
Workshop track - ICLR 2018

LEARNING AND MEMORIZATION
(EXTENDED ABSTRACT)

Satrajit Chatterjee
Two Sigma
{satrajit.chatterjee}@twosigma.com

ABSTRACT

In the machine learning research community, it is generally believed that there is
a tension between memorization and generalization. In this work we examine to
what extent this tension exists, by exploring if it is possible to generalize through
memorization alone. Although direct memorization with a lookup table obviously
does not generalize, we find that introducing depth in the form of a network of
support-limited lookup tables leads to generalization that is significantly above
chance and closer to those obtained by standard learning algorithms on several
tasks derived from MNIST and CIFAR-10. Furthermore, we demonstrate through a
series of empirical results that our approach allows for a smooth tradeoff between
memorization and generalization and exhibits some of the most salient character-
istics of neural networks: depth improves performance; random data can be mem-
orized and yet there is generalization on real data; and memorizing random data
is harder in a certain sense than memorizing real data. The extreme simplicity of
the algorithm and potential connections with stability provide important insights
into the impact of depth on learning algorithms, and point to several interesting
directions for future research.

1 INTRODUCTION

Neural networks trained through stochastic gradient descent (SGD) are capable of memorizing their
training data. Although practitioners have long been aware of this phenomenon, Zhang et al. (2016)
recently brought attention to it by showing that standard SGD-based training on AlexNet gets close
to zero training error on a modification of the Imagenet dataset even when the labels are randomly
permuted. This leads to an interesting question: If nets have sufficient capacity to memorize random
training sets why do they generalize on real data? A natural hypothesis is that nets behave differently
on real data than on random data. Arpit et al. (2017) study this question experimentally and show
that there are apparent differences in behavior. They conclude that generalization and memorization
depend not just on the network architecture and optimization procedure but on the dataset itself.1

But what if networks fundamentally do not behave differently on real data than on random data, and,
in both cases, are simply memorizing? This is a difficult question to entertain for two reasons. First,
it is hard to provide a direct answer. Whereas it is easy to tell when a net is memorizing random data
(the training error goes to zero!), there is no easy way to tell when a network is memorizing real data
(as opposed to learning).2 Second, and perhaps more importantly, it contradicts the intuitive notion
—inherent in the preceeding discussion—that memorization and generalization are at odds.

This work attempts to shed light on this second difficulty by investigating the following: How much
can you learn if memorization is all you can do? Is generalization even possible in this setting?

1One might be tempted to think that the result of Zhang et al. and the question above is in contradiction
with the results of conventional statistical learning theory but that is not the case: see Kawaguchi et al. (2017)
for a detailed discussion.

2Indeed, Arpit et al. (2017) view one of their main contributions to be the argument that the operational
definition of memorization is the behavior on random data (see the Introduction of their paper).

1



Workshop track - ICLR 2018

Table 1: The test accuracy of memorization is significantly better than chance on Binary-MNIST
(left) and on Binary-CIFAR-10 (right) and is closer to those of several standard methods. Memoriza-
tion ties with nearest neighbors on CIFAR. A LeNet-style CONV NET does the best in both cases but
unlike the others it is not permutation invariant.

