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1 INTRODUCTION
An important property of our way of interacting with the real world is that we can, in many cases,
form a representation of what to do separately from how to do it. And when our preferred way of
solving a task is no longer feasible, we can often retrain ourselves to solve a task differently, using
our high-level understanding of what needs to be done. In this paper we study the potential benefits
of a separation of concerns between high-level task understanding and low-level actuation in the
context of a hierarchical reinforcement learning system consisting of a high-level controller that sets
subgoals associated with a guiding reward, and a low-level controller that achieves these subgoals.
The low-level controller is trained to maximize the guiding reward, while the high-level is trained to
maximize task reward. Both parts of the system can be trained simultaneously or separately.

Endowing an agent with an ability to separate task understanding from task execution can be
advantageous for a variety of reasons, and there has been significant recent interest (Heess et al., 2016;
Frans et al., 2017; Hausman et al., 2018; Florensa et al., 2017; Denil et al., 2017; Andreas et al., 2016)
e.g. under the banner of hierarchical RL or motor primitives in learning re-usable low-level policies,
in order to learn new tasks faster, or to learn multiple tasks with the same body (See Appendix B for
a summary). In this paper we focus on one specific perspective, whereby the high-level controller in
a HRL system is re-used, while the low-level controller is retrained, in order that the same task can
be solved with different bodies or if the body changes. There is a number of important scenarios for
this perspective, and some of them have been discussed in recent works (Gupta et al., 2017; Devin
et al., 2016). Firstly, for an embodied agent it is natural to expect that the body will undergo changes
e.g. due to damage or wear-and-tear. Secondly, manufacturing imperfections, e.g. with cheaper
and thus lower quality hardware, often mean that different instances of the same body can exhibit
variations significant enough to affect performance when using a single learned controller. Thirdly,
the controller may be trained in simulation before being applied to physical bodies (Rusu et al., 2016;
Peng et al., 2017a). While the high-level goals are the same in simulation and on real hardware, there
can be significant changes in the low-level dynamics and perceptual features.

In all these scenarios, the low-level controller will have to adapt while the high-level subgoals remain
unchanged. This low-level adaption should be achieved faster than retraining the whole controller.
Intuitively, the high-level subgoals should provide more direct learning signals that can be quickly
used by the low-level controller with less reliance on rewards from the environment. To illustrate
this general idea we consider a simplified scenario in which we assume that an invariant observation
space (for the high-level controller) and a plausible set of subgoals are available (See Appendix C).

We consider multiple locomoting bodies in a navigation environment and show that: 1) the system
can indeed be trained end-to-end to solve non-trivial tasks, 2) the subgoals with associated guiding
rewards can lead to faster learning than relevant baselines since this setup simplifies the credit-
assignment problem, 3) the resulting system achieves robustness to changes in the low-level actuation
including damage since the system can be rapidly re-trained using only guiding rewards (i.e. no task
reward), 4) the high-level controller can be transferred across very different body types.

Architecture. We design our control architecture so as to achieve a separation between the high-level
task objectives and the low level control, i.e. between the what and the how. The model consists of a
two layer control hierarchy comprising a high-level (HL) controller and a low-level (LL) controller.
The HL controller specifies subgoals g ∈ G to the LL controller. The LL controller produces body-
specific control signals in response. In each environment state s, an agent receives observations
o of various types. We assume that we can divide these observations into two components. The
first component oL consists of the “body-centric” observations. For a legged robot this includes,
for instance, joint angles, joint velocities, and various other low-level on-board sensors such as
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accelerometer, velocimeter, or gyroscopes. It also includes ray-casting information, which provide
distances to objects from the body. The second component oH consists of observations that provide
global, body-independent but task-relevant information, e.g. top-mounted cameras or minimaps.
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Figure 1: Schematic of our architecture.

To achieve the desired separation of con-
cerns and invariance to details of the body
and actuation scheme we use two strategies:
Firstly, we shield the HL controller from
LL controls, by not providing it with the
body-specific information. Secondly, we
provide the LL controller with body-centric
information, but do not train it directly to
maximize task reward. Instead we associate
each subgoal with a guiding reward which
the LL controller aims to maximize. In our
scheme only the HL controller is trained to
maximize overall task reward.

Environment. All our experiments are con-
ducted in a physical simulation environment implemented in Mujoco (Todorov et al., 2012). We used
a more difficult version of the walls course similar to (Heess et al., 2017) (Figure 2 (right)) as the
testbed for our HRL system. The difficulty comes from the longer wall obstacles that agents have to
navigate around. To show that our HRL system is able to transfer high-level task understanding across
bodies with different properties and capabilities, we consider two torque-controlled walkers: Ball,
an easy-to-control body (Figure 2 (left)), and Ant, a harder-to-control quadrupedal body (Figure 2
(middle)). These two body types represent two degrees of difficulty for learning the LL controller.
We also designed two “damaged” bodies: Damaged Ball, where we invert the gear of the Ball joints
(as a result, control orders are also inverted), and Damaged Ant, where we freeze some leg joints of
the Ant walker. As a result, the damaged Ant will need to adapt to walking using the undamaged legs.

