those affected by measurement trends and
those exhibiting intrinsic trends (phase 2).

4.1 PHASE 1: DETECTION OF TREND-INFLUENCED VARIABLES AND CAUSAL STRUCTURE
RECOVERY

In this section, we leverage the detection of changing causal modules to detect variables exhibiting
time trends and deduce the causal network for V ∪ {C}. The core concept hinges on using the
(observed) variable C as a surrogate for the unobserved {gl(C)}Ll=1 ∪ {θm(C)}nm=1. In essence, we
utilize C to encapsulate the C-specific information. Under the assumptions in Section 3, it is feasible
to deploy conditional independence tests on the combined set of V ∪ {C} to detect variables with
time trends and recover the structure. This is achieved by Algorithm 1 and supported by Theorem 1.

In Algorithm 1, we first construct a complete undirected graph, denoted UC , which incorporates both
C and V. In Step 2 of the algorithm, the decision regarding whether a variable Vi exhibits a time trend
is contingent upon the conditional independence between Vi and C, given a subset of other variables.
If a time trend is present in Vi, then the module of Vi evolves in conjunction with C. Consequently,
the probability distribution of Vi given its non-C parents, namely P

(
Vi | PAi\ {C}

)
, will not remain

constant across different values of C. As a result, Vi and C are conditionally dependent regardless of
any subset of variables. Based on this, we assume that if Vi ⊥⊥ C | PAi\ {C}, there should be no
time trend in Vi. Conversely, if this assumption does not hold, then we claim to detect variables with
time trends. After this, all variables linked to C, referred to as “C-specific variables", are considered
to be with time trends. Step 3 aims to discover the skeleton of the causal structure over V. It leverages
the results from Step 2: if neither Vi nor Vj is adjacent to C, then C does not need to be involved in
the conditioning set. In practice, one may apply any constraint-based search procedures on V ∪ C,
e.g., SGS (the Spirtes, Glymour and Scheines algorithm) and PC (the Peter-Clark algorithm) (Spirtes
et al., 1993). Its (asymptotic) correctness is justified by the following theorem 1. Finally, step 4 is
employed to orient the obtained skeleton based on both standard orientation rules and distribution
shift. For a comprehensive explanation of the step 4 orientation procedure and the complete proof of
Theorem 1, please refer to (Huang et al., 2020).

Algorithm 1 Detection of Time-trend Variables and Recovery of Causal Structure

1: Build a complete undirected graph UG on the variable set V ∪ C.
2: (Detection of time-trend variables) For each i, test for the marginal and conditional independence

between Vi and C. If they are independent given a subset of {Vk | k ̸= i}, remove the edge
between Vi and C in UG .

3: (Recovery of causal skeleton) For every i ̸= j, test for the marginal and conditional independence
between Vi and Vj . If they are independent given a subset of {Vk | k ̸= i, k ̸= j}∪{C}, remove
the edge between Vi and Vj in UG .

4: (Orientation) For the obtained skeleton, orient it by standard orientation rules and distribution
shift. After the orientation process, we can get the causal network for V ∪ C, called Gphase1.

Theorem 1: Given Assumptions made in Section 3, for every Vi, Vj ∈ V, Vi and Vj are not adjacent
in G if and only if they are independent conditional on some subset of {Vk | k ̸= i, k ̸= j} ∪ {C}.
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4.2 PHASE 2: UTILIZING STRUCTURAL DIFFERENCES TO DISTINGUISH BETWEEN INTRINSIC
AND MEASUREMENT-TREND VARIABLES

After Phase 1, we procured the set of variables exhibiting time trends (those associated with C) as
well as the causal network Gphase1 for V ∪ C. In phase 2, we demonstrate that by examining the
different structures within causal networks, it is feasible to differentiate variables with intrinsic trends
from those influenced by measurement trends.

4.2.1 DISTINGUISH BETWEEN INTRINSIC AND MEASUREMENT TRENDS BY Gphase1

As depicted earlier, intrinsic-trend variables do not change the causal network, whereas those variables
characterized by measurement trends can induce structural alterations in causal discovery from the
observed variables. Next, we delve into how a measurement-trend variable influences the causal
structure of Gphase1 and leverage this understanding to partly distinguish between the two trend types.

Figure 4 illustrates how a measurement-trend variable alters the output causal structure of Phase 1. In
Figure 4 (a), we depict a chain with a measurement trend in X2. During Phase 1, the time index C is
integrated into our analysis to pinpoint all trend variables. Due to the presence of a measurement trend
in X2, a connection from C to X2 is established. Furthermore, based on the conditional independence
observed in the actual structure Figure 4(a), we have T ⊥⊥ X3 and, crucially, T ̸⊥⊥ X3|X2. By
extension, because C is a proxy for T , the relationships C ⊥⊥ X3 and C ̸⊥⊥ X3|X2 should hold.
Therefore, X2 is a collider and the direction is from X3 to X2. The dependency dynamics between
X1 and C follow suit. As a result, the Phase 1 structural outcome for observed variables should be
the one shown in Figure 4 (b). It’s worth noting that since the measurement trend T is independent
across all variables within the real causal network, no arrow can stem from the measurement-trend
variable to other variables in Gphase1 (cause the observed measurement-trend variable X2 would
always be identified as a collider). In essence, any linkage from a “C-specific variable" to other
entities indicates an intrinsic trend.

