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Abstract

Recent advancements have significantly augmented the reasoning capabil-
ities of Large Language Models (LLMs) through various methodologies,
especially chain-of-thought (CoT) reasoning. However, previous methods
often struggle to address reasoning errors in intermediate steps, which can
lead to accumulative errors. In this paper, we propose Deductive Beam
Search (DBS), which seamlessly integrates CoT and deductive reasoning
with step-wise beam search for LLMs. Our approach deploys a verifier,
verifying the deducibility of a reasoning step and its premises, thus alle-
viating the error accumulation. Furthermore, we introduce a scalable and
labor-free data construction method to amplify our model’s verification
capabilities. Extensive experiments demonstrate that our approach signifi-
cantly enhances the base performance of LLMs of various scales (7B, 13B,
70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning
genres, including arithmetic, commonsense, and symbolic. Moreover, our
analysis proves DBS’s capability of detecting diverse and subtle reason-
ing errors and robustness on different model scales. Data and codes are
released at https://github.com/OSU-NLP-Group/Deductive-Beam-Search.

1 Introduction

Question: 
James decides to run 3 sprints 3 times a week. 
He runs 60 meters each sprint. 

How many total meters does he run a week?


Answer: 
Step 1: He runs 3 times a week, which is equal 
to 3 x 7 = 21 sprints.

Step 2: The distance he runs each sprint is 60 
meters, so the total distance he runs is 60 x 21 
= 1320 meters.

Final Answer: 1320

Error Analysis 

Step 1: 

Grounding error.  
7 does not come 
from premises.


Step 2: 
Accumulative error. 
Misled by errors in 
step 1.


Figure 1: Example of error in an intermedi-
ate step leading to accumulative error from
Llama2-7b. The dependency on intermediate
steps introduces accumulative errors in the
reasoning process.

Machine reasoning has witnessed tremen-
dous progress thanks to the emergence of
Large Language Models (LLMs) (OpenAI,
2023; Google, 2023; Anil et al., 2023; Tou-
vron et al., 2023; McIntosh et al., 2023).
The power of LLMs activates the ability
to conduct step-by-step chain-of-thought
(CoT) reasoning (Wei et al., 2022b;a), signif-
icantly boosting the performance of reason-
ing tasks (Wang et al., 2022; Paul et al., 2023;
Lyu et al., 2023).

Although CoT reasoning has demonstrated
the superiority of step-by-step reasoning,
its dependency on intermediate steps in-
evitably introduces accumulative errors
(Du et al., 2023; Yu et al., 2023) in the process, as shown in Figure 1. Previous research
that alleviates these errors lies in two main paradigms: 1) Answer aggregation across multiple
rationales. They utilize majority voting (Wang et al., 2022) or deploy a verifier to score on
each rationale (Li et al., 2023). However, these methods do not directly address errors in
the reasoning process, undermining the reliability of their outcomes. 2) Intermediate step
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The number of 
sprints per week is 
3 x 3 = 9 sprints.

He runs 3 times a 
week, which is 
equal to 3 x 7 = 21 
sprints.

The number of 
sprints per week is 
3 x 3 = 9 sprints.

So the total 
distance he runs 
is 60 x 21=1320 
meters.

So the total distance 
of 9 sprints is 9 x 60 = 
540 meters.

The distance of each 
sprint is 60 meters.

Question:
James decides to 
run 3 sprints 3 
times a week. 
He runs 60 meters 
each sprint. 
How many total 
meters does he run 
a week?

The distance of 
each sprint is 60 
meters.

Therefore, the total 
distance James runs in 
a week is 9 x 60 = 540 
meters.

540

So the total 
distance of 9 
sprints is 9 x 60 
= 540 meters.

540

…

…

Deductive Beam Search
Deductive Score

Low High

Step 1

Step 2

Step 3
Generation

Question

LLM

The distance of each 
sprint is 60 meters.

So the total distance 
of 9 sprints is 9 x 60 = 
540 meters.

Verification

Contexts Sampling

Verifier

Premises Evaluating

Low deductive score!
Aborted

The number of 
sprints per week is 
3 x 3 = 9 sprints.

Question

Figure 2: Overview of Deductive Beam Search. We illustrate the process under the configu-
ration of beam size 2 and sampling times 2.

correction. This line of works decomposes the reasoning path into reasoning steps and
applies self-correction on each step (Weng et al., 2022; Ling et al., 2024; Paul et al., 2023; Xie
et al., 2023). Yet, recent research finds that, without external feedback, LLMs tend to modify
reasoning steps regardless of their correctness (Huang et al., 2023; Hong et al., 2023).

Previous works fail to address reasoning errors in intermediate steps, compromising the
ability to conduct systematic reasoning. To mitigate this issue, we embrace the principle of
deductive reasoning (Clark, 1969; Johnson-Laird, 1999; 2010). In deductive reasoning, every
step logically follows its premises, where a deducible reasoning step is termed a logical
consequence (Dinkmeyer, 1976; Hanson, 1997). A key attribute of logical consequence is
that if the premises hold, the deducible reasoning step is true, suggesting a correct outcome.
Inspired by this attribute, we propose to navigate CoT towards a more deducible path.

