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ABSTRACT

Markov processes, both classical and higher order, are often used to model dynamic
processes, such as stock prices, molecular dynamics, and Monte Carlo methods.
Previous works have shown that an autoencoder can be formulated as a specific
type of Markov chain. Here, we propose a generative neural network known as
a transition encoder, or transcoder, which learns such continuous-state dynamic
processes. We show that the transcoder is able to learn both deterministic and
stochastic dynamic processes on several systems. We explore a number of appli-
cations of the transcoder including generating unseen trajectories and examining
the propensity for chaos in a dynamic system. Finally, we show that the transcoder
can speed up Markov Chain Monte Carlo (MCMC) sampling to a convergent
distribution by training it to make several steps at a time.

1 INTRODUCTION

Since the popularization of the autoencoder in 2006 (Hinton & Salakhutdinov, [2006), they have been
used for denoising (Vincent et al., 2008; Rifai et al., 2011]), data generation (Kingma & Welling,
2013)) Bengio et al.|(2013))|Alain et al.|(2015)) and data visualization (Amodio et al.|[2017). However,
the general framework of an autoencoder is amenable to a wide variety of applications. Here, we
reinterpret and generalize an autoencoder as a transition encoder, or transcoder, which is capable of
learning dynamic systems. First, we note that an autoencoder is essentially a first-order Markov chain
that walks towards the data manifold. Regularizations and bottlenecks including low-dimensional
hidden layers, input noise or L1/L2 regularization do not allow for the exact recreation of the input,
but rather can be seen as a transitional step towards the data manifold. Generalizing this notion in
several ways, we train a neural network on samples from a stochastic dynamic system, where the
network learns not to recreate its own input but instead to transition to one of the possible next states
of the system, thus learning a deep embodiment of an nth order Markov process.

The advantages of learning a neural network to produce a stochastic transition are two-fold. First,
the transcoder is generative and can produce new trajectories through the system when sampled in
a chain-like fashion (with the output fed back to the network as the input of the next cycle). Such
generated trajectories can be studied further, for example to assess low energy states and propensity
for chaos. Second, since the transcoder itself is an embodiment of the transition logic, its hidden
layers can be used to visualize the energy landscape of the system.

The main contributions of this manuscript are:

1. Reinterpretation of existing autoencoders as deterministic Markov chains;

2. Formulation of the transcoder architecture which is capable of learning any deterministic or
stochastic nth order Markov process;

3. Application of the transcoder to learning and sampling from several types of dynamic
systems including test cases such as a single and double pendulum;

4. Acceleration of traditional Markov Chain Monte Carlo sampling by “fast-forward”
transcoder training.

*T These authors contributed equally. * These authors contributed equally.



Workshop track - ICLR 2018

Like an autoencoder, the input and output layers of the transcoder have the same dimensions. However,
instead of training to recreate the input, we train to map the input to an adjacent output, based on a
transition function or sampling from a dynamical system. In the deterministic case, we map each input
to a single output. To enable stochastic dynamics, the stochastic transcoder takes an extra noise input
and learns to transmute this noise input into the conditional distribution of potential transitions for
points in the input space. Thus, to train the transcoder against the appropriate conditional distributions
for each point, we use a probabilistic Maximum Mean Discrepancy (MMD) loss first used in |Gretton
et al.[(2012) Dziugaite et al.| (2015). Additionally, we build a degree of invariance to the input to
effectively interpolate between learned input states and function in continuous state spaces where it is
impossible to see all inputs. This is achieved by adding corruption noise to the input in addition to
the side-noise input. Thus, the transcoder can learn stochastic dynamic transitions in continuous state
spaces.

2 EMPIRICAL RESULTS

In this section, we demonstrate the performance of the transcoder on a variety of datasets to show the
capabilities of the deterministic, stochastic and nth order transcoder. We show that the transcoder is
able to learn processes that are harmonic or chaotic, ergodic or null-recurrent. We further show that
the transcoder can effectively sample from a dynamic process faster than is possible using classical
methods such as Markov Chain Monte Carlo.

