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ABSTRACT

Large Language Models (LLMs) have evolved into agents capable of perception,
reasoning, and acting in open environments. Yet, in long-horizon tasks with sparse
rewards, existing methods are often inefficient. Group-based reinforcement learn-
ing (e.g., GRPO) provides critic-free and stable optimization, but its coarse credit
signals cannot distinguish high-quality trajectories from those that merely suc-
ceed but contain redundant or invalid actions, leading to weak generalization.
We propose SkillEvo(Skill Evolution), a two-stage framework for efficient and
sustainable agent learning. In the first stage, WebGRPO integrates a Reasoning
and Execution Reward Model (RXERM) to deliver fine-grained feedback, and
employs a dual-uncertainty filtering strategy to select informative tasks, improv-
ing sample efficiency and stability. In the second stage, SkillGenesis transforms
trajectories into reusable skills, organized in a dynamically evolving Skill Path
Graph (SPG). This enables skill composition, reuse, and the emergence of com-
posite skills for long-term adaptability. On WebArena-Lite, SkillEvo raises the
success rate of Llama-3.1-8B from 4.8% to 60.4% and GLM-4-9B from 6.1%
to 57.6%, achieving new state-of-the-art results. These findings highlight that
effective long-horizon learning requires not only refined credit signals but also
systematic mechanisms for skill evolution.

Figure 1: Comparative Success Rates of proprietary
LLMs and open-sourced LLMs on WebArena-Lite.

Figure 2: Comparison of Llama3.1
trained with WebGRPO and baseline
methods.

1 INTRODUCTION

Large Language Models (LLMs) Team et al. (2025); OpenAI et al. (2024); Qwen et al. (2025);
DeepSeek-AI et al. (2025) have rapidly advanced in recent years, evolving from static question-
answering systems into versatile agents capable of perception, reasoning, and acting in open envi-
ronments. In complex scenarios such as embodied navigation Shridhar et al. (2021); Li et al. (2025);
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Wang et al. (2023), web interaction Furuta et al. (2024); Zheng et al. (2024); Gou et al. (2025), and
tool-augmented reasoning Yao et al. (2023b); Schick et al. (2023), LLMs have demonstrated strong
capabilities in task planning and logical reasoning. However, enabling LLM-based agents to learn
efficiently in environments that involve long horizons, multi-turn interactions, sparse rewards, and
dynamic structures remains a fundamental challenge.

Recently, group-based reinforcement learning (group-based RL) has gained significant attention
in large-model training. Representative methods such as RLOO Ahmadian et al. (2024) and
GRPO Shao et al. (2024b) compute relative advantages within a batch of rollouts, thereby avoid-
ing value function estimation. These methods exhibit desirable properties such as being critic-free,
memory-efficient, and stable in convergence, and have thus become important approaches for LLM
post-training. They have achieved strong performance in tasks with immediate rewards, such as
mathematical reasoning Shao et al. (2024b) and code generation Chen et al. (2021). However,
when applied directly to long-horizon environments, group-based RL faces inherent limitations:
the differences among trajectories are often flattened, making it difficult to distinguish high-quality
trajectories from those that contain redundant or invalid actions—even if both are labeled as “suc-
cessful.” This coarse-grained credit signal significantly limits the effectiveness of group-based RL
in long-horizon tasks.

In fact, a successful trajectory is not necessarily a high-quality trajectory. Under the same task and
initial conditions, agents may complete the task through various trajectories, some of which involve
repetitive or invalid actions (e.g., frequently switching between the same webpages or revisiting the
same rooms in embodied settings). If training relies solely on terminal rewards, these trajectories
are treated as equally successful, thereby obscuring the value of efficient reasoning and effective
execution. Over time, this leads to slower convergence and weaker generalization.

To address these challenges, we propose the SkillEvo framework, whose central insight is: opti-
mizing long-horizon tasks requires not only finer-grained reward signals but also answers to two
higher-level questions—what experiences are worth learning, and how can these experiences be
consolidated into long-term capabilities?

In the first stage, SkillEvo introduces the WebGRPO module, which combines a Reasoning and
Execution Reward Model (RXERM) for trajectory optimization. Unlike traditional group-based
RL approaches that rely solely on overall returns, RXERM explicitly models reasoning validity and
execution efficiency, thereby distinguishing high-quality from low-quality trajectories and providing
more informative signals for long-horizon optimization. In addition, we propose a dual-uncertainty
active learning strategy, which jointly models execution uncertainty and reasoning uncertainty to
dynamically select informative instances. This strategy not only avoids overtraining on “too easy”
or “too hard” cases but also naturally forms a curriculum-like schedule: ensuring efficiency within
each phase while gradually increasing task difficulty across phases, thereby mitigating inefficiency
and instability in long-horizon optimization Settles (2009).

