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ABSTRACT

We propose to extend the original generative adversarial networks (GANs) frame-
work to multiple discriminators and omit, or dropout, the feedback of each dis-
criminator with same probability at the end of each batch. Our approach forces
the generator to not rely on a given discriminator to learn how to produce realistic
looking samples, but, instead, on a dynamic ensemble of adversaries. This pro-
motes variety of the generated samples, leading to a richer generator less prone to
mode collapsing. We show preliminary results on MNIST and Fashion-MNIST
that sustain our claims.

1 INTRODUCTION

Generative adversarial networks (Goodfellow et al. (2014)), or GANs, are a framework composed
of two models - one generator (G) and one discriminator (D). G’s goal is to learn the true data
distribution by trying to fool D in classifying the produced samples as real samples. On the other
hand, D’s job is to better distinguish real and fake samples. However, one of the main problems
with GANs is mode collapse, where G is able to fool D by only producing data coming from the
same data mode. This leads to similar looking generated samples, which is not the ideal situation
since it means G was only able to learn a small segment of the true data distribution. Hence, this is
the main problem we plan to tackle with this work.

Our solution consists in applying adversarial dropout to multiple adversarial GANs. Dropout was
introduced by Hinton et al. (2012) and has been a widely used method in neural networks to prevent
overfitting ever since. It simply consists of omitting the output of some neurons with a probability
d, or dropout rate. We reformulate this problem in our use case by applying dropout to the feedback
of each D at the end of each batch, forcing G to rely on a dynamic ensemble of adversaries. This
ultimately induces variety in G’s output, reducing mode collapse, since G now has to satisfy the
different possible subset of discriminators that may remain in the ensemble at every batch.

1.1 RELATED WORK

Several works consider maintaining the same framework architecture and, instead, changing the
single models’ objective functions to promote variety (Arjovsky et al. (2017); Chau Lui et al. (2017);
Li et al. (2017); Zhao et al. (2016); Thomas Unterthiner (2018); Metz et al. (2016)). However,
these approaches can be seen as complementary work, since extending the described frameworks to
multiple adversaries and applying adversarial dropout could be a further way of promoting variety
in the generated samples.

Regarding using multiple discriminators to prevent mode collapse, Neyshabur et al. (2017) pro-
posed to train a single generator against an array of discriminators that operate on a different low-
dimensional projection of the data, whereas Durugkar et al. (2016) used a singleG that trains against
several discriminators considering different levels of difficulty. However, both of these approaches
constrain D’s architecture to promote variety. We argue this to be a limitation from an extendibility
stand point, which does not exist in our approach.
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2 GENERATIVE ADVERSARIAL NETWORKS

In their original setting (Goodfellow et al. (2014)), generative adversarial networks (GANs) consist
of two models, a generator (G) and a discriminator (D) are trained together by playing a minimax
game:

min
G

max
D

V (D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (1)

where pz(z) is the noise distribution used to sample G’s input, whilst G(z) represents its output,
i.e., a fake sample originated from mapping the input noise to the data space. Subsequently, pr(x) is
the data distribution and D(x) represents D’s output, i.e., the probability p of sample x being from
the training set.

Hence, whilst D’s tries to do a better job at distinguishing correctly between real and fake samples,
G tries to maximise the probability of its generated samples being considered as real by D. To
do this, D uses the ground truth to update its parameters θD with the gradient updates ∇θD that
minimise its loss. On the other hand, to have a better chance in fooling D in the future, G tries
to exploit D’s weaknesses by slightly changing its output using the gradient updates ∇θGD

that
maximise D’s loss regarding the previously generated samples.

3 ADVERSARIAL DROPOUT

We propose to extend the original GANs framework to multiple discriminators and a single gen-
erator. Moreover, we try to eliminate the mode collapse problem by forcing G to learn from and
appease a dynamic ensemble of adversaries, encouraging G to produce samples from a variety of
modes. The dynamism of the ensemble is achieved by dropping out the feedback of each D with a
certain probability d at the end of every batch. This means thatG will only consider the losses of the
remaining discriminators when updating its parameters, by using the average of the updated weights
according to each remainining discriminator’s loss. The value function V used for the minimax
game is then modified to:

min
G

max{
Dk

} K∑
i=k

V (Dk, G) =

K∑
i=k

δk(Ex∼pr(x)[logDk(x)] + Ez∼pz(z)[log(1−Dk(G(z)))]), (2)

where δk is a Bernoulli variable (δk ∼ Bern(1 − d)) and
{
Dk

}
is the set of all discriminators.

The gradients calculated from the loss of a given discriminator Dk are only used for the calculation
of G’s final gradient updates when δk = 1, with P (δk = 1) = 1 − d. It is important to note
that when all discriminators in the ensemble are dropped out, we randomly pick one discriminator
Dj ∈

{
Dk

}
and follow the original objective function presented in equation (1), using solely the

gradient updates related to Dj to update G. Thus, the final value function used is:

F (G,
{
Dk

}
) =


min
G

max{
Dk

} K∑
i=k

V (Dk, G), if ∃k : δk = 1

min
G

max
Dj

V (Dj , G), if ∀k : δk = 0,

for j ∈
{
1, ..., k

}
. (3)

Since each discriminator trains independently, i.e., is not aware of the existence of the others, no
changes were made on their individual gradient updates. Moreover, each D updates its parameters
at the end of every batch, even if dropped out. Furthermore, to force each D to specialise in a
different part of the mode space, we split the batch amongst the different discriminators, meaning
that each D trains with different samples. This enables G to receive a more complete feedback over
the data space, easing it to learn the real data distribution.
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4 EXPERIMENTS

We validated our approach using MNIST (LeCun & Cortes (2010)) and Fashion-MNIST (Xiao
et al. (2017)), with examples of mode collapse on both of these datasets being shown in Figure 1.
We show preliminary results demonstrating the effects of using different combinations of number
of discriminators and dropout rates in Figure 2. The same model architectures were used both for
both datasets and models. more specifically 4 fully-connected hidden layers, with LeakyReLu and
Sigmoid activations used for all hidden units and output units, respectively.

Figure 1: Mode collapse on MNIST and Fashion-MNIST using 1 discriminator. G is only able to
produce images of the number 1 (left) or jackets (right).

Figure 2: MNIST and Fashion-MNIST results. G is now able to produce more diverse samples for
a longer period of time. However, when using 5 discriminators, it is also visible that G takes longer
to learn, leading to a decrease in the quality of the generated samples in the earlier epochs. This is
expected since G has now access to more feedback and needs more time to handle it properly.

5 DISCUSSION AND FUTURE WORK

We show preliminary evidence that applying adversarial dropout promotes variety in the generated
samples across time. In the future, we plan on testing the effects of using more discriminators and
using more datasets. Moreover, we plan to use objective metrics which are suitable for detecting
mode collapse, e.g., FID (Heusel et al. (2017)), to further validate our solution.
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