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ABSTRACT

Modern machine learning models are characterized by large hyperparameter search
spaces and prohibitively expensive training costs. For such models, we cannot
afford to train candidate models sequentially and wait months before finding a
suitable hyperparameter configuration. Hence, we introduce the large-scale regime
for parallel hyperparameter tuning, where we need to evaluate orders of magnitude
more configurations than available parallel workers in a small multiple of the
wall-clock time needed to train a single model. We propose a novel hyperparameter
tuning algorithm for this setting that exploits both parallelism and aggressive early-
stopping techniques, building on the insights of the Hyperband algorithm (Li et al.,
2016). Finally, we conduct a thorough empirical study of our algorithm on several
benchmarks, including large-scale experiments with up to 500 workers. Our results
show that our proposed algorithm finds good hyperparameter settings nearly an
order of magnitude faster than random search.

1 INTRODUCTION

Although machine learning models have recently achieved dramatic successes in a variety of practical
applications, these models are highly sensitive to internal parameters, i.e., hyperparameters. In this
modern era of machine learning, three trends motivate a new approach to hyperparameter tuning:

1. High-dimensional hyperparameter spaces. Machine learning models are becoming increasingly
complex, as evidenced by modern neural networks with dozens of hyperparameters, e.g., number of
layers, width of each layer, forms of regularization, types of nodes, type of activation nonlinearities,
etc. For such complex models with hyperparameters that interact in unknown ways, a practitioner
is forced to evaluate potentially thousands of different hyperparameter settings.

2. Increasing training times. As datasets grow larger and models become more complex, training
a model has become dramatically more expensive, often taking days or weeks on specialized
high-performance hardware. For instance, Google’s neural machine translation system takes
one week to train using eight GPUs in parallel (Wu et al., 2016) and Google’s LSTM acoustic
model (Sak et al., 2014) also takes a few weeks to train. This trend is particularly onerous in
the context of hyperparameter tuning, as a new model must be trained to evaluate each putative
hyperparameter configuration.

3. Rise of parallel computing. The combination of a growing number of hyperparameters and
longer training time per model preclude the use of sequential hyperparameter tuning methods;
we simply cannot wait months or years to find a suitable hyperparameter setting. Thankfully,
the expansion of cloud computing resources has made specialized hardware like GPUs and
TPUs (Dean and Hölzle, 2017) widely accessible. Leveraging these parallel and distributed
computational resources presents an attractive path forward to combat the increasingly challenging
problem of hyperparameter optimization.

Our goal is to design a hyperparameter tuning algorithm that can effectively leverage parallel resources.
This goal seems trivial with standard methods like random search, where we could train different
configurations in an embarrasingly parallel fashion. However, in practice, the number of putative
configurations often dwarfs the number of available parallel resources. Hence, we aim to tackle the
following problem, which we refer to as the large-scale regime for hyperparameter optimization:

Evaluate orders of magnitude more hyperparameter configurations than available parallel
workers in a small multiple of the wall-clock time needed to train a single model.

1



Under review as a conference paper at ICLR 2018

Existing parallel hyperparameter tuning methods generally fall into two categories: (1) embarrassingly
parallel methods that use a fixed sampling scheme (i.e. random search and grid search); and
(2) adaptive configuration selection schemes using Bayesian optimization. Methods in the first
category are ill suited for the large-scale regime because they can only evaluate configurations on
the order of number of parallel workers. Methods in the second category are general black-box
optimization routines that are complex and computationally expensive. In contrast, our proposed
method empirically exhibits state-of-the-art performance without these added layers of complexity.

Our main contribution in this work is a practical hyperparameter tuning algorithm for the large-
scale regime that exploits parallelism and aggressive early-stopping techniques. We build upon the
Hyperband algorithm (Li et al., 2016), adapting it for the parallel setting and improving it in two
significant ways, as described in Section 3.1. Furthermore, we conduct a thorough empirical study of
our algorithm on multiple benchmarks, demonstrating success in the large-scale regime on tasks with
up to 500 workers. Lastly, we present a small case study on the efficient use of parallel computing
resources for hyperparameter tuning.

2 RELATED WORK

We review prior work on hyperparameter tuning in both the sequential and parallel settings. While
there are many sequential algorithms that have associated implementations for the parallel setting, we
categorize algorithms not specifically designed for the parallel setting as sequential methods.