Nonetheless, challenges arise when introducing the principle of deductive reasoning into
CoT reasoning without changing the standard prompt paradigm and the parameters of
LLMs. 1) Navigation on CoT reasoning. Since LLMs cannot always conduct correct
deductive reasoning, they have to explore the potential reasoning space and choose those
reasoning steps that are more likely to be deducible, which brings the trade-off between
exploration and exploitation (Donoso et al., 2014; Dasgupta et al., 2019). 2) Verification of
deducibility. On one hand, previous research shows it is hard for LLMs to detect reasoning
errors (Huang et al., 2023; Hong et al., 2023). On the other hand, symbolic reasoning engines
(Cavada et al., 2014; Li et al., 2018) can reliably verify the correctness. However, transferring
natural language to symbolic language without losing generality remains an unsolved
problem in machine reasoning.

Confronted with these challenges, we propose Deductive Beam Search (DBS), adaptable
to all models and settings. The overview of DBS is shown in Figure 2. For the trade-off
challenge, we decompose the reasoning process into reasoning steps and incorporate step-
wise beam search. In terms of the verification challenge, we propose a deductive verifier,
which takes a reasoning step and its premises as inputs and outputs a deductive score,
evaluating the logical coherence between them. Specifically, LLM samples a list of potential
reasoning steps to explore. Then, our deductive verifier exploits by selecting steps that are
more deducible. To train an effective verifier, we propose a scalable way of synthesizing
fine-grained and diverse deductive reasoning errors without human annotation. Initially,
the verifier is trained to verify heuristically synthesized wrong steps with typical reasoning
error patterns. Subsequently, we ask LLMs to generate reasoning steps where false ones
detected by our verifier serve as hard negatives. These hard negatives are adopted to train a
deductive verifier with model feedback.

As we aim to enable LLMs to decode more deducible reasoning paths, DBS can be integrated
with answer-aggregation-based methods. We evaluate our methods across 5 arithmetic
reasoning tasks, 2 commonsense reasoning tasks, and 1 symbolic reasoning task in single
chain setting and multiple chain setting. The improvements can be expected not only on
models of all scales and diverse model families but also under different settings. Concretely,
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taking arithmetic reasoning tasks as an example, the average improvement is 5.3% / 3.2%
on Llama2-7b / ChatGPT under single chain setting and 3.9% / 2.5% under multiple chain
setting. Moreover, we comprehensively analyze our verifier, demonstrating its capability of
detecting diverse and subtle reasoning errors and robustness on different model scales.

2 Deductive Beam Search

We begin by formulating multi-step CoT reasoning with step-wise beam search before
describing DBS. For notation convenience, we denote [n] to be a set of natural numbers
from 1 to n, and v[n] = [v1, v2, ..., vn] represents the first n elements of v, where v[0] = []
representing an empty sequence. Specifically, we denote tokens as y.

2.1 Multi-Step Chain-of-Thought Reasoning

Standard chain-of-thought reasoning (Wei et al., 2022b) generates the whole reasoning
path for the final outcome. Formally, given the question q, CoT formulates the answer
distribution PrLM(a∣q) as a product of the rationales generation distribution PrLM(r[t]∣q)
and a final answer distribution PrLM(a∣r[t]), which is:

Pr LM(a∣q) = Pr LM(a∣r[t])× Pr LM(r[t]∣q), (1)

where r[t] = [r1, r2, ..., rt] is a complete reasoning path, and t is the number of steps required
to complete the reasoning process. Each r = [y1, y2, ...yl] is an intermediate reasoning step,
where l is its token length.

Problems in this setting lie in the complexity of navigating the generation of r[t], which are
sampled as a whole directly from language models, a process wherein errors can accumulate
(Zhang et al., 2023a). To avoid error accumulation and navigate the reasoning process, we
decompose the process of generating r[t] as:

Pr LM(r[t]∣q) = Pr LM(r1∣q)×
t−1

∏
i=1

Pr LM(ri+1∣q, r[i]) =
t−1

∏
i=0

Pr LM(ri+1∣q, r[i]). (2)

As Equation 2 suggested, at timestamp i, the language model generates the next reasoning
step ri based on previous premises, which is ri ∼ PrLM(ri∣q, r[i−1]). This formulation follows
the principle of deductive reasoning.

2.2 Step-wise Beam Search

Under beam size m, traditional beam search decodes at token level, which stores Top-
m candidate tokens, and uses them for future decoding. Formally, we denote the log-
probability of LM generating the k-th tokens as ϕ(yk) = log PrLM(yk∣y1, y2, ..., yk−1, x) =

log PrLM(yk∣y[k−1], x), and the log-probability of a solution at timestamp k as Φ(y[k]) =

∑i∈[k] ϕ(yi). Given a set of m previous solutions at timestamp i as Yi−1 =

{y1
[i−1], y2

[i−1], ..., ym
[i−1]}, beam search generates as:

Y[i] = arg max
y1
[i],y

2
[i],...,y

m
[i]

∑
k∈[m]

Φ(yk
[i]). (3)

However, in reasoning tasks, it is hard to verify whether a single token is deducible. Thus,
we assign a reasoning step r as the minimal unit in step-wise beam search. Formally, we
denote the log-probability of generating the k-th reasoning step as ψ(rk) = Φ(y) and the
log-probability of a solution at timestamp k to be Ψ(r[k]) = ∑i∈[k] ψ(ri). Given a set of m

previous solutions at timestamp i as R[i−1] = {r1
[i−1], r2

[i−1], ..., rm
[i−1]}, step-wise beam search

infers as:
R[i] = arg max

r1
[i],r

2
[i],...,r

m
[i]

∑
k∈[m]

Ψ(rk
[i]). (4)
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Combining multi-step CoT reasoning with step-wise beam search balances exploration
and exploitation in reasoning tasks. However, confidence scores from language models
cannot verify logical consequence between a reasoning step and its premises. To tackle this
problem, we propose to constrain the step-wise beam search with deductive scores.