Nevertheless, trajectory-level optimization alone is insufficient for long-term agent evolution. Even
if an agent learns high-quality experiences through refined reward signals and selective training,
such experiences may not be consolidated or reused, leaving the agent to start from scratch when
facing new tasks. To overcome this limitation, we introduce the SkillGenesis framework as the sec-
ond stage of SkillEvo. SkillGenesis systematically transforms interaction experiences into reusable
skills through a three-stage process of skill proposal, skill generation, and skill evolution. These
skills are organized within a dynamically expanding Skill Path Graph (SPG), which supports dy-
namic composition and reuse of skills, and fosters the emergence of composite skills. This mecha-
nism enables the agent to continually expand its skill repertoire and develop adaptive, transferable
capabilities across tasks. The transition from merely “completing tasks” to genuinely “acquiring and
evolving skills” represents the fundamental distinction of SkillEvo compared to prior approaches.

Building on this two-stage design, SkillEvo demonstrates both theoretical and empirical advantages.
Experimental results on the WebArena-Lite benchmark Liu et al. (2024) show that our method sig-
nificantly boosts task success rates: Llama-3.1-8B improves from 4.8% to 60.4%, while GLM-4-9B
improves from 6.1% to 57.6%. Across both open-source and proprietary LLMs, SkillEvo consis-
tently outperforms existing methods, achieving new state-of-the-art (SOTA) performance. These
results validate our core insight: by focusing on high-quality experiences through reward modeling
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and uncertainty-driven selection, and further consolidating these experiences into evolving skills,
LLM agents can achieve more efficient, stable, and sustainable learning in complex environments.

2 RELATED WORK

Reinforcement Learning for LLM Agents. Reinforcement learning plays a central role in en-
hancing reasoning and decision-making for LLM agents. Classical methods such as PPO Schulman
et al. (2017) and AWR Peng et al. (2019a) are widely used in RLHF, but their reliance on value net-
works incurs significant computational overhead and makes effective credit assignment difficult in
long-horizon tasks. Recently, group-based reinforcement learning methods (e.g., GRPO Shao et al.
(2024a), Dr.GRPO Liu et al. (2025), DAPO Yu et al. (2025)) have gained attention for avoiding value
modeling by computing relative advantages within groups of trajectories. These approaches achieve
critic-free, efficient, and stable optimization, and have shown strong performance in short-horizon
tasks. However, in long-horizon environments with sparse and delayed rewards, such methods of-
ten provide only coarse-grained credit signals, failing to distinguish high-quality trajectories from
those containing redundant actions. To overcome this limitation, we propose the WebGRPO mod-
ule, which integrates a Reasoning and Execution Reward Model (RXERM) to deliver fine-grained
feedback, and further design a dual-uncertainty active filtering mechanism to dynamically select in-
formative task instances. This approach improves sample efficiency and training stability, addressing
the challenges of sparse rewards and insufficient credit assignment in long-horizon optimization.

LLMs as Agents. In recent years, large language models (LLMs) have increasingly been employed
as agents in open environments. Prompt-based approaches (e.g., ReAct Yao et al. (2023a) and Re-
flexion Shinn et al. (2023)) leverage structured reasoning prompts and tool use Schick et al. (2023);
Xie et al. (2024) to extend model interaction capabilities, but they exhibit limited long-term learning
and generalization. Training-based methods instead learn directly from interaction trajectories via
behavior cloning or reinforcement learning, achieving stronger task grounding and execution robust-
ness Shen et al. (2024); Lai et al. (2024). Meanwhile, several works have explored skill abstraction
and reuse Zheng et al. (2025); Wu et al. (2025) to improve cross-task adaptability. However, these
methods generally lack systematic mechanisms for skill evolution, making it difficult to continu-
ously expand capabilities. To address this limitation, we introduce the SkillGenesis framework,
which transforms interaction experiences into reusable skills through proposal, generation, and evo-
lution stages, and organizes them via a Skill Path Graph (SPG). This design supports dynamic reuse
and the emergence of composite skills, enabling long-term consolidation of capabilities.