2.1 SEQUENTIAL METHODS

Existing hyperparameter tuning methods attempt to speed up the search for a good configuration
by either adaptively selecting configurations or adaptively evaluating configurations. Adaptive
configuration selection approaches attempt to identify promising regions of the hyperparameter
search space from which to sample new configurations to evaluate. Well-established configuration
selection approaches include SMAC, Spearmint, TPE, and GP-UCB (Hutter et al., 2011; Snoek
et al., 2012; Bergstra et al., 2011; Srinivas et al., 2010), which have been shown to outperform
random search in empirical studies. However, by relying on previous observations to inform which
configuration to evaluate next, these algorithms are inherently sequential and thus not suitable for the
large-scale regime, where the number of updates to the posterior is limited.

Adaptive configuration evaluation approaches attempt to early-stop poor configurations and allocate
more training “resources” to promising configurations. The use of resources can, for example, be
measured as the of number of training iterations, cpu or wall-clock time, or the number of training
examples. Previous methods like György and Kocsis (2011); Agarwal et al. (2011); Sabharwal et al.
(2016) provide theoretical guarantees under strong assumptions on the convergence behavior of
intermediate losses. Krueger et al. (2015) relies on a heuristic early-stopping rule based on sequential
analysis to terminate poor configurations.

Hybrid Bayesian optimization approaches that combine adaptive configuration selection and evalua-
tion include Swersky et al. (2013; 2014); Domhan et al. (2015); Klein et al. (2017a). However, these
methods scale poorly with number of configurations due to the cubic complexity of fitting a Gaussian
process (Snoek et al., 2015). Nonetheless, Klein et al. (2017a) recently introduced Fabolas and
demonstrated state-of-the-art performance on several hyperparameter tuning tasks; we will provide a
detailed comparison to Fabolas in Section 4.

Lázaro-Gredilla et al. (2010); Wilson et al. (2015) improve the scaling profiles of Gaussian processes
by imposing additional structure on the model. Additionally, Bayesian deep neural networks, which
scale linearly as a function of the number of observations, have been used to model the posterior
(Snoek et al., 2015; Springenberg et al., 2016). However, the improved computational tractibility
comes at a price; for a fixed number of evaluations, these methods generally underperform vanilla
Gaussian processes from an accuracy perspective.

Li et al. (2016) proposed Hyperband, an adaptive configuration evaluation approach which does
not have the aforementioned drawbacks and showed that it achieves state-of-the-art performance
on several empirical tasks. At first glance, the Hyperband algorithm appears trivial to parallelize
since all evaluated configurations are drawn independently. However, the algorithm eliminates
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configurations at an exponential rate, severely limiting the degree of parallelism in later elimination
rounds. Additionally, these eliminations are performed at fixed intervals, making the algorithm
susceptible to stragglers. Moreover, the divide-and-conquer strategy of running an instance of the
algorithm on each machine does not reduce the latency of receiving an output from the algorithm.
Our proposed algorithm adapts Hyperband for the large-scale regime by addressing these issues.

Note that Hyperband uses randomly sampled hyperparameter configurations by default, but can be
combined with any sampling mechanism. For example, Klein et al. (2017b) combined Bayesian
neural networks with Hyperband by first training a Bayesian neural network to predict learning curves
and then using the model to select promising configurations to use as inputs to Hyperband.

2.2 PARALLEL METHODS

Grid search and random search are popular in practice because they are trivial to parallelize. Nonethe-
less, distributed versions of SMAC, Spearmint, and TPE (Hutter et al., 2011; Snoek et al., 2012;
Bergstra et al., 2011) are sometimes used. These methods either act greedily (Spearmint) or rely
on randomness to provide additional configurations to evaluate (SMAC, TPE). More sophisticated
batch Bayesian optimization methods attempt to construct a batch of configurations by optimizing a
joint objective (Shah and Ghahramani, 2015; González et al., 2016; Wu and Frazier, 2016). However,
these methods fair poorly in the large-scale regime since all configurations are trained to completion.