2.3 Deductive Verification Constrained Beam Search

To verify the logical coherence between a reasoning step and its premises, we propose
to train a deductive verifier since LLM itself often fails to detect reasoning errors (Hong
et al., 2023). Formally, given premises c[i] = [c1, c2, ..., ci] and the candidate reasoning step
r, the deductive score can be formulated as: s = f (c[i], r) = Pr f (r∣c1, c2, ..., ci), where f
is the deductive verifier function. The details of the deductive verifier are illustrated in
Section 3. Then, we utilize the deductive verifier to constrain the step-wise beam search. To
clearly illustrate the process, we show the case how, given one antecedent solution beam
r[i−1] ∈ R[i−1] at timestamp i, reasoning steps are sampled and scored.

In the exploration phase of beam search, the language model samples a list of potential
reasoning steps. Concretely, for sampling times n, the question q and r[i−1] form the
current context c[i] = [q, r[i−1]], and we can sample a set of n possible reasoning steps
R̂i = {r1, r2, ..., rn}, where r ∼ PrLM(r∣q, r[i−1]). Concatenating r ∈ R̂i with r[i−1] generates
candidate reasoning chains set R̂[i] = {[r[i−1], r1], [r[i−1], r2], ..., [r[i−1], rn]} at timestamp i.

In terms of exploitation, instead of using the language model probability PrLM(r∣c[i]) to
evaluate these reasoning steps, deductive verification scores S = {s1, s2, ..., sn} of candidate
reasoning paths R̂i are applied. Each score sj, j ∈ [n] is calculated by multiplying the score
of r[i−1] and the score of each candidate reasoning step, that is:

sj = s([r[i−1], rj]) = s(r[i−1])× Pr f (rj∣q, r[i−1]) =
i

∏
k=1

Pr f (rk∣q, r[k−1]), (5)

which follows the autoregressive factorization form and allows us to apply on the beam
search algorithm.

Consequently, LM generates n times for each beam at each step, sampling a total number of
m × n candidate reasoning steps. After scoring on these steps, the top m of them are selected
according to the deductive score. This cycle of exploration and exploitation repeats until the
final answer is generated or it reaches the upper limit of reasoning length.

3 Deductive Verifier

As stated above, a deductive verifier evaluates whether the reasoning step can be deduced
from previous contexts, which resembles a natural language inference (NLI) task. Thus, we
use deberta-v3-large (He et al., 2021), which achieves the best performance across various
NLI benchmarks despite its small size, as the backbone. A small scalar head is adopted to
predict deductive scores based on embedding the [CLS] token.

However, the difficulties of training a deductive verifier primarily reside in the training data
quality and the training method. Changing one single token could lead to various errors,
which is hard for any model to detect. Furthermore, the lack of high-quality false deductive
reasoning step hinges the training of the verifier. To fully understand how LLMs make
mistakes, we dive into the incorrect samples generated by LLMs. From the perspective of
deductive reasoning, there are two main classes of reasoning errors: grounding errors and
logic errors (Ling et al., 2024). Most grounding errors happening in the reasoning process
can be detected by finding the contradiction between the context and the rationales, while
the latter ones are illogical reasoning steps deduced from the previous context.

Thus, we propose a scalable and labor-free data construction method and a ranking-based
training framework to teach the verifier to detect false reasoning steps. The whole training
is divided into two stages. In stage 1, we heuristically corrupt gold reasoning steps to
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Context Type Not. Reasoning Step Error Reason
Randy has some money.
He spent $10 buying his
lunch. He spent a quarter
of the money he had left on
an ice cream cone. If the ice
cream cone cost $5, what is
the amount of money, in
dollars, Randy had at first?

Gold r Randy has 5*4=20 dollars left after
buying lunch.

-

Grounding r′1 Randy has 10*4=40 dollars left after
buying lunch.

Minor token-level error, hard for models
to detect.

Logic r′2 At first, Randy had a sum of 20+10=30
dollars.

Logic-level error caused by reversed
steps, not following deductive reasoning.

Irrelevant r′3 He eats 65 black cookies from the
cookie jar, with 1/2 * 130 = 65.

Major error, completely incoherent with
the context.

Table 1: Examples of heuristically synthesized false reasoning steps.

simulate typical false reasoning and train the verifier to detect them. In stage 2, the verifier
trained from stage 1 is deployed to detect potential false reasoning steps generated by LLMs,
bridging the gap between synthetic data and real-world data. Consequently, the model
from stage 1 is continue-trained.

3.1 A General Deductive Verifier

In the first stage, we require the verifier to detect two general types of reasoning errors:
grounding error and logic error. However, such fine-grained step-wise data is hard to
annotate. Thus, we propose to synthesize false reasoning steps automatically.

Since it is hard to edit natural language to meet our demands, we turn to arithmetic
reasoning, which can be viewed as a middle ground between symbols and natural language.
In terms of reasoning steps with grounding errors, we randomly replace one of the numbers
on the left side of the equation in the gold reasoning step with numbers existing in previous
contexts or randomly generated numbers to simulate false grounding or hallucinations. As
for logic errors, we randomly select reasoning steps after the current gold reasoning step.
Under this circumstance, the reasoning process is reversed and disrupted, making it a logic
error. Moreover, to enhance the understanding of the model for this task, we use randomly
selected reasoning steps across the whole dataset as an irrelevant false reasoning step. The
examples of these errors are shown in Table 1.