3 METHODOLOGY

3.1 THE FINITE-HORIZON MARKOV DECISION PROCESS FOR WEB TASK

We model the process of completing a Web task as a finite-horizon Markov Decision Process (MDP),
denoted asM = (T, S,A, P,K), where T represents the task goals; S represents the state space
(e.g., observation sequences or interaction histories); A represents the action space, including all
executable operations of the agent (e.g., <Click>, <Type>, <Search>, etc.); P represents the
state transition dynamics and reward generation process; and K denotes the maximum interaction
steps, after which the task terminates. Given a task goal T , the agent needs to complete the corre-
sponding task. The agent policy πθ generates an action at based on the task goal T , the current state
st, and the interaction history τ<t = {s0, a0, r0, . . . , st−1, at−1, rt−1}:

at ∼ πθ(·|T, st, τ<t), (rt, st+1) ∼ P (·|T, st, at) (1)

The agent receives a positive reward only if the task is completed. In the finite-horizon setting, the
trajectory ends upon task completion or reaching K steps. The final trajectory τ is as follows:

τ = {s0, a0, r0, s1, a1, r1, . . . , sK} (2)

3.2 TRAJECTORY-LEVEL OPTIMIZATION FOR WEB INTERACTION POLICIES

In web environments, tasks involve complex structures, long action sequences, and sparse, delayed
rewards. To address this, WebGRPO optimizes the entire reasoning–interaction trajectory, enhanc-
ing long-term reasoning and policy execution. Unlike existing methods Qi et al. (2025); Lai et al.
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Figure 3: Overall WebGRPO pipeline, which leverages Two-Stage Reward mechanism RXERM and
Dual-Uncertainty-Based Active Learning for Task Instance Filtering to achieve efficient training.

(2024), WebGRPO directly maximizes cumulative rewards by optimizing full trajectories (including
observations, reasoning processes, actions and feedback) , as illustrated in Figure 3.

JWebGRPO(θ) = EM,τ∼πθ
[R(τ)] (3)

WhereM is the finite-horizon Markov Decision Process (MDP), τ is a full sequence of reasoning-
augmented interactions, and R(τ) is the total reward accumulated over trajectory τ .

3.2.1 REASONING-INTERACTION TRAJECTORIES FOR WEB TASKS

In each training iteration, the agent begins with an initial state–task goal pair (s0, T ), where a task
instance corresponds to this specific pair, representing a concrete scenario for policy interaction and
evaluation. Subsequently, the agent generates N complete interaction trajectories and, at each time
step t, produces a reasoning-guided structured output:

a⊤t = <think>...</think> <action> at </action> (4)

The <think> section records reasoning (e.g., element localization, form filling), and <action>
specifies the executable web action at(e.g., <Click [3]>, <Scroll Down>). The web envi-
ronment executes at, updates the state st+1, and returns an immediate reward rt, forming a web
interaction trajectory: τ = {s0, a⊤0 , r0, s1, a⊤1 , r1, . . . , sK}. WebGRPO interleaves rollout and up-
date steps. It employs an on-policy optimization approach, where trajectories are collected under
the current policy πθ for updates. In each training iteration, the agent samples from P initial state–
task goal pair (s0, T ), collecting N complete trajectories per state, resulting in P · N trajectories
per iteration. Given a batch size of E, each iteration performs P ·N

E gradient update steps. After L
training iterations, the total number of gradient updates is S = L ·

(
P ·N
E

)
.

3.2.2 TRAJECTORY-LEVEL GRPO OPTIMIZATION WITH RXERM

We propose a trajectory-level WebGRPO optimization framework based on Group Relative Pol-
icy Optimization (GRPO). Through format reward and a two-stage LLMs-based reward mecha-
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nism—RXERM (Reasoning & Execution Reward Model), rich and effective reward signals are
provided for policy learning. A dual uncertainty-based active learning strategy further selects high-
information task instances, improving the stability and performance of policy optimization.

Token-Level Trajectory Definition. In the WebGRPO framework, the policy probability πθ(τ) can
be decomposed into token-level likelihoods due to the autoregressive nature of LLM-based agents.
For every initial state–task goal pair (s0, T ), multiple rollouts are sampled to collect complete in-
teraction trajectories. The trajectory can be defined as:τi = {τi,(1), . . . , τi,(L)}, where τi,(t) denotes
the t-th token in trajectory τi, and L is the total number of tokens in the trajectory.

Two-Stage Reward mechanism RXERM and Format Reward. Under the same task and initial
environment conditions, even if the agent successfully completes the task, many trajectories may
still contain redundant or invalid actions. If only execution rewards are considered, it becomes
difficult to effectively distinguish the quality among different successful trajectories. To address
this limitation, we propose the two-stage LLMs-based reward mechanism—RXERM (Reasoning
& Execution Reward Model) , which integrates both trajectory-level credit assignment and action-
level credit assignment. RXERM separately evaluates both intermediate reasoning trace R (each
<think> reasoning content) and task completion E , providing fine-grained and comprehensive re-
ward signals. Specifically, RXERM consists of two stages: In the first stage, Execution Reward
Model evaluates task completion E based on the task goal T , trajectory τ , and final state sK , pro-
ducing a binary execution reward Rexecution (1 for success, 0 otherwise). Only successful trajectories
proceed to the second stage, where Reasoning Reward Model evaluatesR using predefined prompts
to compute intermediate reasoning reward Rreason, defined as the average reward over all reasoning
steps along the trajectory. To separately assess action correctness and reasoning quality while en-
suring output consistency, we introduce a widely used format reward. This encourages structured
outputs using <think> for reasoning and <action> for actions. The final trajectory reward is
computed as:

R(τ) = αRreason(τ) + (1− α)Rexecution(τ) + βRformat(τ) (5)

where α controls the balance between reasoning and execution rewards, and β is a fixed weight for
the format reward, used to provide basic structural constraints. This design ensures that the optimiza-
tion process emphasizes high-quality reasoning–interaction trajectories rather than merely achieving
task completion, thereby effectively preventing the agent from attaining non-robust success through
repeated trials or accidental exploration.

Dual-Uncertainty-Based Active Learning for Task Instance Filtering. To improve policy opti-
mization stability and efficiency, we propose a dual uncertainty-based active learning strategy for
task instance filtering. Based on active learning theory Settles (2009), this strategy selects the most
informative task instances by prioritizing those with high uncertainty, avoiding low-value trivial
tasks and overly difficult tasks with weak reward signals. We jointly consider uncertainty in task
completion E and intermediate reasoning trace R to guide task instance selection. Specifically, two
uncertainty metrics are defined:

Uexecution = Stdτ∼πθ(·|s0,T ) [Rexecution(τ)] , Ureason = Stdτ∼πθ(·|s0,T ) [Rreason(τ)] . (6)

Both uncertainties are computed as the standard deviation of rewards over multiple rollouts for the
same task instance. In WebGRPO training, we first rank all task instances by Uexecution and retain
the top p% with the highest uncertainty, where the corresponding threshold is denoted as δp, i.e.,
Iexecution = {i | Uexecution(i) ≥ δp}. From Iexecution, we further retain the top q% based on reasoning
uncertainty Ureason, with threshold δq , i.e., Ifiltered = {i ∈ Iexecution | Ureason(i) ≥ δq}. Only instances
in Ifiltered are used for policy optimization. Through this dual uncertainty filtering strategy, the
model effectively eliminates low-information rollouts and significantly mitigates the risk of policy
collapse in multi-turn reasoning scenarios. This filtering is not a one-time preprocessing step but is
periodically repeated during training. We introduce a curriculum variable γ to adaptively adjust the
update interval ∆. At each phase, after every ∆(γ) steps, uncertainty is recalculated and the task
instances updated. With linear scheduling ∆(γ) = ∆0 + γ, shorter intervals in early stages ensure
frequent updates for fast learning, while longer intervals in later stages provide stable training. This
balances efficiency within phases and curriculum-driven progression across phases.

Trajectory Advantage Normalization. Generate multiple trajectories for the retained high-quality
instances, assign scalar rewards R(τi), and perform normalization within the batch. The normalized
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Figure 4: SkillGenesis, A Skill Evolution and Path Optimization Framework. WebGRPO can be
seamlessly integrated into the SkillGenesis framework.

reward Âi,t is shared across all tokens within the same trajectory.

Âi,t =
R(τi)−mean [R(τ1), . . . , R(τG)]

std [R(τ1), . . . , R(τG)]
, (7)

Policy Optimization Objective. The GRPO objective becomes:

JGRPO(θ) =
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

min
[
ρi,t · Âi,t, clip(ρi,t, 1− ϵ, 1 + ϵ) · Âi,t

]
, (8)

where ρi,t =
πθ(τi,(t)|τi,<t)

πold(τi,(t)|τi,<t)
, G is the number of trajectories in the batch, τi,(t) denotes the t-th token

in trajectory τi, and τi,<t is its prefix.

3.3 SKILLGENESIS: DYNAMIC SKILL EVOLUTION WITH SKILL PATH GRAPHS

To enhance the agent’s ability to complete tasks and improve skill reusability in complex web envi-
ronments, we seamlessly integrate the WebGRPO into the SkillGenesis framework. This framework
consists of three stages: Skill Proposal, Skill Genesis, and Skill Evolution, enabling dynamic ex-
pansion of the skill library through a periodic skill evolution mechanism and optimization strategies
based on the Skill Path Graph (SPG), as illustrated in Figure 4.

Skill Library and SPG. At time step t, the skill library At stores executable functions (Python
programs) for low-level web actions (e.g., enter_specific_forum_section()), while the
SPG Gt = (Vt, Et) organizes skills as a directed graph, where Vt represents nodes as structural
abstractions (e.g., {"enter_specific_forum_section": type=atomic, description="Navigate to the spe-
cific forum section"}) and Et represents edges. Edges indicate either an invocation sequence or a
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dependency relation, such as “SearchItem 7→ Login” (dependency) and “SearchItem→ AddToCart”
(sequence). Dependency edges represent mandatory prerequisites, while sequence edges denote rec-
ommended but non-mandatory orders.

