
Workshop track - ICLR 2018

SPATIALLY PARALLEL CONVOLUTIONS

Peter Jin∗

University of California, Berkeley
phj@eecs.berkeley.edu

Boris Ginsburg
NVIDIA Corporation
bginsburg@nvidia.com

Kurt Keutzer
University of California, Berkeley
keutzer@berkeley.edu

ABSTRACT

The training of convolutional neural networks with large inputs on GPUs is lim-
ited by the available GPU memory capacity. In this work, we describe spatially
parallel convolutions, which sidestep the memory capacity limit of a single GPU
by partitioning tensors along their spatial axes across multiple GPUs. On mod-
ern multi-GPU systems, we demonstrate that spatially parallel convolutions attain
excellent scaling when applied to input tensors with large spatial dimensions.

1 INTRODUCTION

Deep convolutional neural networks (convnets) form the basis of state-of-the-art models in computer
vision. Convnets are often trained on GPUs, which have limited memory capacity; typical high-end
GPUs have only 12 GB–16 GB of DRAM or HBM. Limited GPU memory presents an obstacle
to training high resolution convnets on semantic segmentation and other tasks (Karras et al., 2017;
Wang et al., 2017). Current frameworks implement data or model parallelism to split tensors onto
multiple GPUs (Iandola et al., 2016; Krizhevsky, 2014; Dettmers, 2014). However, data and model
parallelism may be insufficient. Other approaches reduce working memory size but increase com-
putation time: these include simply executing convnets on overlapping slices of the input, as well as
sophisticated checkpointing techniques (Chen et al., 2016; Gruslys et al., 2016).

To a degree, the problem of working with spatial tensors too large to fit on a single GPU is a solved
problem (Micikevicius, 2009; Coates et al., 2013). In the field of stencil codes which also deals
with spatial data, a tensor is spatially distributed into partitions, each of which lies on a single
processing element. From the point of view of any single partition, the spatially adjacent partitions
possess remote boundary data that must be communicated before performing local computation;
this boundary data is called the “halo region.” The implementation technique used by stencil codes
is to slightly pad each partition with a “ghost zone” buffer that receives a copy of the halo region
from adjacent partitions. The combined halo region copying and ghost zone padding leads to a small
communication and memory overhead while preserving the total number of arithmetic operations.

In this work we demonstrate that on modern multi-GPU systems, spatially parallel convolutions
on tensors with large spatial dimensions exhibit excellent multi-GPU scaling in computation time
and memory usage. In a few cases, spatial parallelism yields surprising but explainable superlinear
speedups. Our implementation is largely based on halo regions and ghost zones. Spatially paral-
lel convolutions are additionally adjoinable: it is easy to backpropagate through spatially parallel
convolutions for gradient-based optimization methods such as SGD.

2 SPATIALLY PARALLEL CONVOLUTIONS

In this section, we describe how spatially parallel convolutions work. The same approach also
applies to other spatial operations, e.g. pooling. We use the following notation: P = number of
GPUs, N = batch size, C = channels, H = height, W = width, K = conv kernel size, D =

∗A significant part of this work was done using DGX systems during the author’s internship at NVIDIA.

1



Workshop track - ICLR 2018

dilation rate, and R = halo region size. For simplicity, our exposition assumes that tensors are in
NCHW -layout. Additionally we assume each partition is a horizontal stripe of the whole tensor.

2.1 FORWARD PASS

Let w be the convolution kernel, let x be the (unpartitioned) input tensor, and let y be the (unparti-
tioned) output tensor. Let xp represent a partition of the tensor x, where the partitions are indexed by
p = 1 to P and have height H/P . In vectorized notation, the forward pass is a halo region exchange
and consists of the following operations, with loop index i = 0 to R− 1:

xp[:, :, H/P + i, :]← xp+1[:, :, i, :] (1)
xp[:, :,−1− i, :]← xp−1[:, :, H/P − 1− i, :] (2)

yp ← Conv(w, xp). (3)

Above, out-of-bounds array indices lie within the halo region.