METHOD
ACCURACY

TRAINING TEST

CONV NET 0.98 0.98
5-NEAREST NEIGHBORS 0.99 0.97
1-NEAREST NEIGHBOR 1.00 0.97

RANDOM FOREST (10 TREES) 1.00 0.96
MEMORIZATION (k = 12) 0.99 0.90

LOGISTIC REGRESSION 0.87 0.87
NAIVE BAYES 0.76 0.77

RANDOM GUESS 0.50 0.50

METHOD
ACCURACY

TRAINING TEST

CONV NET 0.93 0.71
RANDOM FOREST (300 TREES) 1.00 0.66

5-NEAREST NEIGHBORS 0.75 0.63
1-NEAREST NEIGHBOR 1.00 0.63

MEMORIZATION (k = 10) 0.79 0.63
LOGISTIC REGRESSION 0.64 0.56

NAIVE BAYES 0.55 0.56
RANDOM GUESS 0.50 0.50

2 THE MODEL

To make our investigation concrete, we shall focus on learning binary classifiers on Boolean inputs.3
For example, consider the Binary-MNIST task of classifying 1-bit quantized MNIST images into two
classes (0-4 v/s 5-9). The simplest way to memorize would be to build a lookup table (“lut”) from the
training data, but that obviously does not generalize. We could do better with k-Nearest Neighbors,
but on many problems it is not easy to construct semantically meaningful distance functions on the
input domain. Indeed, a key result in deep learning is the notion of a learned embedding.

Instead, we appeal to the notion of depth which has been wildly successful in improving the per-
formance of neural networks. Instead of building a single large lut, we build a network of (much)
smaller luts that are arranged in layers like neurons in a deep neural network. Because a lut, unlike a
neuron, can implement an arbitrary function, for depth to be useful, we need to limit the complexity.
We do that simply by limiting the support of the lut. Thus each lut receives inputs from k luts in the
previous layer (or k inputs for luts in the first layer) which are picked at random when the network
is constructed. In our experiments k is typically 10 or less.

Training is done through memorization and proceeds layer by layer from inputs to outputs. Each
lut in a layer memorizes the mapping from its input bit patterns to the final target, i.e., it constructs
a function f̂ : {0, 1}k → {0, 1} where each possible bit pattern p ∈ {0, 1}k at the input of the
lut gets mapped to the class y ∈ {0, 1} that is most commonly associated with it in the training
set.4 Ties (which include as a special case patterns not seen in training) are broken randomly when
constructing f̂ . Each lut then uses its learned f̂ to map its inputs to outputs. The outputs of a layer
form the inputs for the next layer which in turn learns the mapping from this new representation to
the final target. Inference proceeds in a similar fashion from inputs to outputs.

3This is less restrictive than it appears given the progress towards quantized networks (e.g. Rastegari et al.
(2016)) and even in real valued networks we need convolution and pooling for certain kinds of continuity.

4f̂ is stored as a truth table.

Table 2: Layer by layer training accuracy of net-
work of 8-input lookup tables on Binary-MNIST.
Layer 0 is the input. Test accuracy is 0.87.

LAYER COUNT
TRAINING ACCURACY

MEAN STD MIN MAX

0 784 0.51 0.0340 0.40 0.66
1 1024 0.61 0.0403 0.51 0.73
2 1024 0.74 0.0191 0.67 0.79
3 1024 0.83 0.0068 0.80 0.85
4 1024 0.87 0.0033 0.86 0.88
5 1024 0.88 0.0015 0.88 0.88
6 1 0.89 0.0000 0.89 0.89

Table 3: Effect of varying lookup table size on
Binary-MNIST.

k
ACCURACY

ON REAL DATA ON RANDOM DATA
TRAINING TEST TRAINING TEST

2 0.66 0.66 0.51 0.53
4 0.81 0.81 0.53 0.54
6 0.85 0.86 0.55 0.52
8 0.89 0.87 0.60 0.51

10 0.94 0.89 0.69 0.50
12 0.99 0.90 0.82 0.51
14 1.00 0.83 0.92 0.51
16 1.00 0.66 0.98 0.52

2



Workshop track - ICLR 2018

2 4 6 8 10 12 14 16
k

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

training
test

0 1 2 3 4 5
log2(d 1)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

training
test
difference

Figure 1: Generalization error (difference of training and test accuracy) goes up as k increases on
the 45 pairwise separation tasks on 1-bit quantized MNIST (left). The large variation for k = 2 is due
to insufficient mixing, and as we increase the depth of the network training this goes down (right).