Skill Proposal Stage. In the Skill Proposal stage, LLM generates practical and reusable task goals
{Ti}Pi=1, based on P initial webpage states {s(i)0 }Pi=1. These task goals cover common web interac-
tion types, including procedural tasks, navigational tasks, and information-seeking tasks.

Skill Genesis Stage. In the Skill Genesis stage, the agent uses the WebGRPO policy to generate
reasoning-interaction trajectories τ = {s0, a⊤0 , r0, s1, a⊤1 , r1, . . . , sK}. When a task T is success-
fully completed, we adopt a trajectory prefix rewriting method to induce skills. By truncating the
original trajectory τ , we construct a skill-invocation-based prefix τD = {s0, a0, . . . , sD}. The agent
continues to generate subsequent actions based on τD, forming a complete and verifiable trajec-
tory τf = τD ∪ {aD+1, . . . , aK}. The validity of the trajectory is evaluated by LLM based on
three criteria: 1) Correctness: The task is successfully completed; 2) Skill Usage: New skills are
utilized in the trajectory; 3) Skill Effectiveness: Skill invocations effectively change the environ-
ment state. If the criteria are met, the new cleaned skill set Dcalled is added to the skill library,
updating:At+1 = At ∪ Dcalled.

Skill Evolution Stage. The framework periodically triggers Skill Evolution stage after every fixed
Q SkillGenesis iterations. LLM proposes skill composition suggestions based on the current skill
library At and the SPG Gt = (Vt, Et). These suggestions include skill invocation relations, de-
pendency relations, and corresponding validation tasks Tcomp. Based on these suggestions, LLM
utilizes the current SPG to composes candidate composite skills fcomp and verifies them by execut-
ing Tcomp. If the composite skill successfully completes the validation task, it is added to the skill
library, updating

At+1 = At ∪ {fcomp}. (9)

Simultaneously, the SPG is updated to reflect the new composite skill and its dependencies:

Vt+1 = Vt∪{vcomp}, Et+1 = Et∪{(vi, vj) | (vi → vj) or (vi 7→ vj) discovered in vcomp} (10)

where vcomp denotes the new composite skill node. This periodic evolution mechanism ensures
the skill library continuously accumulates high-quality composite skills, enhancing task efficiency
and generalization capability. By continuously expanding and optimizing the skill library during
exploration, the generated skills can be directly reused in subsequent tasks, effectively improving
task performance in complex web environments.

4 EXPERIMENTS

4.1 ENVIRONMENTS AND BASELINES

4.1.1 ENVIRONMENT

To evaluate the performance of our proposed approach and baselines, we conducted experiments in
the WebArena environment Zhou et al. (2023). WebArena is an interactive benchmark designed
for complex web navigation tasks, providing a self-hosted sandboxed web environment covering
five major application domains: OpenStreetMap (Map), Reddit, GitLab, online store content man-
agement system (CMS), and OneStopShop (OSS). The full WebArena benchmark contains 812
instructions, but annotation errors and vague evaluation standards in the original dataset may under-
mine fairness and credibility. To ensure statistical reliability and lower the computational overhead
of large-scale evaluations, we adopt WebArena-Lite Lai et al. (2024), a human-verified subset of
WebArena. This version selects 165 representative tasks as the evaluation set, providing a more
consistent and trustworthy basis for assessment.

4.1.2 BASELINES

To evaluate the effectiveness of our method, we compare it against several baseline approaches,
which can be divided into two categories: proprietary large language models utilizing prompting
techniques, and open-source large language models trained with alternative paradigms. For fine-
tuning methods, we adopt Llama3.1 Grattafiori et al. (2024) and GLM-4-9B GLM et al. (2024b)
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as backbone models. Following Qi et al. (2025), the imitation learning (also known as supervised
fine-tuning, SFT) baselines are trained on 9,460 trajectories from the human-labeled demonstration
dataset of WebArena-Lite. For reinforcement learning baselines, we use the SFT-trained model as
the initial actor, while the critic is also based on the SFT-trained model with an additional randomly
initialized value head. For the WebGRPO method, we employ a skill proposer during training to
generate a large number of task instances, construct the initial task pool, and apply task instance
filtering. After convergence, the policy πθ is fixed, and the agent explores within the WebArena en-
vironment to continuously expand and validate the skill library, thereby adapting to more complex
and dynamic scenarios. Specifically, during the SkillGenesis stage, the agent executes 160 explo-
ration iterations, where newly discovered skills are incrementally added to the skill library. Every
20 iterations (Q = 20) of SkillGenesis, the Skill Evolution stage is triggered to evolve the skills us-
ing SPG and the existing skill library. The RXERM model used in reinforcement learning training
and the LLM applied in the SkillGenesis stage both adopt GPT-4o. The rationale can be found in
Appendix E.1and Appendix E.6. More details of the training process can be found in Appendix B.