As for hybrid adaptive configuration selection and evaluation methods, the hybrid sequential methods
mentioned in Section 2.1 can be parallelized using constant liar (CL) type heuristics (Ginsbourger
et al., 2010; González et al., 2016). These heuristics fill in the objective value of pending configura-
tions with a constant before proposing new configurations to try. Note that assuming the Bayesian
model is correct, algorithms parallelized using the CL heuristic are inferior to the sequential version,
which uses a more accurate posterior, updated with true objective values, to propose new points.

Similar to the sequential method in Domhan et al. (2015), Rasley et al. (2017) uses parametric
learning curves to perform early-stopping but adds a scheduling algorithm to effciently use parallel
resources. More recently Golovin et al. (2017) introduced Vizier, a black-box optimization service
with support for multiple tuning methods and early-stopping options. For succinctness, we will
refer to Vizier’s default Bayesian optimization algorithm as “Vizier” with the understanding that it is
simply one of methods available on the Vizier platform. We compare to Vizier in Section 4.3.

Another class of related methods focus on learning neural network architectures for a given task in
a large-scale setting (Zoph and Le, 2017; Real et al., 2017). Real et al. (2017) uses evolutionary
algorithms to design neural network architectures for image classifiers. A different approach is
taken in Zoph and Le (2017), which uses reinforcement learning to learn a policy used to generate
neural network architectures that perform well on a given task. While these method match or even
outperform human designed architectures, they are computationally expensive and require task
dependent specifications on how architectures can be modified to arrive at new architectures. We
note that Zoph and Le (2017) achieves state-of-the-art performance on the Penn Treebank language
modeling task, outperforming previous methods by a large margin; we consider a similar tuning task
in Section 4.3. However, they explore a much larger search space and the proposed architecture still
requires hyperparameter tuning of learning parameters, weight decay, and batchnorm epsilon.

3 ALGORITHM

Hyperband (Li et al., 2016) calls the Successive Halving algorithm (Karnin et al., 2013; Jamieson
and Talwalkar, 2015), with different early-stopping rates as a subroutine. Li et al. (2016) showed that
Successive Halving with aggressive early-stopping matches or outperforms Hyperband for a wide
array of hyperparameter optimization tasks. Additionally, for modern day hyperparameter tuning
problems with high-dimensional search spaces and models with high training cost, aggressive early-
stopping is necessary for the problem to be tractable. Hence, we focus on adapting the synchronous
Successive Halving algorithm (SHA) for the parallel setting. Note that parallelizing Hyperband is
trivia after parallelizing SHA—simply take the best performing configuration across multiple brackets
of SHA with different early-stopping rates.
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Algorithm 1: Asynchronous Successive Halving Algorithm.
Input: r, η (default η = 3), s
Algorithm async_SHA()

repeat
for free worker do

(θ, k) = get_job()
worker performs run_then_return_val_loss(θ, rηs+k)

end
for completed job (θ, k) with loss l do

Update configuration θ in rung k with loss l.
end

Procedure get_job()
// A configuration in a given rung is “promotable” if its
validation loss places it in the top 1/η fraction of completed
configurations in its rung and it has not already been promoted.
Let θk be the furthest trained promotable configuration θ, with k indicating its rung.
if θk exists then

Promote θk to rung k + 1.
return θk, k + 1

else
Add a new configuration θ0 to bottom rung.
return θ0, 0

end

In Algorithm 1, we introduce a “conservative” asynchronous algorithm, which has the property of
advancing all configurations that would have been advanced by synchronous SHA. Thus, the final
selected configuration is guaranteed to be at least as good as the one returned by the synchronous
algorithm, at the expense of a potentially larger total computational cost.

Algorithm 1 requires as input a minimum resource r, the reduction factor η > 1, and the minimum
early-stopping rate s. We will refer to trials of SHA with different values of s as brackets and, within
a bracket, we will refer to each round of promotion as a rung with the base rung numbered 0 and
increasing. For a given η, only the top 1/η fraction of configurations are promoted to the next rung.
For a given s, a minimum resource of rηs will be allocated to each configuration. Hence, lower
s corresponds to more aggressive early-stopping, with s = 0 prescribing a minimum resource of
r. Another component of the algorithm is the run_then_return_val_loss(θ, r) subroutine,
which returns the validation loss after training the model with the hyperparameter setting θ and
resource allocation r. The subroutine is asynchronous and the code execution of async_SHA
continues after the job is passed to the worker.