To provide fine-grained supervision for error detection, we use margin ranking (Shashua &
Levin, 2002) to model the task. Specifically, given context c, gold reasoning step r, and three
false reasoning steps r′1, r′2, and r′3, respectively representing grounding error, logic error,
and irrelevant reasoning step, the verifier f scores all the candidates through s = f (c, r),
which outputs four scores s, s′1, s′2, and s′3. Then, the loss of ranking these reasoning steps is
formulated as the weighted sum of three margin ranking losses:

L = −
3

∑
i=1

αi × (s − s′i − mi), (6)

where mi is the hyper-parameter controlling the margin and αi weighs each loss.

3.2 Deductive Verifier with Model Feedback

In the first stage, we train a general deductive verifier, but the wrong samples synthesized
heuristically are less diverse than the ones encountered during inference. To bridge the gap
between synthesized data and real-world data, we use the verifier from stage 1 to detect
false reasoning steps generated by an actual language model, where we choose Llama2-7b
for the generation. The reason why we choose a relatively small language model for the
generation is to maximize the diversity and the likelihood of generating incorrect steps.

To be concrete, given the verifier f1 trained by stage 1, we feed context c into the LLM and
sample 10 reasoning steps. Then, these steps are scored and ranked by f1. From this ranking,
we select the reasoning step that exhibits the most significant decrease in the deductive
score, designating it as the hard negative sample. We replace r′1 with the generated hard
negative sample as r′′1, keeping the original way of generating r′2 and r′3. Consequently, we
continue training the verifier f1 by Equation 6 with a smaller learning rate.
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Method Arithmetic Reasoning Commonsense Reasoning Symbolic Reasoning

GSM8K SVAMP AQuA SingleEq MultiArith Avg.↑↓ StrategyQA CSQA Avg.↑↓ Coin Avg.↑↓
Llama2-7b

Greedy 22.0 49.0 3.2 67.5 68.3 +5.3 64.0 66.9 +2.6 53.8 -2.2DBS 31.2 55.0 5.7 69.0 74.4 66.4 67.0 51.6
SC 28.1 56.7 4.9 77.5 77.8 65.6 67.2 53.0
DBS + SC 32.1 59.3 8.5 78.9 85.6 +3.9 67.6 68.3 +1.6 54.1 +1.1

Llama2-13b
Greedy 35.6 52.3 2.8 72.2 70.6 66.2 53.2 60.2
DBS 43.2 58.0 6.1 76.7 85.6 +7.2 64.6 53.7 -0.6 61.2 +1.0

SC 42.0 68.3 3.6 86.4 91.7 65.4 68.0 61.8
DBS + SC 45.2 72.0 9.3 90.7 94.4 +3.9 66.6 69.8 +1.5 63.4 +1.6

Llama2-70b
Greedy 41.7 51.3 10.1 70.0 70.6 69.8 59.4 71.2
DBS 58.3 61.7 10.1 78.9 90.6 +11.2 70.6 62.4 +1.9 80.4 +8.7

SC 64.8 79.3 10.5 91.3 97.2 74.0 74.0 79.6
DBS + SC 67.6 79.3 14.5 92.7 97.2 +1.6 75.0 73.3 +0.2 80.2 +0.6

ChatGPT
Greedy 68.8 72.0 16.5 95.1 97.2 65.4 65.1 75.1
DBS 75.9 75.7 24.8 92.8 97.8 +3.2 68.6 74.0 +6.2 75.5 +0.4

SC 81.3 81.3 20.2 97.6 98.3 70.6 75.4 78.9
DBS + SC 83.5 82.7 28.8 97.0 99.4 +2.5 69.8 78.3 +1.1 79.5 +0.6

Table 2: The result comparison on arithmetic reasoning, commonsense reasoning, and
symbolic reasoning tasks. The results represent accuracy (%) on each dataset. Bold indicates
best results and underline indicates second bests.

4 Experimental Setup

4.1 Reasoning Tasks

For our evaluation, we choose benchmarks from 3 different reasoning genres, namely,
arithmetic reasoning, commonsense reasoning, and symbolic reasoning. These 3 types of
reasoning tasks represent diverse reasoning paradigms.

Arithmetic Reasoning. Following Li et al. (2023) and Ling et al. (2024), we choose GSM8K
(Cobbe et al., 2021), SVAMP (Patel et al., 2021), AQuA (Ling et al., 2017), SingleEq (Koncel-
Kedziorski et al., 2015), and MultiArith (Roy & Roth, 2016) for evaluation. For AQuA, we
evaluate the accuracy by comparing with the answer of the ground truth.

Commonsense Reasoning. Following Li et al. (2023), we use CommonsenseQA (Talmor
et al., 2019) and StrategyQA (Geva et al., 2021). CommonsenseQA asks the model to choose
the best answer from 5 choices, and StrategyQA asks for a True/False answer.

Symbolic Reasoning. We use the Coin Flip dataset (Wei et al., 2022b). The task is to
determine which face of the coin is up after a series of operations.