Table 1: Performance comparison of WebGRPO against baseline methods in terms of Task Success
Rate (SR), evaluated on WebArena-Lite Zhou et al. (2023); Liu et al. (2024). WebArena-Lite is a
human-verified subset of the WebArena benchmark. (Results marked with * are reported from the
literature on the full WebArena dataset.) The best and second-best models are indicated.

Models #Params Reddit Gitlab CMS Map OSS Avg. SR

Proprietary LLMs

GPT-4-Turbo Achiam et al. (2023) N/A 10.5 16.7 14.3 36.7 13.3 17.6
GPT-4o N/A 10.5 10.0 20.0 20.0 11.1 13.9
AWM + GPT-4-0613∗ Wang et al. (2024) N/A 50.9 31.8 29.1 43.3 30.8 35.5
WebPilot + GPT-4o∗ Zhang et al. (2025) N/A 65.1 39.4 24.7 33.9 36.9 37.2
SkillWeaver+GPT-4o∗ Zheng et al. (2025) N/A 50.0 22.2 25.8 33.9 27.2 29.8
ASI+Claude-3.5-sonnet∗ Wang et al. (2025) N/A 54.7 32.2 44.0 43.1 40.1 40.4

Open-sourced LLMs

AutoWebGLM Lai et al. (2024) 6B 9.4 15.0 28.6 24.8 17.1 18.2
GLM-4-Chat GLM et al. (2024a) 9B 5.3 10.0 6.7 3.3 6.7 6.1
GLM-4 + SFT (BC) 9B 47.4 13.3 31.4 23.3 13.3 22.4
GLM-4 + Filtered BC 9B 52.6 10.0 31.4 26.7 20.0 24.8
GLM-4 + AWR Peng et al. (2019b) 9B 52.6 16.7 34.3 30.0 22.2 27.9
GLM-4 + DigiRL Bai et al. (2024a) 9B 63.2 30.0 34.3 26.7 26.7 31.5
GLM-4 + WEBRL Qi et al. (2025) 9B 57.9 50.0 48.6 36.7 37.8 43.0
GLM-4 + WebGRPO 9B 62.3 52.1 52.9 45.3 46.9 50.3
GLM-4 + WebGRPO (+Skills) 9B 71.2 61.2 59.2 50.6 51.5 57.6

∆ ↑ 14% ↑ 18% ↑ 12% ↑ 12% ↑ 10% ↑ 15%

Llama3.1-Instruct Grattafiori et al. (2024) 8B 0.0 3.3 2.9 3.3 11.1 4.8
Llama3.1 + SFT (BC) 8B 36.8 6.7 20.0 33.3 17.8 20.6
Llama3.1 + Filtered BC 8B 52.6 20.0 31.4 23.3 8.9 23.0
Llama3.1 + AWR Peng et al. (2019a) 8B 57.9 26.7 31.4 26.7 17.8 28.5
Llama3.1 + DigiRL Bai et al. (2024b) 8B 57.9 26.7 37.1 33.3 17.8 30.3
Llama3.1 + WEBRL Qi et al. (2025) 8B 63.2 46.7 54.3 36.7 31.1 42.4
Llama3.1 + WebGRPO 8B 65.8 51.3 59.1 42.3 44.5 51.8
Llama3.1 + WebGRPO (+Skills) 8B 75.8 60.2 65.3 48.1 53.9 60.4

∆ ↑15.2% ↑17.3% ↑10.5% ↑13.7% ↑21.1% ↑16.6%

5 MAIN RESULTS

Table 1 presents a comparison of WebGRPO with existing baseline methods on the WebArena-Lite
benchmark. Our proposed method consistently outperforms all baselines across various environ-
ments, demonstrating the effectiveness of trajectory-level optimization and skill reuse. Specifically,
for GLM-4, GLM-4 + WebGRPO (+Skills) achieves the highest average task success rate (SR) of
57.6%, surpassing the strongest baseline, GLM-4 + WEBRL (43.0%), by 14.6%, and outperform-
ing all proprietary models. Notably, in the Gitlab and Reddit environments, compared to WebGRPO
without skill reuse, the success rates further improve by +18.0% and +14.0%, respectively, demon-
strating strong generalization and task adaptability. Similarly, for the Llama3.1 series, WebGRPO
(+Skills) achieves an impressive average SR of 60.4%, outperforming the top baseline, Llama3.1 +
WEBRL (42.4%), by 18.0%. In particular, the success rates in the Gitlab and OSS environments
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Table 2: Quantitative ablation of the Skill Evolution Stage on GLM-4-9B and Llama-3.1-8B.
Model Config Reddit GitLab CMS Map OSS Avg