Asynchronous SHA promotes configurations to the next rung whenever possible instead of waiting
for a rung to complete before proceeding to the next rung. Additionally, if no promotions are possible,
the asynchronous algorithm simply adds a configuration to the base rung, so that more configurations
can be promoted to the upper rungs. This promotion scheme is laid out in the get_job subroutine.

From the promotion scheme, it is clear that Algorithm 1 is asynchronous because a new job can be
requested at any time and does not require waiting for other jobs to complete. Thus, no training
job or advancement decision is blocked due to stragglers. Of course, this also means we may
prematurely advance some configurations, but the probability of incorrect promotions decreases as
more configurations are evaluated.

Note there is no bound on the number of rungs in a bracket and, therefore, no bound on the maximum
resource that can be allocated to a given configuration. However, an upper bound on the maximum
resource is often desired (i.e. limit the number of epochs of stochastic gradient descent when training
a neural network to prevent overfitting (Hardt et al., 2016)). Algorithm 1 can be easily adapted to
enforce a maximum resource per configuration by limiting the number of rungs. Specifically, for a
given maximum resource R and bracket s, limit the number of rungs to logη(R/r)− s+ 1.
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Finally, since Hyperband simply runs multiple brackets of SHA, we can parallelize Hyperband by
taking the minimum across multiple brackets of asynchronous SHA. In practice, if prior knowledge
is available about the task, a user can run a specific bracket with a target early-stopping rate instead
of running all possible brackets as is done by Hyperband. In our experience, early-stopping is helpful
for most neural network type tasks and brackets with minimum resources of R/64 or even R/256
are reasonable for a given maximum resource per configuration of R.

3.1 ALGORITHM DISCUSSION

Asynchronous SHA improves upon the synchronous version of the algorithm in two important ways:

1. Li et al. (2016) has two versions of Successive Halving, one for the finite horizon (bounded
resource per configuration) and another for the infinite horizon setting. Asynchronous SHA
consolidates the two settings into one algorithm. For the finite horizon setting, simply limit
the number of rungs per bracket. For the infinite horizon setting, the maximum resource per
configuration increases naturally as configurations are promoted to higher rungs. In contrast, the
synchronous version of the algorithm relies on the doubling trick and reruns brackets with larger
budgets to increase the maximum resource.

2. The algorithm analyzed in Li et al. (2016) differs from the algorithm used in practice. The
theoretical analysis relies on the budget per bracket increasing so that the number of evaluated
configurations n will eventually be large enough to find a sufficiently good configuration. In
contrast, the algorithm recommended for use in practice runs a bracket with a fixed budget multiple
times so that the waiting time for a configuration trained on the maximum resource does not
double with each outer loop. Asynchronous SHA naturally grows the number of configurations
and trains a configuration on the maximum resource whenever possible, so we do not need to
rerun brackets or wait exponentially longer for configurations trained to completion.

A theoretical treatment of asynchronous SHA is out of the scope of our paper and reserved for future
work. However, we conjecture that the theoretical guarantees for synchronous SHA will also apply
for our proposed algorithm.

4 EMPIRICAL EVALUATION

In this section, we first present experiments in the sequential setting to provide a point of comparison
for asynchronous SHA and to compare Hyperband with a recent Bayesian optimization method
combining adaptive configuration selection and evaluation method. Next, we show that asynchronous
SHA achieves comparable performance as the serial version of the algorithm and is not hurt too much
by incorrect promotions. Finally, we present large-scale experiments using asynchronous SHA on a
language modeling task and a speech acoustic modeling task.

4.1 COMPARISON WITH FABOLAS IN SEQUENTIAL SETTING

Klein et al. (2017a) showed that Fabolas can be over an order of magnitude faster than existing
Bayesian optimization methods. Additionally, the empirical studies presented in Klein et al. (2017a)
suggest that Fabolas is faster than Hyperband at finding a good configuration. We conducted our
own experiments to compare Fabolas with Hyperband on the following tasks: (1) tuning an SVM
using the same search space as Klein et al. (2017a), (2) tuning a convolutional neural network (CNN)
with the same search space as Li et al. (2017) on CIFAR-10 (Krizhevsky, 2009), and (3) tuning a
CNN on SVHN (Netzer et al., 2011) with varying number of layers, batch size, and number of filters
(see Appendix A.1 for more details). In the case of the SVM task, the allocated resource is number
of training datapoints, while for the CNN tasks, the allocated resource is the number of training
iterations. We note that Fabolas was specifically designed for data points as the resource, and hence,
is not directly applicable to tasks (2) and (3). However, freeze-thaw Bayesian optimization (Swersky
et al., 2014), which was specifically designed for models that use iterations as the resource, is known
to perform poorly on deep learning tasks (Domhan et al., 2015). Hence, we believe Fabolas to be a
reasonable competitor for tasks (2) and (3) as well, despite the aforementioned shortcoming.