4.2 Details

Language Models. We evaluate our method on models of various scales, including Llama2-
7b, Llama2-13b, Llama2-70b (Touvron et al., 2023), and ChatGPT (gpt-3.5-turbo-instruct) (Ope-
nAI, 2022). These models represent different levels of reasoning abilities. For the verifier, we
choose deberta-v3-large as the backbone of our verifier. The training details are in Appendix
B.

Prompts. For arithmetic reasoning tasks, we apply one prompt to all tasks. For common-
sense reasoning tasks and the symbolic reasoning task, we write a prompt for each task to
ensure the model can output the correct answer format. All methods are evaluated by the
same prompt on each task. The details of prompts are in Appendix B.3.

Baselines. To prove the effectiveness of DBS, we compare with greedy decoding algorithm
(Jurafsky & Martin) and self-consistency (Wang et al., 2022). For other SOTA baselines, we
choose SelfEval (Xie et al., 2023) and Deductive Verification (Ling et al., 2024), which do not
update the parameters of LLMs. The former represents SOTA decoding algorithm, while the
latter stands for methods utilizing novel procedure design to conduct deductive reasoning.
Since a full-scale experiment requires excessive token cost due to the extensive search and
verification of these methods, we provide results on the GSM8K dataset.

Inference. During inference, we set beam size m to 5 and sampling times n to 10. For all
models and baselines, we use their default parameter settings for generation.
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5 Main Result

Table 2 demonstrates the overall performance of the methods. We compare DBS with
baselines under two paradigms: single chain setting and multiple chain setting. In multiple
chain setting, the generated outcomes are integrated with self-consistency. Table 3 presents
a comparative analysis of our approach against SOTA baselines.

5.1 Effectiveness

As shown in Table 2, DBS improves the performance across models of different scales and
diverse reasoning tasks. For the single chain setting, the improvement is substantial. On
arithmetic reasoning tasks, taking GSM8K as an example, we observe an increase from
7.6% to 16.6% across models of various scales. Specifically, with Llama2-7b and gpt-3.5-turbo-
instruct, DBS yields improvements of 9.2% and 7.0%, respectively, affirming the effectiveness
of our proposed strategy. On commonsense reasoning tasks and symbolic reasoning tasks,
we can expect an average increase of 2.5%/2.0% on models of all scales.

Regarding the multiple reasoning chain setting, DBS outperforms naive self-consistency.
Concretely, we can see an average of 3.0% improvement on arithmetic reasoning tasks, 0.5%
on commonsense reasoning tasks, and 1.0% on symbolic reasoning tasks, respectively. On
the SingleEq and StrategyQA datasets, the performance of DBS on ChatGPT is slightly lower
(-0.6%/-0.8%). These datasets require fewer reasoning steps for the final answer, as opposed
to our paradigm of multiple reasoning steps. Nevertheless, the universal improvements
demonstrate the effectiveness of our proposed method.

5.2 Comparison with Current Solutions

Model Method Accu Tokens #Rationales

Llama2-7b

SelfEval 21.8 50M 1
SelfEval + SC 24.2 10
DV 10.5 372M 1
DV + SC 13.2 10
DBS 31.2 4M 1
DBS + SC 32.1 10

ChatGPT

SelfEval 71.3 12M 1
SelfEval + SC 74.7 10
DV 68.2 409M 1
DV + SC 83.3 10
DBS 75.9 5M 1
DBS + SC 83.5 10

Table 3: Comparison of between DBS and dif-
ferent reasoning methods.

Table 3 compares our decoding strategy
with previous SOTA reasoning strategies.
The comparative results, grounded in ac-
curacy and token cost metrics, substantiate
our approach’s effectiveness and token ef-
ficiency. Notably, the self-evaluate pattern
performs worse when the scale of the LLM
drops. Moreover, it consumes an excessive
amount of tokens during evaluation. In
contrast, DBS enhances the performance by
approximately 10% on Llama2-7b and per-
forms better than the baselines on gpt-3.5-
turbo-instruct across the paradigms of single
and multiple reasoning chains. Furthermore, it consumes much fewer input and output
tokens. Consuming 80 times less tokens, DBS outperforms DV on gpt-3.5-turbo-instruct.

6 Analysis

We conduct a detailed analysis to investigate the verifiability and efficiency of our proposed
method. Moreover, we show how our method can adapt to different settings.

6.1 Verifier Analysis

Method MRR HITS@1 HITS@3 HITS@5
ChatGPT 0.48 0.32 0.49 0.67

Our Verifier 0.59 0.41 0.69 0.86

Table 4: Verification ability comparison of our
verifier and ChatGPT.

We comprehensively analyze the verifiabil-
ity of our proposed verifier on performance
(Table 4) and score distribution (Figure 3).

Empirical Study. For empirical experi-
ments, we test how our verifier will score
the gold reasoning steps compared to syn-
thesized reasoning steps. We randomly sample 500 context-step pairs from the test set of the
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Wrong: 0.75

All: 0.78

Correct: 0.79

(a) LM distribution

Wrong: 0.41

All: 0.52

Correct: 0.58

(b) Verifier distribution
Figure 3: Distributions of language model
and verifier scores on reasoning paths.

Method Accuracy Tokens
Greedy 21.99 267,462
Self-consistency, n = 10 28.05 1,984,921
DBS , m = 1, n = 10 29.34 1,414,435
DBS , m = 5, n = 10 31.16 4,042,053

Table 5: Cost Analysis of our method and
other baseline methods. m represents beam
size and n represents sampling times.