Figure 4: An illustration of how a measurement-trend variable alters the output causal structure of
Phase 1. (a) the real structure with a measurement trend in X2. (b) the output structure.

In summary, we first employ Gphase1 to discern intrinsic-trend variables. A “C-specific variable" is
deemed to exhibit an intrinsic trend if it possesses any arrow pointing to other variables in Gphase1.

4.2.2 DISTINGUISH BETWEEN INTRINSIC AND MEASUREMENT TRENDS BY FURTHER TESTS

Having identified certain intrinsic-trend variables based solely on the structure of Gphase1, it becomes
necessary to undertake additional conditional independence tests for further recognition of other
intrinsic-trend variables. As illustrated in Figure 3, the children of time-trend variables serve as
critical pivot points in their differentiation process. For variables with intrinsic trends (see Figure
3b), there is T2 ̸⊥⊥ X3 and T2 ⊥⊥ X3|X2. Conversely, for variables with measurement trends (see
Figure 3c), there is T2 ⊥⊥ X3 and T2 ̸⊥⊥ X3|X2. Thus, the criterion for identifying an intrinsic-trend
variable X2 can be T2 ̸⊥⊥ X3 and T2 ⊥⊥ X3|X2. Here T2 is the trend of X2 and X3 is a child of X2.
Since the trend T2 is not directly observable in this context. As an alternative, we employ the time
index C again, working as a suitable proxy for the unobservable trend. Therefore, the criterion is:
C ̸⊥⊥ X3 and C ⊥⊥ X3|X2.

The first row of Figure 5 illustrates four scenarios of child variables that may arise when screening
for the intrinsic-trend variable X1. In Figure 5 (a), no trend is evident in the child variable X2,
allowing us to easily identify X1 as an intrinsic-trend variable using our criterion. However, Figure 5
(b)(c), the child variable X2 exhibits intrinsic and measurement trends, respectively. Since trends
are functions of time, time serves as a confounder (common cause) of trends T1 and T2. In these
cases, the path from T1 to X2 via the confounder “time" cannot be blocked, as neither “time" nor T2

is observable (we can obtain a surrogate for T2, but it is insufficiently accurate to block the path).
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Figure 5: Different scenarios for descendants of intrinsic-trend variables. First row: Four possible
cases of intrinsic-trend variable’s child nodes in causal networks. (a) Child node without trend. (b)
Child node with an intrinsic trend. (c) Child node with a measurement trend. (d) Child node with a
trend from other observable nodes. Second row (b-1), (b-2), (c-1), and (c-2): Four possible cases of
intrinsic-trend variable’s second-order descendant for structure (b) and (c).

Consequently, we cannot distinguish variables with intrinsic trends from those with measurement
trends when all child variables have trends. However, if the trend in the child variable X2 originates
from its other observable parent X3, as depicted in Figure 5 (d), the intrinsic-trend variable X1 is
identifiable since we can block the path through “time" by conditioning on X3.

For structures (b) and (c), first-order descendants (children) do not facilitate distinguishing trend
types. However, can second-order descendants provide clarity? Will it help if structures similar to
(a) or (d) emerge subsequent to (b) and (c)? The subsequent row illustrates potential second-order
descendant structures for both (b) and (c). Although Figure 5 (b-1)(b-2) remain non-identifiable,
Figure 5 (c-1)(c-2) can be discerned. The principles behind (c-1) and (c-2) align with those of (a)
and (d), namely C ̸⊥⊥ X3 and C ⊥⊥ X3|X1. It’s noteworthy that structures (c-1) and (c-2) essentially
represent (a) and (d) but with an added measurement-trend variable subsequent to the intrinsic-trend
variable X1 under examination. Extending this, we can infer that all structures obtained by adding
n measurement-trend variables between X1 and X2 in structures (a) and (d) can theoretically be
identified, where n=0,1,2...

In summary, intrinsic-trend variables are discernible in this process only when (1) the intrinsic-trend
variable X to be tested possesses at least one descendant variable Y without trends (like structure
(a)) or with trends stemming from other observable variables (like structure (d)); and (2) there are
no other intrinsic-trend variables on the path from X to Y . Algorithm 2 for Phase 2 is provided in
Appendix A.2. By combining Algorithm 1 and 2, we can obtain the proposed TrendDiff algorithm.