We find that when using intermediate losses recorded by Hyperband to track the best performing
configuration, Hyperband actually outperforms Fabolas. Additionally, as mentioned in Section 2.1,

5



Under review as a conference paper at ICLR 2018

0 100 200 300 400 500 600 700 800
Duration (Minutes)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rro

r

SVM on vehicle
Hyperband (by rung)
Hyperband (by bracket)
Fabolas
Random

0 100 200 300 400 500 600 700 800
Duration (Minutes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
rro

r

SVM on MNIST

Hyperband (by rung)
Hyperband (by bracket)
Fabolas
Random

0 500 1000 1500 2000 2500
Duration (Minutes)

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rro

r

CIFAR10 Using Small Cuda Convnet Model
Hyperband (by rung)
Hyperband (by bracket)
Fabolas
Random

0 500 1000 1500 2000 2500
Duration (Minutes)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 E
rro

r

SVHN Trained Using Small CNN Architecture Tuning Task
Hyperband (by rung)
Hyperband (by bracket)
Fabolas
Random

Figure 1: Sequential Experiments (1 worker) with Hyperband running synchronous SHA. Hyper-
band (by rung) records the incumbent after the completion of a SHA rung, while Hyperband (by
bracket) records the incumbent after the completion of an entire SHA bracket. The average test error
across 10 trials of each hyperparameter optimization method is shown in each plot. Dashed lines
represent min and max ranges for each tuning method.

while Fabolas can be parallelized using the constant liar heuristic, the distributed version of the
algorithm would at best achieve similar performance to the sequential algorithm. Hence, we will
focus on evaluating asynchronous SHA in the next two sections.

For these sequential experiments, we use the same evaluation framework as Klein et al. (2017a),
where the best configuration, also known as the incumbent, is recorded through time and the test
error is calculated in an offline validation step. Following Klein et al. (2017a), the incumbent for
Hyperband is taken to be the configuration with the lowest validation loss and the incumbent for
Fabolas is the configuration with the lowest predicted validation loss on the full dataset. We use
this framework to reproduce the results for Hyperband, Fabolas, and random search on the SVM
task from Klein et al. (2017a) and apply the same methodology to the two CNN tuning tasks. We
will refer to Hyperband as evaluated in Klein et al. (2017a) as “Hyperband (by bracket),” since the
incumbent is recorded after the completion of each SHA bracket. We also evaluate the performance
of Hyperband when recording the incumbent after the completion of each rung of SHA instead of
each bracket to make use of intermediate validation losses; we will refer to Hyperband using this
accounting scheme as “Hyperband (by rung).”

In Figure 1, we show the performance of Hyperband, Fabolas, and random search. Our results show
that Hyperband (by rung) is competitive with Fabolas at finding a good configuration and will often
find a better configuration than Fabolas with less variance. Note that Hyperband loops through the
brackets of SHA, ordered by decreasing early-stopping rate. Hence, most of the progress made by
Hyperband comes from the brackets with the most aggressive early-stopping rates. This supports
our claim in the beginning of Section 3 and further validates our focus on asynchronous SHA in the
remainder of our experiments.

4.2 LIMITED-SCALE DISTRIBUTED EXPERIMENTS

We evaluate asynchronous SHA on tasks (2) and (3) described in Section 4.1 to see how the asyn-
chronous algorithm compares. For both tasks, we use asynchronous SHA with a bounded maximum
resource (number of iterations) per configuration R and η = 4. The minimum resource r is set to
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Figure 2: Limited-scale distributed experiments with 25 workers using asynchronous SHA. For
each bracket, the average test error across 5 trials is shown in each plot.

Rη−4 for 5 possible brackets. For each experiment, asynchronous SHA is run with 25 workers for
3× the time needed to train a single model.