GSM8K dataset as gold reasoning steps. For each pair, we synthesize nine reasoning steps
using Llama2-7b as inferior reasoning steps. The verifier’s task is to rank them, and the per-
formance is evaluated by four metrics, namely, Mean Reciprocal Rank (MRR), HITS@1/3/5.
MRR evaluates the average rank of the gold reasoning step, and the HITS metrics reflect
whether the gold reasoning step will be chosen under beam size setting 1/3/5. To compare
with the self-evaluation pattern, we ask ChatGPT to rank these reasoning steps rather than
predict scores, leveraging its inherent reranking capabilities (Ma et al., 2023). The results
are listed in Table 4. Our verifier outperforms ChatGPT across all metrics, evidencing its
capability. Notably, our verifier correctly identifies 86% of the gold reasoning steps within
the top 5 positions out of 10 samples, affirming the deducibility of the reasoning paths
decoded under m = 5, n = 10.

Distribution Analysis. To ascertain the reliability of our verifier, we compare the score
distributions for correct and wrong predictions between the original LM confidence (gpt-3.5-
turbo-instruct) and our deductive verification score. We use results from greedy decoding,
which naturally produces confidence scores from LM, and ask the verifier to score on
them. Figure 3 shows the substantial difference between an LM confidence score and our
deductive score. Notably, the LM confidence score demonstrates a mere 4% increase in
scores of the correct reasoning paths, whereas our verifier exhibits a 17% increase. This
significant difference proves the enhanced verifiability of our verification approach.

6.2 Cost Analysis

The cost of sampling multiple times is enormous. We analyze the cost of our methods
under different settings and compare them with the baselines. Specifically, we compare our
approach with greedy decoding, self-consistency, SelfEval (Xie et al., 2023), and DV (Ling
et al., 2024). The results are presented in Table 3 and Table 5. Our analysis reveals that greedy
decoding is the most token-economic, as it does not involve any form of sampling, but its
performance lags. When m is constrained to 1, the token generation is minimized even
further than that required by self-consistency strategies. Still, our method demonstrates
higher accuracy. Moreover, DBS proves more effective and token-efficient under the same
beam size than those leveraging LLMs’ self-evaluation capabilities.

6.3 Commonsense Reasoning Task

Method StrategyQA CSQA
Greedy 64.00 66.91
DBS 66.40 66.99

- w. recall prompt 65.40 66.67
SC 65.60 67.24
DBS 67.60 68.29

- w. recall prompt 65.80 69.45

Table 6: Different prompt settings on common-
sense reasoning tasks. We use Llama2-7b as the
backbone for all methods.

Unlike arithmetic or symbolic reasoning
tasks, commonsense reasoning tasks lever-
age the model’s intrinsic commonsense.
Thus, we introduce a prompt strategy,
which asks the model to recall the neces-
sary commonsense via greedy decoding,
followed by DBS navigating the reasoning
over the elicited contexts. We compare this
setting to standard settings and baselines,
and the results are shown in Table 6. The
performance varies from different tasks, at-
tributed to the distinct nature of the tasks. Concretely, StrategyQA typically requires a 2-3
step knowledge recall followed by a single reasoning step, whereas CSQA demands a 3-5
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Question Greedy Ours
James decides to run 3
sprints 3 times a week. He
runs 60 meters each sprint.
How many total meters
does he run a week?

He runs 3 times a week, which is equal to
3 x 7 = 21 sprints. 0.0102 The distance he
runs each sprint is 60 meters, so the total
distance is 60 x 21 = 1320 meters. 0.4963
Final Answer:1320

Each sprint is 60 meters. 0.8270 So he runs 60 x 3 = 180 meters
each day. 0.9643 He runs each sprint 3 times a week. 0.9983
Therefore, he runs a total of 180 x 3 = 540 meters per week.
0.9463 Final Answer:540

Toulouse has twice as
many sheep as Charleston.
Charleston has 4 times
as many sheep as Seat-
tle. How many sheep
do Toulouse, Charleston,
and Seattle have together
if Seattle has 20 sheep?

Toulouse has twice as many sheep as
Charleston, so Toulouse has 2 x 4 = 8 sheep.
0.3149 Charleston has 4 times as many

sheep as Seattle, so Charleston has 4 x 20
= 80 sheep. 0.9877 So Toulouse has 8 + 80
= 88 sheep. 0.3923 Seattle has 20 sheep.
0.7479 Final Answer:88 + 20 + 88 = 196

Charleston has 4 times as many sheep as Seattle. Charleston
has 20 x 4 = 80 sheep. 0.9912 Toulouse has twice as many
sheep as Charleston. Charleston has 80 sheep. Toulouse has
80 x 2 = 160 sheep. 0.9736 Finally, add the number of sheep
Toulouse, Charleston, and Seattle have. 0.9981 So the total
number of sheep they have together is 160 + 80 + 20 = 260
sheep. 0.9924 Final Answer:260

Table 7: Two GSM8K examples from Llama2-7b scored with our verifier.

step recall process alongside multiple reasoning steps. Our findings suggest that the recall
prompt is more suitable for tasks demanding multi-step reasoning.