5 EXPERIMENTS

5.1 SIMULATIONS

Fixed structure. Synthetic datasets were constructed based on the SEMs described in Appendix
Figure 8. Variables X1, X2, and X7 were specifically designed to show intrinsic trends, while X3 and
X6 exhibited measurement trends. All trends were modeled as sinusoidal functions with periods w
chosen randomly from a uniform distribution Unif([5, 25]). The relationships in the dataset were set
to be nonlinear, with half of the links following f (1)(x) =

(
1− 4e−x2/2

)
x and the remaining half

following f (2)(x) =
(
1− 4x3e−x2/2

)
x. Noise types (Gaussian, Exponential, Gumbel) and various

sample sizes (T = 600, 900, 1200, 1500) were incorporated into the simulations. After data generation,
we employed TrendDiff to identify variables with intrinsic trends. Additionally, we compared the
performance of the PC algorithm on datasets before and after the removal of measurement trends
identified by TrendDiff. The effectiveness was quantitatively assessed using F1 score, precision, and
recall metrics. Each experimental configuration was repeated across 50 trials to ensure robustness.
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The results from the fixed structure simulations are illustrated in Figure 6. Figure 6(a) showcases the
efficacy of TrendDiff in detecting variables influenced by intrinsic trends. An increase in the length
of the dataset correlates with improvements in the algorithm’s performance. Specifically, for datasets
of 1500 data points or more, the algorithm achieves near-optimal efficiency, with all primary metrics
nearing 0.9. Additionally, TrendDiff maintains consistent performance across various types of noise,
demonstrating its robustness. Figure 6(b) provides a comparative analysis of the PC algorithm’s
performance on datasets both before and after the removal of identified measurement trends. The
removal of these trends markedly improves the performance of the PC algorithm.

Figure 6: Simulation performance. (a) Performance of identifying intrinsic-trend variables. (b)
Performance of PC algorithm using data pre and post-elimination of detected measurement trends.

Random structure. In addition to the fixed-structure simulations, the TrendDiff algorithm was
also assessed using datasets generated from random structures. This random structure simulation
maintained the same parameter settings as its fixed structure counterpart, with the exception that the
underlying causal network was randomly generated rather than predetermined. The outcomes of
the random structure simulations are detailed in the appendix. Specifically, Figure 11 illustrates the
algorithm’s performance in identifying intrinsic-trend variables across a range of data lengths (T) and
noise types. In line with the findings from the fixed structure simulations, TrendDiff demonstrates
robustness against various types of noise. Additionally, a consistent trend is observed where the
performance of the algorithm improves as the data length increases. Further insights into the stability
of our method are illustrated in Figure 12, which demonstrates TrendDiff’s resilience in various data
dimensions and sparsity levels. Figure 13 evaluates TrendDiff’s performance in scenarios involving
linear trends. The results show that TrendDiff is particularly proficient in linear-trend scenarios,
further highlighting its effectiveness in a broad range of conditions. When tackling practical issues,
considering computational complexity becomes essential. The computational efficiency of TrendDiff
is demonstrated in Figure 14, which displays the processing times across different data sizes and
number of nodes. Notably, the analysis revealed a non-linear increase in processing times with the
growth in data length. However, it is important to point out that, even with this escalation for larger
datasets, the processing duration stays within a feasible range for practical applications.

5.2 REAL DATA

We also applied the proposed approach to a real environmental health dataset. This dataset contains
daily values of variables regarding air pollution, weather, and sepsis emergency hospital admission in
Hong Kong for the period from 2007 to 2018. It is a typical dataset used to assess the interactions
between environmental factors and human health. There are pronounced time trends in this data
(Figure 7a), rendering it a good application example for the TrendDiff algorithm. In our initial
analysis, we applied TrendDiff to determine the intrinsic trend variables within the data. The outcome
from Phase 1 indicates that sepsis emergency hospital admissions, CO, O3, and NO2 are variables
exhibiting a trend, be it measurement or intrinsic. Subsequently, in phase 2, we differentiated between
measurement-trend and intrinsic-trend variables. It was discerned that CO, O3, and NO2 have
intrinsic trends while the daily count of sepsis emergency hospital admissions stood out as the sole
variable characterized by a measurement trend. This result is consistent with existing evidence.
There have been heated discussions in top medical journals about the observed rise in sepsis cases.
A prevailing consensus among researchers is that this uptick in sepsis incidences can be largely
attributed to the refined definitions and enhanced coding practices for sepsis, rather than the real
incidence increase (Rhee et al., 2017; Fleischmann-Struzek et al., 2018). As for the trio of variables

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

recognized with an intrinsic trend — CO, O3, and NO2 — ample research has been conducted on
their time trends. However, none have ascribed these trends to measurement inaccuracies, supporting
our results here (Wei et al., 2022).

Beyond simply distinguishing between intrinsic and measurement trends, we also compared causal
discovery outcomes before and after the removal of the identified measurement trends. Here we uti-
lized the Peter-Clark-momentary-conditional-independence plus (PCMCI+) method, a well-regarded
causal discovery algorithm for time series (Runge, 2020). This dataset under scrutiny was a typical
environmental health dataset from Hong Kong, with a focus on uncovering environmental factors
contributing to sepsis. As depicted in Figure 7(b), the impact of eliminating the identified measure-
ment trend is notably significant on the causal analysis results. Our initial analysis, based on the
raw data, classified CO and SO2 as potential mitigating factors against sepsis. However, when the
measurement trend associated with sepsis was removed, the analysis showed a different picture. It
revealed that temperature alone was a risk factor for sepsis, which is supported by existing evidence
(Helbing et al., 2022). Though this analysis did not deal with other factors like seasonality, the
notable differences in the findings underscore the critical importance of detecting and correcting
measurement trends in causal analysis.