GLM-4-9B
No skills 62.3 52.1 52.9 45.3 46.9 50.3
Base-only 66.8 55.8 54.1 47.5 48.7 54.6
Base+Compose 71.2 61.2 59.2 50.6 51.5 57.6

Llama-3.1-8B
No skills 65.8 51.3 59.1 42.3 44.5 51.8
Base-only 69.7 55.2 61.3 44.1 49.4 55.9
Base+Compose 75.8 60.2 65.3 48.1 53.9 60.4

improve by +17.3% and +21.1%, respectively, compared to WebGRPO without skill reuse, further
highlighting the significant advantages of skill reuse. Overall, these results demonstrate that We-
bGRPO, through the integration of reasoning-augmented interaction trajectories and efficient skill
library construction, significantly enhances the agent’s reasoning capability and task completion
performance in complex web environments.

Figure 5: Quantitative Ablation Study on RX-
ERM and Format Reward.

Figure 6: Quantitative Ablation Study on Dual-
Uncertainty-Based Active Learning for Task In-
stance Filtering.

6 ABLATION STUDIES

Reward Mechanism. As shown in Figure 5, we performed ablation studies on Llama3.1 and GLM-
4 to assess the two-stage RXERM reward mechanism and format reward. Removing the reasoning
reward reduced average success rates by 7.62% and 7.42%, with the largest drop in Reddit, showing
its importance for complex reasoning. Removing the format reward caused drops of 7.49% and
6.78%, confirming its role in stability. With only execution reward, rates fell to 30.42% and 30.36%,
indicating that a single reward is insufficient.

Dual-Uncertainty-Based Active Learning for Task Instance Filtering. With Execution + Rea-
soning Reward Filtering, the success rates of Llama3.1 and GLM-4 increase to 60.4% and 57.6%,
respectively, representing a substantial improvement over No Filtering. This demonstrates that the
dual uncertainty strategy effectively boosts task success rate and stability (see Figure 6).

Effect of Skill Evolution Stage. To evaluate the effect of the skill evolution stage, we compared
models under three configurations: No skills, Base-only skills, and Base+Compose skills. Results
for GLM-4-9B and Llama-3.1-8B are shown in Table 2. Experimental results show that GLM-4-9B
improved from 50.3% (no skills) to 54.6% (basic) and 57.6% (composite). Llama-3.1-8B similarly
rose from 51.8% to 55.9% and 60.4%. Thus, the Skill Evolution stage, especially composite skills,
is essential for improving performance on complex tasks. The detailed statistics of skill coverage,
call frequency, and task-level skill call counts are provided in the Appendix D.

7 CONCLUSION

We propose SkillEvo, a framework combining trajectory-level optimization (WebGRPO) and dy-
namic skill evolution (SkillGenesis), which achieves state-of-the-art performance in long-horizon
web tasks. Despite its effectiveness, our failure cases show limitations in dynamic environments
due to strong reward dependence, fragile skill composition, and high computational cost. Future
work will focus on reducing training overhead, improving robustness of skill representations, and
enabling continual learning with adaptive curricula for better scalability in real-world scenarios.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide detailed descriptions of the experimental envi-
ronment, dataset configurations, training procedures, and hyperparameter settings in the appendices
(see Subsection4.1.1, Subsection4.1.2, Appendix B). All theoretical derivations, model details, and
pseudocode are explicitly presented in the main text and appendices. In addition, upon acceptance,
we will release the full source code and execution scripts on GitHub, enabling the research commu-
nity to verify and reproduce our results. The released resources will include preprocessing scripts,
implementations of WebGRPO and SkillGenesis, key hyperparameter configurations, and evaluation
metric computation methods. We believe these resources provide sufficient detail for researchers to
fully reproduce and extend our experimental results.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The role of the LLM was strictly limited to language polishing, which included improving
grammar, clarity, and overall readability. The LLM did not contribute to the research ideation,
experimental design, methodology, or analysis of the results. All authors have reviewed the final
text and take full responsibility for the content of this paper.