6.4 Case Study

Table 7 presents two GSM8K examples from Llama2-7b. The first example demonstrates a
scenario where hallucination emerges under greedy decoding, which our verifier identifies
with an extremely low score, thereby precluding its selection by our deductive decoding
strategy. On the contrary, every reasoning step from our reasoning path is deduced from the
previous context and is scored much higher than the incorrect steps. In the second example,
a grounding error occurs in steps marked by red scores. Although the wrong reasoning
steps resemble the correct ones, our verifier detects these minor errors. In both examples,
the reasoning path generated by our decoding strategy initiates the reasoning by listing
premises, followed by one reasoning step. This pattern strictly follows the principle of
deductive reasoning, making the generated results more deducible.

7 Related Work

Answer Aggregation. Sampling techniques of language models, such as temperature sam-
pling (Ackley et al., 1985), top-k sampling (Fan et al., 2018), and top-p sampling (Holtzman
et al., 2019), bring diversity to the outcome but also uncertainty to the reasoning process,
which is not favored in reasoning tasks. These methods aim to reduce uncertainty in the
reasoning process by aggregating answers from sampled reasoning paths. After sampling
diverse outputs from LLMs, Wang et al. (2022) propose to use consistency as the metric to
aggregate the answers. Other methods evaluate whether the reasoning step can lead to the
correct answer by training a verifier (Li et al., 2023; Wang et al., 2023).

Self-Evaluation. Recent research on reducing reasoning errors is inclined to follow the
self-verify-then-correct pattern (Dhuliawala et al., 2023; Weng et al., 2022; Zhang et al.,
2023b; Ling et al., 2024; Miao et al., 2023). They design different procedures and prompts
to achieve better performance. Taking two typical approaches as examples, Dhuliawala
et al. (2023) design a chain-of-verification procedure to verify facts from its outputs, and
Miao et al. (2023) ask LLM to detect errors in their step-by-step rationales. However, recent
works (Huang et al., 2023; Hong et al., 2023) have pinpointed a critical limitation of LLMs in
self-correction during reasoning tasks. Their findings suggest that LLMs indiscriminately
alter reasoning steps without external feedback, irrespective of their initial accuracy.

Decoding Strategies. Conventional decoding strategies include greedy decoding (Teller,
2000), which selects tokens with the highest probabilities, and beam search (Graves, 2012),
which stores candidate beams for future prediction. In the era of LLMs, these decoding
strategies are implemented at a more coarse-grained level, especially on reasoning tasks
involving multiple steps. They decompose the reasoning process into steps (Khot et al.,
2022) and apply decoding or search algorithms (Yao et al., 2023; Xie et al., 2023).
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8 Conclusions

In this paper, we aim to eliminate errors in intermediate reasoning steps in CoT reasoning,
making it more reliable. To this end, we propose Deductive Beam Search that integrates
CoT with step-wise beam search and scores each reasoning step with a deductive verifier,
which verifies whether the reasoning step is a logical consequence. Beam search explores
by sampling potential reasoning steps, while the verifier exploits by selecting the most
deducible steps. To train such a verifier, we propose a scalable and labor-free data con-
struction method. It initiates by heuristically introducing errors into gold reasoning steps
and enhances the diversity and difficulty of training data by synthesizing hard negatives
through the verifier trained on those typical wrong steps. Extensive experiments show our
method’s effectiveness across various model scales and diverse reasoning tasks without
changing the standard CoT paradigm and parameters of LLMs. Further analysis proves the
verifiability and robustness endowed by our verifier, thereby significantly improving the
deducibility of the generated reasoning paths.
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results.

A Extended Experiments

Ablation study on beam size. We conduct experiments on how beam size affects per-
formance. Figure 4 shows the trend of DBS performance under single chain setting and
multiple chain setting. The performance steadily grows when the beam size rises.

Verifier Robustness. To ensure that our verifier can equally verify reasoning steps gen-
erated by different models, we visualize the accuracy under different deductive score
thresholds for Llama2-7b and ChatGPT, as depicted in Figure 5. The lines in the figure
represent polynomial fits of the data. Their near-parallel alignment suggests the robustness
of performance improvement across these models as the threshold increases. Intriguingly,
these lines also offer insights into the inductive reasoning capabilities of the two models.
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Figure 6: Accuracy under different reasoning
step length.

Ideally, the accuracy approaches zero at
the deductive score zero. However, the
observed non-zero accuracy suggests the
models’ inductive reasoning capabilities.
Although the reasoning process might
not align with the deductive reasoning
paradigm, LMs can still arrive at correct
conclusions, likely by intuitively skipping
over specific reasoning steps, which is the
act of inductive reasoning.

DBS Robustness. To demonstrate that DBS
can sustain its accuracy as the length of the
reasoning steps increases, we conducted ex-
periments to analyze the impact of reason-
ing step length on the final outcome’s ac-
curacy. The results, presented in Figure 6, indicate that DBS consistently achieves higher
accuracy, even when the reasoning process extends to 15 steps.

B Experimental Details

B.1 Training Data

At stage 1, we choose GSM8K dataset to train the general deductive verifier. The gold ratio-
nales provided are decomposed into sentences as gold reasoning steps. After filtering out
some steps that cannot be altered into false reasoning steps, we construct a training dataset
of 22,362 samples. At stage 2, the verifier from stage 1 is used to generate hard negative
reasoning steps as stated in Sec. 3. We choose Llama2-7b as our language model to generate
candidate false reasoning steps. For arithmetic reasoning and symbolic reasoning tasks, we
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Given the question, please give the rationales step by step and give a final answer.