Figure 7: Evaluation of performance using a real-world dataset. (a) Depiction of time series variables.
(b) Raw: discovery of structure from raw data by Peter-Clark-momentary-conditional-independence
plus (PCMCI+). Detrended: discovery of structure after removal of identified measurement trends by
PCMCI+. Here a curved arrow represents a lagged causal relationship, with the lag day shown on the
curve. A straight arrow means a contemporaneous association. A straight line terminating in crosses
at both ends represents contemporaneous adjacency with unresolved directionality stemming from
contradictory orientation rules. The link color refers to the cross-MCI value, which indicates the
strength of the relationships. The node color denotes the auto-MCI value, representing how strong
the autocorrelation is.

6 CONCLUSION AND DISCUSSIONS

The need to discern intrinsic trends from measurement trends has been a longstanding challenge.
TrendDiff, our innovative algorithm, is tailored to address this difficulty as evidenced by its successful
application in both simulated and real-world scenarios. However, we recognize a few limitations of
this algorithm. Firstly, although we assume trend-influenced variables are non-leaf nodes, differenti-
ating trend types in leaf nodes also holds value. Secondly, in reality, intrinsic and measurement trends
may coexist in variables, a scenario that TrendDiff currently cannot handle. We leave improving
TrendDiff’s ability to differentiate trends in leaf nodes and mixed types for future work.

9
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ASSUMPTIONS

A.1.1 UNDERSTANDING PSEUDO CAUSAL SUFFICIENCY THROUGH A SIMPLIFIED EXAMPLE

In environmental epidemiology, time series analyses are frequently employed to evaluate the im-
mediate effects of air pollution on respiratory health. Here, the exposure of interest is the daily
concentration of air pollutants, while the outcome is the daily number of hospital admissions for
respiratory diseases. The primary objective is to determine whether day-to-day fluctuations in air pol-
lutant levels influence the day-to-day variation in respiratory-related hospital admissions. Typically,
factors like temperature and relative humidity are adjusted for as known confounders in these studies.

Nonetheless, in addition to these controlled variables, there exist other unobserved confounders that
can significantly impact the analysis. These include variables such as socioeconomic status, changes
in policy, and seasonal variations. Given that the duration of this kind of time series studies often
spans several years or more, it’s evident that these unobserved confounders could have a substantial
effect on the findings. Therefore, it’s crucial to acknowledge and attempt to account for these unseen
factors to ensure the robustness and accuracy of the results.

In this scenario, the notion of pseudo causal sufficiency emerges. Traditionally, it’s assumed in
such studies that any unobserved confounders are associated with time and can be encapsulated as a
smooth function of time, typically represented through splines. By incorporating this spline function
into the analysis, the model effectively accounts for unobserved confounders. This assumption has
been widely adopted across environmental health studies. However, it’s important to note that this
example is provided for the sake of understanding pseudo causal sufficiency more easily. In reality,
these traditional studies do not explicitly introduce this concept.

A.1.2 NON-TIME-DELAYED RELATIONSHIPS

In real-world scenarios, both non-time-delayed and time-delayed causal relationships are crucial. In
theory, all causal relationships involve some form of delay (as we often say, cause precedes effect).
However, in real life, due to our limited knowledge of the true nature of various relationships and the
limited precision of the data available to us, we often observe relationships that appear to have no
delay. For example, the true mechanism by which air pollution affects lung function may involve
a delay of one hour—meaning exposure to severe air pollution now might lead to weakened lung
function an hour later. However, since we only have access to daily data on air pollution and lung
function, this inherently delayed relationship may appear in the data as if there is no delay. Thus, in
real life, both non-time-delayed and time-delayed relationships are very common.

In our study, the assumption of no time-delayed relationships is partly made for the sake of clarity
and readability of the paper. As this is the initial introduction of intrinsic and measurement trends
using graphical models, and the first formal presentation of the differentiation challenge, clarity is
paramount. Some of the figures (Figure 5 for example) in the manuscript are already quite complex
and difficult to understand without considering delays. If time delays were to be taken into account,
the number of nodes would increase manifold, severely affecting the presentation of the problem and
the algorithm.

A.1.3 TREND-INFLUENCED VARIABLES ARE NON-LEAF NODES

The impact of measurement trends on causal discovery outcomes is much smaller for leaf nodes
compared to non-leaf nodes. This is why we believe that our method remains highly valuable even
if it cannot differentiate the trend types in leaf nodes. As described in paragraph 3 and Figure 2,
measurement trends introduce two issues for constrained-based causal discovery algorithms: 1. the
dependence between measurement-trend variables and their neighbors weakens with increasing
trends; 2. the conditional independence given the measurement-trend variable vanishes, yielding
increasing dependence. For non-leaf nodes, such as X2 and X3 in Figure 2, both these two issues are
present. In contrast, leaf nodes like X1 and X4 in the same figure are only subject to the first issue.
This is because a leaf node, having no children, does not act as a mediator in any relationship.
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A.2 ALGORITHM 2

Algorithm 2 Identify intrinsic-trend variables by structural differences

Require: Dataset V, “C-specific variables" identified in phase 1, causal structure Gphase1 identified
in phase 1, significance threshold α, conditional independence test CI(X,Y,Z) returning p-value.