2.2 BACKWARD PASS

Let ∆x , ∇xf be the gradient of the tensor x with respect to a function f , and let ∆xp represent a
partition of ∆x. The backward pass is the “transpose” of the forward pass, taking the form of a halo
region reduction and consisting of the following, again with loop index i = 0 to R− 1:

∆wp ← ConvBwdKernel(xp,∆yp) (4)

∆w ←
P∑

p=1

∆wp (5)

∆xp ← TransposeConv(w,∆yp) (6)
∆xp[:, :, i, :]← ∆xp[:, :, i, :] + ∆xp−1[:, :, H/P + i, :] (7)

∆xp[:, :, H/P − 1− i, :]← ∆xp[:, :, H/P − 1− i, :] + ∆xp+1[:, :,−1− i, :]. (8)

The sum into ∆w is done by an all-reduce operation, which can be executed asynchronously.

2.3 IMPLEMENTATION

Our preliminary implementation consists of a communication phase, during which halo region data
are exchanged between adjacent GPUs, and a computation phase, during which convolution routines
are executed independently on each GPU; a synchronization point separates the phases. A more
efficient approach would be to fuse the halo region communication with the convolution routine,
taking advantage of a low latency interconnect such as NVLink; we leave this for future work.

3 EVALUATION

We confirmed the correctness of our spatially parallel convolution implementation by training spa-
tially parallel ResNet architectures on ImageNet (He et al., 2016; Russakovsky et al., 2015). For
example, on a spatially parallel version of ResNet-18 trained using up to 4 GPUs, we attained top-1,
single-crop ILSVRC2012 validation accuracy of 69.5%.

To evaluate the effectiveness of our proposed spatially parallel convolutions, our microbenchmarks
compared two approaches for a given problem size: (a) computing a convolution when the entire
problem size fits on a single GPU; and (b) computing a spatially parallel convolution when the
problem size is partitioned across multiple GPUs. Our evaluation platform was a Tesla V100 4xGPU
system with NVLink 2.0 interconnect via the Amazon EC2 P3.8x GPU instance type. We used
convolution routines from cuDNN 7 with CUDA 9.0. We exclusively ran single-precision floating
point operations. We also restricted the maximum workspace size to 4 GB.

The results of our microbenchmarks are summarized in Tables 1 and 2. The numbers suggest that for
easily achievable problem sizes (H,W & 256) spatially parallel convolutions on multiple GPUs can
achieve roughly linear speedup up to 4 GPUs compared to convolutions on a single GPU. Dilated
convolutions are harder to parallelize than regular convolutions, but on larger problems (H,W &

2



Workshop track - ICLR 2018

Table 1: Spatially parallel convolution (fp32): N = 32, C = 64, K = 3, D = 1, R = 1. For each
benchmark, we show both average wall-clock time (in ms) over 1000 trials and speedup over the
single-GPU case, as well as the per-GPU memory usage (in MB) and fraction of the memory used
compared to the single-GPU case.

Problem size GPUs Fwd. wall-clock Bwd. wall-clock Memory per GPU
H = W = 128 1 GPU 2.56 ms (1.0×) 6.63 ms (1.0×) 256 MB (1.00×)

2 GPUs 1.52 ms (1.7×) 3.50 ms (1.9×) 134 MB (0.52×)
4 GPUs 1.23 ms (2.1×) 2.33 ms (2.8×) 69 MB (0.27×)

H = W = 256 1 GPU 10.02 ms (1.0×) 26.81 ms (1.0×) 1024 MB (1.00×)
2 GPUs 5.34 ms (1.9×) 11.79 ms (2.3×) 524 MB (0.51×)
4 GPUs 3.11 ms (3.2×) 6.96 ms (3.9×) 266 MB (0.26×)

H = W = 512 1 GPU 45.15 ms (1.0×) 126.11 ms (1.0×) 4096 MB (1.00×)
2 GPUs 20.18 ms (2.2×) 60.15 ms (2.1×) 2072 MB (0.50×)
4 GPUs 10.65 ms (4.2×) 26.76 ms (4.7×) 1044 MB (0.25×)

Table 2: Spatially parallel dilated convolution (fp32): N = 32, C = 64, K = 3, D = 3, R = 3.