Figure 2 shows the average test error of brackets of asynchronous SHA with different early-stopping
rates. For the CIFAR-10 task, it took Hyperband over 200 minutes in the sequential setting to find a
good configuration (Figure 1), while it took Bracket 0 slightly over 40 minutes in the parallel setting.
For the SVHN task, it took Hyperband 300 minutes to find a configuration with a test error below 5%
(Figure 1), whereas Bracket 0 and Bracket 1 in the parallel setting found one in less than 40 minutes.
On both tasks, asynchronous SHA succeeded in the large-scale regime; Bracket 0 evaluated over
one thousand configurations in 40 minutes with just 25 workers and found a good configuration in
approximately the time needed to train a single model. We note that the speedup is less than the
number of machines due to the moderate difficulty of the problem. We explore harder tasks with a
much higher degree of parallelism in the next section.

4.3 LARGE-SCALE EXPERIMENTS
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Figure 3: Large-scale experiments that take on the order of weeks to run. The x-axis is measured
in units of average time to train a configuration, i.e. 4R indicates 4× the time to train an average
configuration. Due to the high computational cost, progress for a single trial is shown in each chart.

We conduct empirical studies on two large-scale benchmarks that take on the order of weeks to run.
Both benchmarks show that asynchronous SHA is well suited for the large-scale regime and can
successfully find good hyperparameter settings under resource and time constraints. We consider
brackets of asynchronous SHA with η = 4 and a bounded resource per configurationR, with time(R)
representing the average time to train a single model. We compare to Vizier with and without the
performance curve early-stopping rule (Golovin et al., 2017).1 For both tasks, the resources allocated
to different configurations is the number of training records, which translates into the number of

1In both cases, we use the default implementation of Vizier, which automatically selects the tuning method
based on the number of function evaluations (Golovin et al., 2017).
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training iterations after accounting for certain hyperparameters. Finally, due to the computational
burden of these experiments, we perform only a single trial of each tuner. Our results on these tasks
are qualitatively similar to the results in Section 4.2, which are averaged over multiple trials.

For the first task, we tune a one layer LSTM language model for next word prediction on the Penn
Treebank (PTB) dataset (Marcus et al., 1993). The benchmark has 10 hyperparameters that control
both the model architecture as well as the optimization routine (see Appendix A.2). Each tuner
is given 500 workers and 10 × time(R). We set the minimum resource to r = Rη−4, leading to
5 possible brackets of SHA. The results in Figure 3 show that the brackets with more aggressive
early-stopping rates outperform random search. Bracket 0 found a good configuration for this task in
3× time(R). By that time, random search (Bracket 4) had evaluated 1.5k configurations, compared
to 1.8k for Vizier, 2.3k for Vizier with early-stopping, and 52k for Bracket 0, the bracket with the most
aggressive early-stopping rate. Our results show bracket 0 and bracket 1 are competitive with Vizier,
despite being much simpler and easier to implement. Additionally, whereas Vizier (Early-Stop)2 uses
the heuristic performance curve early-stopping method introduced by Golovin et al. (2017), SHA
offers a way to perform principled early-stopping. Additionally, for a fair comparison of parallel
Hyperband to Vizier, we also show the performance of Vizier 5× (Early-Stop), which has 2.5k
workers, i.e. 5× the resources as that of a single bracket. Remarkably, parallel Hyperband, via bracket
1, matches the performance of Vizier 5× (Early-Stop) without any of the optimization overhead
associated with Bayesian methods, using simple random sampling and adaptive resource allocation.

Following Li et al. (2017), we evaluate the performance of SHA relative to known results for PTB
using similar architectures. The architectures considered in our search space is most similar to the
2-layer LSTMs studied by Zaremba et al. (2014). Specifically, our architectures differ from those
considered by Zaremba et al. (2014) only in the number of hidden LSTM nodes and the embedding
dimension, both of which range from 100 to 1000 in our search space. The medium model considered
by Zaremba et al. (2014) with 650 hidden LSTM nodes, which is arguably the model closest to those
in our search space, reached a test perplexity of 82.7, while the best model found by bracket 1 in our
experiment converged to a test perplexity of 81.3. Although the search space we used is not directly
comparable to the medium model, we believe this is an encouraging result in terms of achieving
state-of-the-art on this specific dataset and model family.