If we measure training error as 0-1 loss, the function f̂ learned by a lut is (Bayes) optimal, i.e., there
is no other function that has strictly lower training error. It is also monotonic: if we make the lut
wider by providing it with more inputs, this procedure cannot increase training error. It is important
to note that these properties hold “locally” for a lut but not for the network as a whole.

This is pure memorization in the sense that unlike most learning algorithms (with the important
exception of k-NNs discussed previously) we do not solve any optimization problem to figure out
the trainable parameters of the network. Furthermore, the algorithm is extremely computationally
efficient and easy to parallelize since it relies only on counting and dense table lookups.

3 RESULTS

Our main result is that generalization is possible with pure memorization in the sense that mem-
orization achieves test accuracies significantly above chance (0.5). We see this on Binary-MNIST
and Binary-CIFAR-10 (Table 1) and in the 45 pairwise separation tasks of MNIST (Figure 1) and
of CIFAR-10 (Table 4). In all these cases we use a baseline network with 5 hidden layers of 1024
luts (and an output layer with a single lut) with k as indicated. Furthermore, these results are very
stable w.r.t. choices made at network construction. Table 2 along with optimality and monotonicity
properties (Section 2) provides some intuition for that.

The size of each lut (k) provides a way to tradeoff memorization and generalization (Table 3 and
Figure 1). Also, like the experiments of Zhang et al. (2016) we are able to memorize random data
and yet generalize on real data; and like Arpit et al. (2017) we find a sense in which memorizing
random data is harder (Table 3).

Finally, it is interesting to speculate why support limited memorization generalizes. The better gen-
eralization of smaller luts provides a hint: The same number of training examples are divided over
fewer rows which makes the luts more likely to be stable in the sense of Bousquet & Elisseeff (2002).
By thinking of the problem in these terms it seems natural that some forms of memorization may
generalize well, and this could lead the way to more computationally efficient learning algorithms
that memorize in a stable manner.

Table 4: Training (below diagonal) and test accuracy (above) on Pairwise-CIFAR-10 (k = 10).
PLANE AUTO BIRD CAT DEER DOG FROG HORSE SHIP TRUCK

PLANE 0.77 0.77 0.80 0.82 0.81 0.84 0.81 0.71 0.79
AUTO 0.96 0.79 0.77 0.79 0.80 0.80 0.78 0.76 0.67
BIRD 0.95 0.98 0.68 0.63 0.69 0.66 0.72 0.83 0.81

CAT 0.96 0.98 0.96 0.70 0.61 0.68 0.71 0.81 0.76
DEER 0.96 0.98 0.95 0.96 0.73 0.69 0.71 0.83 0.81

DOG 0.98 0.99 0.97 0.96 0.97 0.72 0.70 0.82 0.79
FROG 0.97 0.98 0.95 0.95 0.97 0.96 0.75 0.85 0.80

HORSE 0.98 0.99 0.96 0.97 0.96 0.98 0.97 0.81 0.75
SHIP 0.93 0.96 0.98 0.98 0.98 0.98 0.99 0.98 0.77

TRUCK 0.97 0.95 0.98 0.97 0.97 0.98 0.98 0.97 0.98

3



Workshop track - ICLR 2018

REFERENCES

Devansh Arpit, Stanislaw K. Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pp. 233–242, 2017. URL http://proceedings.mlr.press/v70/arpit17a.
html.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499–
526, March 2002. ISSN 1532-4435. doi: 10.1162/153244302760200704. URL https://
doi.org/10.1162/153244302760200704.

K. Kawaguchi, L. Pack Kaelbling, and Y. Bengio. Generalization in Deep Learning. ArXiv e-prints,
October 2017. URL https://arxiv.org/abs/1710.05468.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling (eds.), Computer Vision – ECCV 2016, pp. 525–542, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-46493-0.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

4

http://proceedings.mlr.press/v70/arpit17a.html
http://proceedings.mlr.press/v70/arpit17a.html
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1162/153244302760200704
https://arxiv.org/abs/1710.05468
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

	Introduction
	The Model
	Results