Ensure: The set of variables exhibiting an intrinsic trend and the set of variables demonstrating a
measurement trend within V.

1: IntrinsicSet = ∅
2: for all Xi ∈ “C-specific variables" do
3: β = Causal Graph Matrix(Gphase1)
4: links = βi·
5: if 1 ∈ links then ▷ Check if Xi has outgoing links
6: Store Xi in IntrinsicSet
7: RestSet = “C-specific variables" - IntrinsicSet
8: for all Xi ∈ RestSet do
9: TestNodes = V - “C-specific variables"

10: for all Xj ∈ TestNodes do
11: JNb = Neighbors(Xj) - Xi

12: for all n ∈ Range(len(JNb)) do
13: for all S0 ∈ Combinations(JNb, n) do
14: S1 = S0 + Xi

15: C = Time index
16: p0 = CI(C,Xj ,S0)
17: p1 = CI(C,Xj ,S1)
18: if (p0 < α) & (p1 > α) then
19: Store Xi in IntrinsicSet
20: MeasurementSet = “C-specific variables" - IntrinsicSet
21: return IntrinsicSet, MeasurementSet

Note: the Causal Graph Matrix in line 3 outputs a Causal Graph object, where βj,i = 1 and βi,j = −1
indicate i → j;βi,j = βj,i = −1 indicates i — j; βi,j = βj,i = 1 indicates i ↔ j.

A.3 FIXED STRUCTURE SIMULATION

Figure 8: Data structure for fixed-structure simulation. (a) The SEMs according to which we added
intrinsic and measurement trends and generated the simulated data. (b) The visualization of the
structure. All relationships are nonlinear.

The process to generate simulation data for assessing the TrendDiff algorithm in a fixed structure
context involves three primary steps:

1. Original Structure Acquisition: The baseline fixed structure, void of any trends, is depicted in
Figure 8. This figure is subdivided into two parts: Figure 8(a), which represents the Structural
Equation Models (SEMs), and Figure 8(b), which illustrates the structure’s visualization.

2. Trend Integration: To incorporate both identifiable structures from Figure 5(a) and (d) into the
simulation, intrinsic trends were embedded in variables X1, X2, and X7. Additionally, to emulate
real-world data characteristics, measurement trends were introduced in X3 and X6. These trends
were modeled as smooth functions of time, formulated as trend = sin

(
w·t
T

)
, where the period w is
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randomly drawn from a uniform distribution Unif([5, 25]), T represents the data length, and t is the
time index.

3. Data Generation and Testing: The final step involved generating simulation data based on the
modified structure from the above two steps. All relationships in the data are set to be nonlinear,
with 50% of the links using the function f (1)(x) =

(
1− 4e−x2/2

)
x and the other 50% employing

f (2)(x) =
(
1− 4x3e−x2/2

)
x. The algorithm’s performance was evaluated under a variety of

noise distributions (Gaussian, Exponential, Gumbel) and different sample sizes (T = 600, 900, 1200,
1500). For each scenario, the TrendDiff algorithm was tested using the generated data, with 50 trials
conducted in each setting to ensure statistical robustness.

The efficacy of the TrendDiff algorithm is quantitatively assessed using three key metrics: F1 score,
precision, and recall. These metrics are defined as follows:

Precision: This metric calculates the proportion of true positive outcomes among the total predicted
positives. Mathematically, it is expressed as the ratio of the number of true positives (TP) to the sum
of true positives and false positives (FP), given by the formula:

P =
TP

TP + FP

Recall: Also known as sensitivity, this metric measures the proportion of actual positives correctly
identified. It is calculated as the ratio of true positives to the sum of true positives and false negatives
(FN), described by:

R =
TP

TP + FN

F1 Score: The F1 score is the harmonic mean of precision and recall, providing a single metric that
balances both. It is particularly useful in situations where there is an uneven class distribution. The
F1 score is computed using the formula:

F1 = 2× P ×R

P +R

These metrics offer a comprehensive evaluation of TrendDiff’s performance, effectively capturing its
accuracy and robustness in various testing scenarios.

Our study extends to evaluating the performance of the PC (Peter-Clark) algorithm both before and
after the removal of measurement trends identified by TrendDiff. This comparative analysis highlights
the effectiveness of our methodology in enhancing causal discovery through data preprocessing. In
our approach to handle variables affected by measurement trends, we utilized the Savitzky-Golay
filter. This process involves subtracting the trend, as determined by the Savitzky-Golay filter, from
the original data to produce detrended data. The Savitzky-Golay filter is a well-known polynomial
smoothing technique that fits a polynomial of a specified degree to consecutive data points within a
moving window, using linear least squares regression. Once the polynomial is fitted, the filter can
provide either a smoothed estimate or the derivative of the fitted function. This filtering method
is prevalent in various domains such as analytical chemistry and signal processing, especially for
dealing with noisy data. The two primary parameters governing the Savitzky-Golay filter are the
window size and the polynomial order. The window size determines the number of data points
used for each polynomial fit, thereby influencing the degree of smoothing. On the other hand, the
polynomial order specifies the complexity of the model used in the fitting process.