The acoustic modeling task trains an LSTM on a small collection of 250 thousand spoken recordings
of anonymized and aggregated typed search queries. The search space we consider has 8 hyperpa-
rameters and includes models with up to 5 LSTM layers (see Appendix A.2 for details). Our model
uses the LSTM cell introduced in Sak et al. (2014) with a recurrent projection layer. Each tuning
method is given 20 workers and allowed to run for 7× time(R). Note that the search space includes
models that take nearly the entire time allowance to train. The minimum resource for SHA is set to
r = Rη−3 for a total of 4 possible brackets. The results in Figure 3 show a similar relative ordering
of the brackets of SHA.3 Bracket 0 found a configuration with error rate below 30% in 2× time(R)
and evaluated over one thousand configurations in that time with just 20 workers.

While we have demonstrated asynchronous SHA to achieve comparable performance to Vizier, we
hypothesize that even better results relative to Bayesian methods are possible in settings with more
parallel resources and wall-clock times restricted to roughly the training time of a single model.
Asynchronous SHA is massively scalable because it faces no degradation in performance when
compensating for time with more parallel resources. In contrast, Bayesian methods are hampered in
wall-clock time constrained settings, since they require updates to the posterior to effectively select
new configurations.

4.4 PRACTICAL CONSIDERATIONS FOR HYPERPARAMETER TUNING IN PARALLEL SETTINGS

In the CNN tuning tasks from from Section 4.2, we used one GPU to train each model. However,
distributed resources can also be used for parallel training to speed up the time it takes to train a single
model (Krizhevsky, 2014; Szegedy et al., 2014; You et al., 2017; You et al., 2017; Goyal et al., 2017).
Unfortunately, the speedups do not scale linearly with the number of GPUs due to communication
costs and other overheads. Therefore, there is a tradeoff between using distributed resources to train a
model faster versus to evaluate more configurations.

2Our final publication will extend Vizier with early-stopping to 10× time(R).
3The results for Vizier are still pending at the time of submission but will be included in the final publication.
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Figure 4: For a fixed time budget, we chart the estimated number (according to the Paleo performance
model) of configurations evaluated by 128 Tesla K80s as a function of the number of GPUs used to
train each model. The dashed line for each color represents the number of models evaluated under
perfect scaling, i.e. n GPUs train a single model n times as fast, and span the feasible range for
number of GPUs per model in order to train within the allocated time budget. (a) Imagenet using
Inception V3 takes 24 days to train on a single GPU. Hence, for a time budget of 6 days, the number
of GPUs per model must offer at least 4× speedup over a single GPU in order to be feasible. Under
perfect scaling, 128 = 27 GPUs with 1/4 the time to train a model on a single GPU would be able to
train 25 models. The curve shows that using 8 = 23 GPUs per model achieves nearly linear scaling
and increasing the number of GPUs per model decreases the total number of models that can be
evaluated by 128 GPUs. (b) The same tradeoff curve for other time budgets is shown. As expected,
smaller time budgets requires more GPUs per model, but the additional training speed comes at the
expense of fewer evaluated models.

Qi et al. (2017) introduced Paleo, a framework for estimating the cost of training neural networks
in parallel given different specifications. Qi et al. (2017) demonstrated that the speedups computed
using Paleo are fairly accurate when compared to the actual observed speedups for a variety of
models. Therefore, we use Paleo to estimate the training time for Inception (et al., 2016) under
strong scaling (i.e. fixed batch size with increasing parallelism), Butterfly AllReduce communication
scheme, standard hardware settings (namely Tesla K80 GPU and 20G Ethernet), and a batch size
of 1024. We then use the estimates to produce the tradeoff curves in Figure 4. The figure shows a
general trend of diminishing returns associated with using more GPUs to train a single model and
suggest choosing a time budget and level of parallelism as close to to the upper left as possible (i.e. if
time permits, use only one GPU per model to explore as many models as possible).
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A EXPERIMENT DETAILS

In the below sections, we detail the experimental setup for the benchmarks in Section 4. The SVM
task uses the same search space and experimental setup as Klein et al. (2017a) and the cuda-convnet
task is the same as that in Li et al. (2017).