2.1 HARMONIC AND CHAOTIC SYSTEMS

We train the nth order transcoder on two deterministic systems, a single and double pendulum. In the
single pendulum, we use a second-order transcoder and in the double pendulum, we use a third-order
transcoder in each case using the angles of the pendulums as network inputs. Figure 2. shows the
Euclidean coordinates of the transcoder-generated paths of both pendulums over time, with only
the second pendulum shown in the case of the double pendulum. Both pendulums show smooth
trajectories, with the single pendulum showing periodic behavior and the double pendulum showing
chaotic behavior.
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Figure 2.1: A, B. Single paths generated by the second-order transcoder with a single (A) and double
pendulum (B). C, D. X coordinate of 500 paths on single (C) and double (D) pendulums, starting
from an epsilon-difference, where the lower of the two pendulums is shown in the double pendulum.
Videos of both pendulums can be viewed at http://bit.do/transcoder.

2.2 STOCHASTIC SYSTEMS

We train the stochastic transcoder on the Frey faces dataset generated by Roweis & Saul| (2000).
The input to the network given as intensity values for 560 pixels (28x20, grayscale) and a single
Gaussian noise input. Training examples are drawn from a single time series of input from a video,
with transitions sampled from (z, Z¢45,), —12 < n < 12, where z; is the tth frame of the video.
Figure 2.2]shows 1000 samples generated by the stochastic transcoder on Frey faces dataset. Training
data is shown in gray. The first 1000 samples are discarded. Ten samples are drawn at uniform
spacing from the Frey faces path and displayed below the PCA embedding. The transcoder samples a
large range of states lying on the data manifold and creates an new trajectory through a space.
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Figure 2.2: Chain generated by the stochastic transcoder visualized on a PCA embedding (left) of
Frey faces dataset. The chain is shown in color superimposed over the training data in gray with color
indicating time. 10 equally spaced faces from the Frey faces chain generated by the transcoder are
shown at right. A video of the Frey faces chain can be viewed at http://bit.do/transcoder.

2.3  FAST-FORWARDING MCMC

We train the stochastic transcoder to sample a Gaussian mixture model with the goal of approximating
Markov Chain Monte Carlo sampling. We generate training data from a 1-dimensional Gaussian
mixture model using Metropolis-Hastings sampling, with eight independent chains sampled for
10,000 samples after 4,000 samples of burn-in, where samples are proposed to the MCMC algorithm
by applying Gaussian noise with standard deviation 0.1 to the current sample. We draw training
samples from the generated chains after density subsampling and are provided to the transcoder as
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Figure 2.3: A, B. Samples generated from a Gaussian mixture model with Metropolis-Hastings
(A) and by the stochastic transcoder (B). C. Marginal distributions of both paths. D. Wasserstein
distance between ideal Gaussian mixture model and chains sampled from MCMC and fast-forwarded
transcoders over time. MCMC is sampled with step size 0.01, and the transcoder is trained to skip
300 steps in this MCMC process. Standard error of the mean is shown (n=32).

Figure[2.3|shows a single chain of 20,000 samples from Metropolis-Hastings and transcoder sampling
respectively. The transcoder emulates both the dynamics and the overall distribution of the MCMC
sampling. We extend this example to demonstrate the ability of a transcoder to outperform MCMC
sampling by training the same transcoder on Metropolis-Hastings generated chains this time generated
with sampling noise of standard deviation 0.01, where training examples are provided to the transcoder
as (x4, 14300 ) such that the transcoder learns to “fast-forward” and skip steps of the MCMC sampling
procedure. Figure 23D shows the convergence of a sampled chain to the theoretical distribution
over time, where the transcoder is able to sample a representative chain several orders of magnitude
faster than MCMC. The transcoder was trained for 550 seconds with 2617MB of RAM on a NVIDIA
GeForce Titan X Pascal GPU.
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