Central to our algorithm is the utilization of a nonparametric conditional independence test, which is
crucial given the often unknown and highly nonlinear nature of time trends. In this study, we adopted
the Kernel-based Conditional Independence test (KCI-test) (Zhang et al., 2012), a method adept
at capturing complex nonlinear dependencies. A critical aspect of the KCI-test is the kernel width
parameter w, integral to constructing kernel matrices and subsequently influencing the performance
of the test. We conducted extensive evaluations to determine the optimal kernel width, varying data
lengths T and kernel widths w. These variations in performance, based on different values of T and
w, are elucidated in Figure 9. The data reveals that as T increases, so does performance efficiency.
Notably, a kernel width of w = 0.5 consistently yields impressive results, regardless of the T value.
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Our findings are in concordance with the recommendations from the original KCI paper, which
suggest specific kernel width settings based on sample sizes: set w to 0.8 for sample sizes n ≤ 200,
to 0.3 if n > 1200, and to 0.5 in all other instances. In alignment with these guidelines, our study
adopted these kernel width configurations, optimizing our approach for varying data scenarios. This
methodology underscores our commitment to leveraging advanced statistical techniques for accurate
and efficient data analysis. The results from the fixed structure simulations with 90% confidence
interval are illustrated in Figure 10.

Figure 9: Parameter choosing results. Performance of our algorithm under different kernel width w
with changing data length T .

Figure 10: Simulation performance with 90% confidence interval. (a) Performance of identifying
intrinsic-trend variables. (b) Performance of PC algorithm using data pre and post-elimination of
detected measurement trends.

A.4 RANDOM STRUCTURE SIMULATION

We also tested our algorithm using simulated data based on random structures. There are three
steps to this process: 1) We generated random graph G from the Erdös-Rényi (ER) random graph
model, with edges added independently with equal probability. The degree, that is, the total number
of edges linked with each node (in + out), is d. Given G, the weights of edges are drawn from

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Unif([−0.6,−0.2]∪[0.2, 0.6]) to obtain a weight matrix W0. 2) Given W0, intrinsic and measurement
trends are randomly assigned to variables, with W0 updated to W . Note that, only intrinsic trend
structures like (a) and d in Figure 5 will be generated in this process, which means: a) no trend in
leaf nodes; b) variables with trends are not adjacent. 3) Then we sampled X = WTX + z ∈ Rd

from noise model. Finally, we generated random datasets X ∈ Rn×d by generating T rows I.I.D. We
considered different model setups for noise types, data length T, data dimension, and the degree of
sparsity to comprehensively test our algorithm. For each scenario, all metrics precision, recall, and
F1 score are computed across all graphs from 50 realizations of the random graph-generating model
at data length T in (600, 900, 1200, 1500).

Figure 11 showcases the performance metrics – F1 score, precision, and recall – for identifying
intrinsic-trend variables across different data lengths T and noise types. Notably, the method proves
robust across noise variations and, consistent with fixed structure results, performance improves with
increasing data length. Figure 12 provides further insights into our method’s stability, demonstrating
its resilience across a range of data dimensions and degrees of sparsity, where dimension is denoted by
the number of nodes and sparsity is defined as the degree considering edges in both directions. Figure
13 shows TrendDiff performance on data generated from random structures with linear trends. We
measured the identification of intrinsic-trend variables across different data lengths T and noise types
in linear-trend scenarios. TrendDiff excels in scenarios with linear trends. Figure 14 provides an
analysis of the processing times and peak memory required by TrendDiff for handling different data
sizes and number of nodes. The TrendDiff algorithm was executed on a high-performance computing
(HPC) system, featuring a single 25-core CPU. A significant finding from this deployment is the
non-linear increase in processing times corresponding to the augmentation of data length. Although
there is a marked escalation in processing duration for larger datasets, it is essential to emphasize
that the timeframes remain within a practical and manageable range for real-world applications.
Specifically, for a dataset with 10 variables and a data length of T=1500, the processing time is
maintained at approximately 1000 seconds (17min). The peak memory requested is stable.

Figure 11: Performance evaluation on data generated from random structures with varying T and
noise type. We measure the identification of intrinsic-trend variables across different data lengths T
and noise types using F1 score, precision, and recall. Higher values denote better performance.

Figure 12: Performance evaluation on data generated from random structures with varying sparsity
and dimension. (a) Performance under different sparsity levels. (b) Performance across varying
dimensions.
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Figure 13: Performance evaluation on data generated from random structures with linear trends. We
measure the identification of intrinsic-trend variables across different data lengths T and noise types
using F1 score, precision, and recall. Higher values denote better performance.

Figure 14: Run time and peak memory requested by TrendDif with increasing data length T and
number of nodes.

A.5 APPLICATION IN REAL-WORLD DATA

Besides simulation studies, we applied our algorithm to a real-world data set about environmental
health as well. The data set contains daily values of variables regarding air pollution, weather,
and sepsis emergency hospital admission in Hong Kong. This data set is good for exploring the
relationships between environmental factors and sepsis. Sepsis, alternatively referred to as septicemia
or blood poisoning, is a life-threatening medical emergency when the dysregulated host response
to infection injures its own tissues and organs (Singer et al., 2016). It is one of the leading causes
of death and contributes significantly to preventable mortality (Organization et al., 2020). In 2017,
11.0 million sepsis-related deaths were reported globally, constituting 20% of all the annual deaths
(Rudd et al., 2020). Understanding the relationships between environmental factors and sepsis risk
provides a deeper insight into the underlying mechanisms through which environmental factors may
predispose, trigger, or exacerbate sepsis conditions. This knowledge is not only pivotal for timely
intervention but also offers a foundation for formulating targeted prevention strategies.