Figure 2: Visualization of different bodies (an easy-to-control Ball and a hard-to-control Ant), and
the walls course for the navigation task. White dots show the egocentric rays cast by the walker.

2 RESULTS
HRL vs. Baselines We consider several Baseline models: (1) a two-stream network similar to the
LL controller in our HRL architecture (Figure 1), but trained with the task reward; (2) a similar
two-stream network trained with task rewards but that also receives the minimap (See Appendix C)
as observations; and (3) the HRL setup but without guiding rewards. For the Ball, a body that is
simple to control, we only observe a small advantage of the hierarchical setup (Figure 3(a)) over the

Figure 3: HRL benchmark performance on Ball (left) and Ant (right).
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baselines. For the Ant (Figure 3(b)), we see a more pronounced advantage of using the HRL system.
The performance relative to the additional baselines (2) and (3) suggests that the advantage is indeed
due to the guiding rewards rather than the difference in observation spaces.

Figure 4: Left: Ball to Damaged-Ball (D-Ball) transfer. Right: Ball to Ant transfer.
.

Figure 5: Ant to damaged Ant (D-Ant) transfer. Left to Right: Damaged quadrupedal Ants navigate
with three, two, and one leg(s) available.

Transferring Task Goals to Other Bodies In this section we present the results for two transfer
scenarios: (1) transferring from a fully functional body to a damaged one (Ball/Ant to damaged
Ball/Ant) and (2) transferring between bodies of different complexities (Ball to Ant).
We show Ball to damaged Ball transfer results in Figure 4 (left). In this setting, compared to the
training from scratch baseline, transferring the HL task goals leads to significantly faster learning
on a new (damaged) body. For a non-hierarchical Baseline model, finetuning after pre-training on a
normal body is actually slower than learning from scratch, since the agent needs to unlearn its learned
behavior first before adapting to a new body. We consider transferring from a fully functional Ant
body to a damaged one too. The damaged Ant has one, two or three (out of four) leg joints frozen.
These modifications increase the difficulty of the task considerably. Transferring the task goals,
by means of transferring the HL controller trained on a normal body, allows the damaged Ants to
quickly adapt to their body changes, and successfully learn to solve the navigation task, in the extreme
scenario with only one usable leg. As for the Ball we observe faster learning, compared to learning
controllers for the damaged Ants from scratch. Finally, we investigate the possibility of transferring
the HL controller trained on the Ball to the Ant body. This can be seen as a curriculum over body
complexity: we first learn to solve the task with a simpler body before transferring the HL controller
to a more complex one. From the results in Figure 4 (right), we observe that by transferring task
goals with a frozen HL controller, learned on a simple Ball body, our method outperforms training
from scratch. This is an encouraging result in that it suggests that in certain situations a complex task
can be solved first with an easy-to-control body and that the understanding gained in the process can
then be used to facilitate learning with a more complex body.
We observe that freezing the HL controller (in contrast to finetuning it) is in general the better
performing choice. Intuitively, on a new body, the initial noisy behavior of the LL controller
makes the gradient updates to the HL controller unstable, potentially ruining the learned HL policy.
However, for simple bodies/systems the LL response to the subgoals is easy to learn and the high-level
controller’s performance therefore does not degrade.
Conclusions. Our results suggest that there can be a benefit to introducing a separation of concerns
in the form of subgoal specification vs. subgoal execution between a high-level and a low-level
controller, allowing the transfer high-level task understanding across bodies of different morphologies.
To demonstrate these benefits we made two simplifying assumptions: the availability of a suitable
subgoal space and of a body-invariant perceptual space. Relaxing these assumptions will be the topic
of future work.
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A HRL FORMULATIONS

Here we detail the formulations for the HRL system used in our work.

To encourage the HL controller to learn over longer time scales, we set it up to sample a new subgoal
gt for the LL controller only once every k LL controller steps. In other words, for t = 0, k, 2k, . . .
we draw gt from the HL policy πH(·|oH≤t) given the history of past global observations oH≤t. The LL
controller operates at every time step and samples body-specific actions at ∼ πL(·|oL≤t, gt̄(t)) from
the LL policy, where oL≤t are the body-centric observations up to time t and gt̄(t) is the most recently
sampled subgoal. Together, the HL and LL controllers define the policy π for the agent.