A.1 EXPERIMENTAL SETUP FOR THE SMALL CNN ARCHITECTURE TUNING TASK

Hyperparameter Type Values
batch size choice {26, 27, 28, 29}
# of layers choice {2, 3, 4}
# of filters choice {16, 32, 48, 64}

weight init std 1 continuous log [10−4, 10−1]
weight init std 2 continuous log [10−3, 1]
weight init std 3 continuous log [10−3, 1]
l2 penalty 1 continuous log [10−5, 1]
l2 penalty 2 continuous log [10−5, 1]
l2 penalty 3 continuous log [10−3, 102]
learning rate continuous log [10−5, 101]

Table 1: Hyperparameters for small CNN architecture tuning task.

This benchmark tunes a multiple layer CNN network with the hyperparameters shown in Table 1. The
# of layers hyperparameter indicate the number of convolutional layers before two fully connected
layers. The # of filters indicates the # of filters in the CNN layers with the last CNN layer having
2×# filters. Weights are initialized randomly from a Gaussian distribution with the indicated standard
deviation. There are three sets of weight init and l2 penalty hyperparameters; weight init 1 and l2
penalty 1 apply to the convolutional layers, weight init 2 and l2 penalty 2 to the first fully connected
layer, and weight init 3 and l2 penalty 3 to the last fully connected layer. Finally, the learning
rate hyperparameter controls the initial learning rate for SGD. All models use a fixed learning rate
schedule with the learning rate decreasing by a factor of 10 twice in equally spaced intervals over
the training window. This benchmark is run on the SVHN dataset (Netzer et al., 2011) following
Sermanet et al. (2012) to create the train, validation, and test splits.

A.2 EXPERIMENTAL SETUP FOR LARGE-SCALE BENCHMARKS

The LSTM models tuned for our two large-scale benchmarks are implemented in Tensorflow. There
are a few sources of randomness that impact the relative performance of the tuning methods:

1. Randomly sampled hyperparameter configurations.
2. Random weight initialization.
3. Random minibatches.

We control for these sources to the best of our ability but randomness remain in part due to multi-
threaded data input queues and non-associative floating point operations.

The hyperparameters for the LSTM tuning task on the Penn Tree Bank (PTB) dataset presented in
Section 4.3 is shown in Table 2. Note that all hyperparameters are tuned on a linear scale and sampled
uniform over the specified range. The inputs to the LSTM layer are learned embeddings of the words
in a sequence. The number of hidden nodes hyperparameter refers to the number of nodes in the
LSTM. The learning rate is decayed by the decay rate after each interval of decay steps. Finally, the
weight initialization range indicates the upper bound of the uniform distribution used to initialize
all weights. The other hyperparameters have their standard interpretations for neural networks. The
default training (929k words) and test (82k words) splits for PTB are used for training and evaluation
(Marcus et al., 1993).

The hyperparameters for the acoustic model tuning task presented in Section 4.3 is shown in Table 3.
The hyperparameters that overlap with the PTB task also have the same interpretation. The only addi-
tional hyperparameter is the projection fraction, which indicates the size of the recurrent projection
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Hyperparameter Type Values
batch size choice {5, 10, 20, 30, 40, 50, 60, 80}

embedding dims discrete [100, 1000]
# of time steps discrete [10, 100]

# of hidden nodes discrete [100, 1000]
learning rate continuous [1, 100]
decay rate continuous [0.01, 0.99]

decay steps discrete [1000, 10000]
clip gradients continuous [1, 5]

dropout probability continuous [0.1, 0.9]
weight init range continuous [0.1, 0.9]

Table 2: Hyperparameters for PTB LSTM task.

layer in the LSTM cell introduced by Sak et al. (2014) as a fraction of the number of hidden units in
the LSTM. The model is trained on a dataset with 250k examples and evaluated on a test set with 2k
examples.

Hyperparameter Type Values
batch size choice {1, 2, 4, 8, 12, 18, 24, 30, 40, 50, 60}

# of time steps choice {10, 20, 50}
# of LSTM layers choice {1, 3, 5}
# of hidden nodes choice {8, 32, 64, 128, 256, 512, 1024}
projection fraction choice {.125, .25, .375, .5}

learning rate continuous log [5e−10, 5e−1]
decay rate continuous [0.01, 0.99]

decay steps discrete log [10000, 120000000]

Table 3: Hyperparameters for acoustic model LSTM task.
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