Data on daily sepsis emergency hospital admissions of Hong Kong were obtained from the Hospital
Authority, which compiles information on all emergency admissions from publicly funded hospitals
that provide 24-hour accident and emergency services and cover 90 percent of hospital beds for
Hong Kong residents. Sepsis cases were identified based on the ninth version of the International
Classification of Diseases (ICD-9: 38), with a total number of 108,831 admissions for a period of
6,543 days spanning from 2007 to 2018.

Hourly concentrations of air pollutants, including carbon monoxide (CO), particulate matter with
aerodynamic diameter 2.5m (PM2.5), ozone (O3), and nitrogen dioxide (NO2), were obtained from
the general air quality monitoring stations in Hong Kong. For daily O3 concentrations, the maximum
8-hour averages were considered, while 24-hour averages were used for daily concentrations of
other air pollutants. The air pollutant data from all monitoring stations were combined to compute
city-wide averages for each pollutant. Weather data pertaining to daily average temperature and
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relative humidity were acquired from the Hong Kong Observatory. The summary statistics of these
variables are shown in Table 1.

Table 1: Summary statistics of daily sepsis emergency hospital admissions, air pollution, and weather
in Hong Kong, 2007-2018a

Variables Mean (SD) Min 25th 50th 75th Max

Outcome (daily count)
Sepsis 19(6) 5 15 19 23 39

Air pollution (µgm−3)
CO 674.9(2322) 250.0 504.0 637.3 800.6 2001.8
PM2.5 28.9(180) 4.0 14.9 24.9 38.3 138.3
O3 61.7(366) 3.3 32.6 53.6 82.7 286.5
NO2 52.3(184) 4.1 39.0 49.2 62.5 162.4

Weather
Temperature (◦C) 23.6(52) 4.9 19.3 24.8 28.2 32.4
Humidity (%) 78.2(105) 29.0 74.0 79.0 85.0 99.0
aAbbreviations: SD = standard deviation; min = minimum value; 25th = 25th percentile; 50th = 50th percentile;

75th = 75th percentile; max = maximum value; CO = carbon monoxide; PM2.5 = particulate matter with
aerodynamic diameter 2.5m; O3 = ozone; NO2 = nitrogen dioxide; Temp. = temperature; Humid. = relative

humidity.

In the application of our algorithm to real-world datasets, we began by employing the proposed
method to systematically identify the sets of variables exhibiting any trends, then focusing specifically
on distinguishing between intrinsic-trend variables and measurement-trend variables. These results
were rigorously validated against existing research and literature pertaining to trend behaviors and
measurement errors in the context of environmental variables and sepsis data. This analysis served
to validate the precision of our algorithm. Following this, we applied the "Peter-Clark-momentary-
conditional-independence plus (PCMCI+)" causal discovery algorithm to the datasets, conducting
this procedure both prior to and subsequent to the removal of the identified measurement trends.
This two-phase application facilitated a comprehensive comparative analysis, effectively highlighting
the impact and advantages of our algorithm in enhancing causal discovery processes. The results
from this application demonstrate the utility of our algorithm as a potent data preprocessing tool,
significantly aiding in the accuracy and efficacy of subsequent causal analysis. The effectiveness of
the algorithm in real-world scenarios, especially in complex fields like environmental studies and
medical research, emphasizes its versatility and potential for broader applications.

Below we detail the PCMCI+ algorithm:

PCMCI+ belongs to the so-called constraint-based causal discovery methods family, which is based
on conditional independence test(Runge, 2020). Here “PC” refers to the developers Peter and Clark,
“MCI” means that the momentary conditional independence (MCI) test idea is added to the traditional
PC algorithm, and “+” reminds users that it extends the earlier version of PCMCI to include the
discovery of contemporaneous links(Runge et al., 2019). Like other causal graphic models, PCMCI+
works under the general assumptions of the causal Markov condition (each variable in the system
is independent of its non-descendants, given its parent variables) and faithfulness (probabilistic
information in data emerges not by chance but from causal structures) (Runge, 2018). On top of the
general assumptions, two specific assumptions are also requested: causal stationarity (i.e., the causal
links hold for all the studied time points) and causal sufficiency (i.e. measured variables include all
of the common causes).