The HL controller maximizes discounted task return

JH = Eπ(τ)

 ∑
t∈{0,k,2k,... }

(γH)t/k

(
t+k−1∑
t′=t

rH(st, at)

)
where rH(st, at) is the task rewards and τ = (s0, g0, a0, s1 . . . , sk, gk, ak, . . . ) is the trajectory
sampled jointly from πH and πL following the procedure described in the preceding paragraph. Since
the subgoal is updated only every k steps, we choose to discount the rewards only every k steps.

The LL controller is trained to maximize the guiding rewards rL(oL≤t, at, gt̄(t)):

J L = Eπ(τ)

 T∑
t=0

∏
t′≤t

γLt′

 rL(oL≤t, at, gt̄(t))


Note that the guiding reward is a function of the most recent subgoal specified by the HL controller,
and can depend on the observations in which that subgoal was chosen. Furthermore, we allow for a
(possibly time-varying) discount factor that can deviate from the discount factor associated with the
task.
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The above scheme can be implemented in different ways. In particular, the subgoal space G can be
either continuous or discrete. In most of our experiments the subgoals are associated with movement
in discretized directions, such as “moving forward”, “moving left” or “moving right” (see Section C).
Furthermore, the low-level learning problem can be seen as a sequence of independent tasks imposed
by the high-level controller, or as an ongoing parameterized task.

Further points are noteworthy about this setup: Firstly, due to the particular choice of discounting
of the task reward the effective horizon of the learning problem for the high-level controller can be
very long. Secondly, the learning problem for the low-level controller is effectively task independent.
Thirdly, in this setup the horizon for the high-level and the low-level learning problems can be
decoupled. In particular, credit assignment to the low level can be nearly immediate while the
high-level can still take long-term task reward into account. Finally, for training of the low-level
controller the task reward is not needed. The model can be optimized using policy gradients for both
levels. From the perspective of the HL controller, the LL behavior is given and learning πH reduces
to policy gradient with action space G:

∇θJH = Eπ(τ)

 ∑
t∈{0,k,2k,... }

∇θ log πH(gt|oH≤t)(RHt − bH(oH≤t))


where RHt =

∑
t′={t,t+k,t+2k,... }(γ

H)(t′−t)/kr̄t′ and we use the shorthand r̄t =∑t+k−1
t′=t rH(st′ , at′). bH is the baseline. For the LL controller we similarly have

∇ψJ L = Eπ(τ)

[∑
t

∇ψ log πL(at|oL≤t, gt̄(t))(RLt − bL(oL≤t, gt̄(t)))

]
where the low level return is

RLt =
∑
t′≥t

 t′∏
t′′=t+1

γLt′′

 rL(oL≤t′ , at′ , gt̄(t′))

and bL is the current subgoal dependent baseline. Note in both cases the expectations are taken with
respect to both high and low-level actions. If either controller is being optimized then the other
controller can be seen as forming part of the (stochastic) environment.

B RELATED WORK

There has been a large amount of interest in hierarchical or otherwise structured network architectures
that allow reusing previously acquired behaviors across tasks and/or for learning faster in the first
instance.

There is a large body of classical work on hierarchical approaches in reinforcement learning (Dayan
& Hinton, 1993; Sutton et al., 1999; Precup, 2000; Dietterich, 2000; Sutton, 1995; Boutilier et al.,
1997; Dayan, 1993; Parr & Russell, 1998; Precup et al.; 1998; Wiering & Schmidhuber, 1997).

Recent works such as (Heess et al., 2016; Frans et al., 2017; Hausman et al., 2018; Florensa
et al., 2017) have focused on learning and transferring reusable low-level skills using respectively
information hiding, meta-learning, and information-theoretic regularization to induce a separation of
concerns in the architecture.

(Vezhnevets et al., 2017) has been an inspiration for our work. They propose an architecture in which
a high-level controller explicitly sets subgoals for and provides appropriate rewards to a low-level
controller. However, in their work observations are unstructured and goals are discovered in an
arbitrary feature space. The resulting high-level controller is unlikely to be suitable for cross body
transfer without additional regularization.

(Devin et al., 2016) propose an architecture that enforces a separation between task-specific and
body-specific modules which can then be combined in novel ways. (Denil et al., 2017) employ a
similar idea but focus on achieving new task variations rather than novel task-body combinations.
(Gupta et al., 2017) induce an invariant feature space in which skills for different bodies can be
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represented. (Devin et al., 2016; Heess et al., 2016; Gupta et al., 2017) make similar assumptions to
our work regarding a separation of body-specific and body-independent observations.

While not directly concerned with learning transferable subgoals, (Andreas et al., 2016) is related
in spirit in that they fix the high-level structure associated with tasks (i.e. their decomposition into
sub-policies) to induce reusable policy components.