Problem size GPUs Fwd. wall-clock Bwd. wall-clock Memory per GPU
H = W = 128 1 GPU 3.92 ms (1.0×) 11.10 ms (1.0×) 256 MB (1.00×)

2 GPUs 2.69 ms (1.5×) 6.49 ms (1.7×) 147 MB (0.57×)
4 GPUs 2.44 ms (1.6×) 5.55 ms (2.0×) 80 MB (0.31×)

H = W = 256 1 GPU 15.39 ms (1.0×) 43.99 ms (1.0×) 1024 MB (1.00×)
2 GPUs 8.43 ms (1.8×) 22.66 ms (1.9×) 549 MB (0.54×)
4 GPUs 5.33 ms (2.9×) 12.71 ms (3.5×) 287 MB (0.28×)

H = W = 512 1 GPU 61.26 ms (1.0×) 192.11 ms (1.0×) 4096 MB (1.00×)
2 GPUs 31.68 ms (1.9×) 95.42 ms (2.0×) 2120 MB (0.52×)
4 GPUs 17.51 ms (3.5×) 46.72 ms (4.1×) 1085 MB (0.26×)

512) spatially parallel dilated convolutions also scale well to 4 GPUs. In a few cases (especially
the backward results), we actually observe superlinear speedup, which is surprising but explainable.
The appearance of a superlinear speedup suggests that there is simply further room for improvement
of the single-GPU convolution routines.

4 DISCUSSION

We described spatial parallelism for scaling convolutions on large tensors to multiple GPUs. We
evaluated the performance of an implementation of spatial parallelism on a multi-GPU system and
found excellent scaling in computation time and memory usage.

Spatial parallelism can be composed with other complementary approaches for parallelism and
memory reduction for convolutional networks. The combination of spatial parallelism with both
data and model parallelism (Gholami et al., 2018) is a design point, for which an optimum exists
that minimizes the sum cost of computation and communication. Gradient checkpointing trades off
between working memory size and recomputation of intermediate values in a computation graph
(Chen et al., 2016; Gruslys et al., 2016); its combination with spatial parallelism further reduces
per-GPU memory usage, while retaining favorable scaling on multiple GPUs.

An open source version of our preliminary implementation will be made available at:
https://github.com/peterhj/arraydiff_cuda

ACKNOWLEDGMENTS

We would like to thank Ujval Kapasi for helpful discussions.

3

https://github.com/peterhj/arraydiff_cuda


Workshop track - ICLR 2018

REFERENCES

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets with Sublinear
Memory Cost. arXiv preprint arXiv:1604.06174, 2016.

Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan Catanzaro. Deep
learning with COTS HPC Systems. In Proceedings of the 30th International Conference on
Machine Learning, 2013.

Tim Dettmers. How to Parallelize Deep Learning on GPUs.
http://timdettmers.com/2014/10/09/deep-learning-data-parallelism/,
http://timdettmers.com/2014/11/09/model-parallelism-deep-learning/, 2014.

Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated Model, Batch and
Domain Parallelism in Training Neural Networks. arXiv preprint arXiv:1712.04432, 2018.

Andrūnas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-Efficient
Backpropagation Through Time. In 30th Conference on Neural Information Processing Systems,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, and Kurt Keutzer. Firecaffe: near-
linear acceleration of deep neural network training on compute clusters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for
Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196, 2017.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Paulius Micikevicius. 3D Finite Difference Computation on GPUs using CUDA. In Proceedings
of the 2nd Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84,
2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. In International Journal of Computer
Vision, volume 115, pp. 211–252, 2015.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. arXiv preprint
arXiv:1711.11585, 2017.

4


	Introduction
	Spatially Parallel Convolutions
	Forward pass
	Backward pass
	Implementation

	Evaluation
	Discussion