PCMCI+ algorithm starts with a skeleton discovery phase, which serves to remove the adjacencies
due to indirect paths (mediation) and common causes (confounders). This phase can be divided into
lagged stage and contemporaneous stage. The former is to identify lagged potential parents, and the
latter is to identify contemporaneous potential parents and optimize identified lagged parents. In the
lagged stage, for each variable Xj

t , a superset of lagged (τ > 0) parents β̂−
t

(
Xj

t

)
is estimated with

the iterative PC1 algorithm. In the contemporaneous stage, we iterate through subsets S ⊂ Xt of
contemporaneous adjacencies and remove adjacencies for all (lagged and contemporaneous) ordered
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pairs (Xi
t−τ , X

j
t ) with Xj

t ∈ Xt and Xi
t−τ ∈ Xt ∪ β̂−

t

(
Xj

t

)
if the MCI conditional independence

holds:
(
Xi

t−τ ⊥ Xj
t | S, β̂−

t

(
Xj

t

)
, β̂−

t−τ

(
Xi

t−τ

)
. This skeleton discovery phase returns a skeleton

of causal network of undirected relationships among the nodes.

Next in the orientation phase the contemporaneous links (lagged links can automatically be directed by
time order) in the recognized skeleton will be oriented by the collider orientation stage and followed
by the rule orientation stage. In collider orientation process, unshielded triples Xi

t−τ → Xk
t ◦−◦Xj

t

(for τ > 0) or Xi
t ◦−◦Xk

t ◦−◦Xj
t (for τ = 0) where Xi

t−τ , X
j
t are not adjacent would be oriented

as collider structures if Xk
t is not in the sepset

(
Xi

t−τ , X
j
t

)
according to the rule “none”. Here sepset(

Xi
t−τ , X

j
t

)
means the controlled variables when obtaining conditional independence of Xi

t−τ , X
j
t .

Besides the rule “none”, another two rules “conservative” and “majority” can also be chosen in this
stage. After that, three rules R1, R2, and R3 are followed to orient left links. R1 rule states that
all unambiguous Xi

t−τ → Xk
t ◦ − ◦Xj

t can be oriented as Xi
t−τ → Xk

t → Xj
t since there is no

collider left in this stage; in R2 rule, all Xi
t → Xk

t → Xj
t structures with Xi

t ◦ − ◦Xj
t are oriented

as Xi
t → Xj

t to avoid circles. Finally, in R3 rule, for all unambiguous Xi
t ◦ − ◦ Xk

t → Xj
t and

Xi
t ◦−◦X l

t → Xj
t where Xk

t , X
l
t are independent and Xi

t ◦−◦Xj
t , we orient Xi

t , X
j
t as Xi

t → Xj
t

to satisfy both the no-collider and no-circle rules. After the orientation process, we leave unoriented
correlations as ◦ − ◦ and conflicting correlations as ×−×.

For PCMCI+ analysis, the Python module “tigramite” (version 5.1.0.3) was used. The main free
parameters of PCMCI+ (in addition to the free parameters of the conditional independence tests) are
the maximum time delay τmax and the significance threshold αPC. We used 3 and 0.05 for these
two parameters, respectively. In the output causal network produced by PCMCI+, a curved arrow
represents a lagged causal relationship, with the lag day shown on the curve. A straight arrow means
a contemporaneous association. A conflicting, contemporaneous adjacency "x-x" indicates that the
directionality is undecided due to conflicting orientation rules. The link color refers to the cross-MCI
value, which indicates the strength of the relationships. The node color denotes the auto-MCI value,
representing how strong the autocorrelation is.

A.6 TERMS AND ABBREVIATIONS

Table 2: Glossary of terms

Term Definition
Causal discovery Revealing causal information by analyzing purely observational

data under certain assumptions.
Time trend A function concerning time within a given data span.
Intrinsic trend Time trends that are inherent to the fundamental mechanisms

governing the variables (real trends).
Measurement trend Time trends that are essentially observation errors unique to the

recorded values (false trends).
Causal sufficiency The absence of unobserved confounders.
Pseudo causal sufficiency Any unmeasured confounding factors influencing the relationship

interested can be adequately represented by a smooth mathemat-
ical function of time. This implies that the only unobserved
confounders are those inherent in time trends.

Causal Markov condition All the relevant probabilistic information that can be obtained
from the system is contained in its direct causes, or, expressed
differently, if two variables are not connected in the causal graph
given some set of conditions, then they are conditionally indepen-
dent.

Causal faithfulness Independencies in data arise not from coincidence, but rather
from causal structure or, expressed differently, if two variables are
connected by a causal link in the graph.

Continued on next page
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Table 2 continued from previous page
Term Definition
Leaf node Nodes without any descendants.
Changing causal module A component within a causal model or system where the causal

relationships can change over time or across different contexts.
This concept acknowledges that the dependence between variables
are not static and can evolve due to various factors such as shifts
in underlying mechanisms.

Table 3. Abbreviations

Abbreviation Full description
PC algorithm The Peter-Clark algorithm
SGS algorithm The Spirtes-Glymour-Scheines algorithm
FGES algorithm The Fast Greedy Equivalence Search algorithm
PCMCI+ algorithm The Peter-Clark-momentary-conditional-independence plus algo-

rithm
TrendDiff Trend Differentiator
TIN Transformed Independent Noise
SEM Structural Equation Model
OICA Over-complete independent component analysis
MCI Momentary conditional independence
KCI test Kernel-based conditional independence test
PA Parent
HPC High-performance computing
CO Carbon monoxide
PM2.5 Particulate matter with aerodynamic diameter ≤ 2.5µm
NO2 Nitrogen dioxide
O3 Ozone
Temp. Temperature
Humid. Relative humidity
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