Example 1:
Question:
Kate’s hair is half as long as Emily’s hair.
Emily’s hair is 6 inches longer than Logan’s hair.
If Logan hair is 20 inches, how many inches is Kate’s hair?
Answer:
Emily’s hair is 20-6 = 14 inches long.
Kate’s hair 14/2= 7 inches long.
Final Answer:7

Example 2:
Question:
John puts $25 in his piggy bank every month for 2 years to save up for a vacation.
He had to spend $400 from his piggy bank savings last week to repair his car.
How many dollars are left in his piggy bank?
Answer:
He saved money for 2 years, which is equal to 12 x 2 = 24 months.
The amount of money he saved is $25*24 = $600.
But he spent some money so there is $600 - $400 = 200 left.
Final Answer:200

Table 8: Prompt for arithmetic reasoning tasks.

use the MetaMathQA dataset to generate training data. For commonsense reasoning tasks,
we use the StrategyQA dataset to generate training data. Finally, we train the arithmetic
verifier on 150,000 samples and the commonsense verifier on 5,000 samples.

B.2 Training Details

At stage 1, we finetune deberta-v3-large with learning rate 1 × 10−5 and batch size 128. As
for margins, we set the margins between the gold reasoning step and grounding error
step/logic error step/irrelevant step to 0.3/0.6/0.9. At stage 2, we continue to finetune the
verifier from stage 1 with learning rate 1 × 10−6 and batch size 128. As for margins, we set
the margins between the gold reasoning step and hard negative reasoning step/logic error
step/irrelevant step to 0.3/0.6/0.9.

B.3 Prompts

For the results in Table 2, we use the following prompts:

• Arithmetic reasoning tasks share the same prompt, shown in Table 8.
• For StrategyQA, we use the prompt in Table 9.
• For CSQA, we use the prompt in Table 10.
• For Coin, we use the prompt in Table 11.

For the results in Table 6, we use the following prompts:

• For StrategyQA, we use prompt in Table 12.
• For CSQA, we use prompt in Table 13.
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Given the question, output the rationale step by step and give the final answer (yes or no).

Example 1
Question:
Do hamsters provide food for any animals?
Answer:
Hamsters are prey animals.
Prey are food for predators.
Final answer: yes

Example 2
Question:
Could a llama birth twice during War in Vietnam (1945-46)?
Answer:
The War in Vietnam was 6 months.
The gestation period for a llama is 11 months, which is more than 6 months.
Final answer: no

Table 9: Prompt for StrategyQA.

Given the question, output the rationale step by step and give the final answer.
You should choose the best answer.

Example 1
Question:
Sammy wanted to go to where the people were. Where might he go?
A. race track
B. populated area
C. the desert
D. apartment
E. roadblock
Answer:
Sammy wanted to go to places with many people.
Race track and apartment do not have many people.
The desert and roadblock have few people.
And, the populated area means that it is the place with many people.
Thus, Sammy should go to populated area.
Final Answer: B

Example 2
Question:
The fox walked from the city into the forest, what was it looking for?
A. pretty flowers
B. hen house
C. natural habitat
D. storybook
E. dense forest
Answer:
The forest does not have hen house or storybook.
The fox is a carnivore that does not look for flowers and forest.
The forest is a natural habitat for foxes.
Thus, it was looking for a natural habitat.
Final Answer: C

Table 10: Prompt for CSQA.
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Given the question, output the rationale step by step and give the final answer.

Example 1
Question:
A coin is heads up. sager does not flip the coin. zyheir flips the coin.
Is the coin still heads up?
Answer:
sager does not flip the coin, so the coin is heads up.
zyheir flips the coins, so the coin is tails up.
Final Answer: no

Example 2
Question:
A coin is heads up. mailey does not flip the coin. maurisa does not flip the coin.
Is the coin still heads up?
Answer:
mailye does not flip the coin, so the coin is heads up.
maurisa does not flip the coin, so the coin is heads up.
Final Answer: yes

Table 11: Prompt for Coin.

Given the question, output the rationale step by step and give the final answer (yes or no).

Example 1
Question:
Do hamsters provide food for any animals?
Answer:
Fact:
Hamsters are prey animals.
Prey are food for predators.
Reasoning:
Hamsters are food for some predators.
Final answer: yes

Example 2
Question:
Could a llama birth twice during War in Vietnam (1945-46)?
Answer:
Fact:
The War in Vietnam was 6 months.
The gestation period for a llama is 11 months, which is more than 6 months.
Reasoning:
A llama could not birth twice during War in Vietnam.
Final answer: no

Table 12: Prompt for StrategyQA with prompt.
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Given the question, output the rationale step by step and give the final answer.
You should choose the best answer.

Example 1
Question:
Sammy wanted to go to where the people were. Where might he go?
A. race track
B. populated area
C. the desert
D. apartment
E. roadblock
Answer:
Fact:
Sammy wanted to go to places with many people.
Race track and apartment do not have many people.
The desert and roadblock have few people.
And, the populated area means that it is the place with many people.
Reasoning:
Thus, Sammy should go to populated area.
Final Answer: B

Example 2
Question:
The fox walked from the city into the forest, what was it looking for?
A. pretty flowers
B. hen house
C. natural habitat
D. storybook
E. dense forest
Answer:
Fact:
The forest does not have hen house or storybook.
The fox is a carnivore that does not look for flowers and forest.
The forest is a natural habitat for foxes.
Reasoning:
Thus, it was looking for a natural habitat.
Final Answer: C

Table 13: Prompt for CSQA with recalling commonsense first.
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