There has also been a series of works learning controllers that are robust to changes in the dynamics
or allow for limited structural modifications to the body. For instance wang2018nervenet have trained
graph-structured controllers mimicking the topology of the body that exhibit a certain degree of
robustness to changes in the structure of the body. (Yu et al., 2017; Rajeswaran et al., 2016; Peng
et al., 2017b) trained controllers to exhibit some robustness to changes in the underlying dynamics of
the model by exposing them to many different conditions. (Yu et al., 2017) combined this idea with
explicit online system identification.

C EXPERIMENTAL SETUP DETAILS

Task reward. While carefully designed reward shaping can help improving learning, we rely on the a
simple environment reward defined in Heess et al. (2017), which is proportional to the instantaneous
velocity along the x-axis.

Guiding reward and subgoals. The HL subgoals gt are chosen from the eight (inter-)cardinal
directions illustrated in Figure 6(right). Given a subgoal gt drawn at time t, the guiding reward for
the LL controller to move in direction gt is defined as:

rIt = −1

k

k−1∑
i=0

dist(ōt+i − ōt, gt), (1)

where dist is a quasi-metric, ōt represents the agent’s global coordinates (x, y), which can be
extracted from global observations oH . For dist we use

dist(ōt+i − ōt, gt) = −(ōt+i − ōt)>
gt
‖gt‖

,

but experimented with different functions (See Appendix D). These subgoals and guiding rewards
ground the communication channel between HL and LL controllers and encourage the LL controller
to move in the direction given by gt.

Observations for LL. The LL controller makes use of body-centric observations from the environ-
ment. The egocentric ray-casting is visualized in Figure 2. The walker projects N = 60 rays from
ray-casters attached to its body, in directions spread out over a pre-defined field of view (120 degrees).
Ray-casting returns the distance of the object hit by each ray.

Observations for HL. In this work we directly construct global observations that are body-
independent, for which we designed a “minimap” observation Figure 6(left). At each time step, the
minimap represents a top-down snapshot of the navigation environment. Since the course is long,
the minimap is a moving window along the x-axis, covering about a third of the entire course. The
minimap is a essentially sparse binary matrix that indicates the positions of the walls as well as
the walker’s position. It is worth noting that the use of the minimap is purely for the purpose of
constructing a body-invariant input for the HL controller. We have shown empirically in Figure 3 that
using minimap alone does not give a performance edge over using terrain feature map observations.
The HL and LL controllers also receive global body orientation and position coordinates.

D ADDITIONAL STUDIES

Learning horizon for HL We investigate the influence of the time horizon (k in Equation (1)).
Figure 7 shows that values of k larger than 1 has some advantage for complex bodies like Ant,
indicating that learning with longer-term horizon in HL controller has some benefit. For the simpler
Ball body, the difference is insignificant.
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[0, 1]

[-1, 1][-1, 0][-1, -1]

[-1, 0]

[-1, -1] [1, 1][1, 0]

Figure 6: HL observation and subgoals. Left: a top-down “minimap” is constructed as the invariant
HL input. Right: grounded subgoals (discrete and normalized directions). Domain knowledge is
used as we assume the walker navigates itself on a 2-D plane.

Quasi-metric for the guiding reward We also investigate different quasi-metric functions for the
dist function in the guiding reward. We test cosine, projection and Euclidean distances, which are
defined as:

dist(a,b) =


− a·b
|a||b| (cosine)
−a · b

|b| (projection)
||a− b|| (Euclidean)

(2)

Empirical results in Figure 7 suggest that the projection distance, given by projecting the movement
vector ōt+i − ōt onto the subgoal vector gt works best. This distance encourages the LL controller to
fulfill the HL subgoals, by not only rotating to the correct direction, but also making progress along
that direction; Cosine distance does not have such property as it loses the magnitude of the movement
vector. The Euclidean distance sets absolute goals where the walker might not be able to reach, and it
is not robust to changes in velocity scale.

Figure 7: Additional studies. Top Row: different HL time horizons. Bottom Row: different
quasi-metrics for guiding reward.
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E VIDEO DEMONSTRATIONS

We show video recordings to demonstrate the behavior of the trained agents in our experiments:

• (1) Normal Ant body trained with our HRL system (https://www.youtube.com/
watch?v=PxuIiNzNCzI)
• (2) Damaged Ant navigating with 3 Legs, with task goals transferred from (1) (https:
//www.youtube.com/watch?v=RDINb5GwgKA)
• (3) Damaged Ant navigating with 2 Legs, with task goals transferred from (1) (https:
//www.youtube.com/watch?v=3UZOzWYv7e8)
• (4) Damaged Ant navigating with 1 Leg, with task goals transferred from (1) (https:
//www.youtube.com/watch?v=rFs3iOQtLi4)
• (5) Normal Ball body trained with our HRL system (https://www.youtube.com/
watch?v=12YUeuhGTjM)
• (6) Damaged Ball navigating with inverted gears, with task goals transferred from (5).

(https://www.youtube.com/watch?v=3019wIJvsFc)
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