B TRAINING DETAILS

B.1 DETAILS OF WEBGRPO

Agent Actions. The agent actions are mostly similar to those defined in WebArena-LiteLiu et al.
(2024):

• Click: Clicks an element with a specific ID.
• Hover: Hovers over an element with a specific ID.
• Fill: Types a message into an input box with a specific ID.
• Search: Types a message into an input box with a specific ID and presses Enter to initiate a

search.
• Keyboard_Press: Emulates a specific keyboard key combination.
• Scroll: Scrolls the page up or down.
• Select dropdown option: Selects an option from a dropdown menu with a specific ID.
• New tab: Opens a new tab in the current browser.
• Tab focus: Switches focus to a browser tab at a specified index.
• Close tab: Closes the current tab.
• Goto: Navigates to a specific URL.
• Go back: Returns to the previous page.
• Go forward: Moves to the next page if available.
• Exit: Terminates the operation, returns the response, and exits.

Detailed Training Process of WebGRPO. During WebGRPO training with GLM-4 and Llama3.1
models, we configured 8×H100 GPUs and utilized the FSDP strategy. Each training starts with 8
state-task goal pairs (P = 8) and collects 16 trajectories (N = 16) per state. The dual uncertainty
filtering is set to p=35% and q=45%, with β = 0.4 to balance reasoning and execution rewards.
The maximum KL steps are limited to 10 (K = 10). In the periodic filtering schedule, we adopt a
linear curriculum strategy with the initial update interval set to ∆0 = 10 and the curriculum index
γ ∈ 0, 10, 20, 30, yielding update intervals ∆(γ) ∈ 10, 20, 30, 40. The model trains for a total of
200 steps, optimizing the strategy for efficient and stable learning. The detailed hyperparameter
settings are shown in Table 3. The detailed SkillGenesis framework is shown in Algorithm 1.

Cost Analysis. The training cost of the SkillEvo framework mainly comes from two stages: Web-
GRPO’s trajectory-level optimization training and SkillGenesis’s skill evolution exploration. In the
training phase, WebGRPO used 8×H100 GPUs for approximately 38 hours of training, and Skill-
Genesis’s exploration phase conducted 160 iterations, taking approximately 2.5 hours, with total
training GPU hours of approximately 324 GPU hours. In terms of query costs, WebGRPO uses
RXERM for trajectory reward modeling. For each successful trajectory, 1 + T GPT-4o calls are
required (where T is the number of reasoning steps, including T reasoning evaluations and 1 exe-
cution evaluation); if the trajectory is unsuccessful, no reasoning evaluation will be performed. The
SkillGenesis stage triggers one GPT-4o skill evolving call every 20 iterations. Based on the over-
all process estimation, the total call volume is approximately 101,000 GPT-4o calls. Among these,
RXERM two-stage reward evaluation accumulates approximately 248M tokens (execution reward
approximately 220M tokens, reasoning reward approximately 28M tokens). Additional overhead
mainly comes from SkillGenesis bringing approximately 42M tokens (skill proposal one-time ap-
proximately 64k tokens, skill genesis approximately 42M tokens, skill evolving approximately 50k
tokens).
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Algorithm 1 SkillGenesis Framework

1: procedure SKILLGENESIS(P, {s(i)0 }P1 )
2: {Ti} ← GPT4o.GenerateGoals({s(i)0 }P1 ) ▷ Skill Proposal
3: A0 ← ∅; G0 ← (∅, ∅) ▷ Initialize skill library and SPG
4: for t = 1 to T do
5: τ ← WebGRPO.GenerateTrajectory(T ) ▷ Skill Genesis
6: if Validate(τ, T ) then
7: τD ← TruncatePrefix(τ)
8: τf ← ExtendWithPolicy(τD)
9: Dcalled ← ExtractSkills(τf )

10: At ← At−1 ∪ Dcalled ▷ Update skill library
11: end if
12: if t mod Q = 0 then ▷ Periodic Skill Evolution
13: Suggestions← GPT4o.ComposeSuggestions(At,Gt)
14: for fcomp in Suggestions do
15: if Validate(fcomp.Task) then
16: At ← At ∪ {fcomp}
17: Gt ← UpdateSPG(Gt, fcomp)
18: end if
19: end for
20: end if
21: end for
22: return At,Gt
23: end procedure

Figure 7: Overall statistics of skills, including distribution and usage frequency.

B.2 HYPERPARAMETERS OF WEBGRPO AND BASELINES.

C SKILL ACCESS AND FILTERING

In this study, access to and filtering of the skill set is accomplished by directly listing the skill
functions in the Prompt. Specifically, the 134 skill functions are divided into 5 batches, each con-
taining about 27 functions, which are embedded in the <functions>...</functions> block
of the Prompt. Based on the task description, the model determines whether each skill is relevant
within every batch Prompt and outputs a JSON result containing step-by-step reasoning and function
names. The results from the 5 batches are then merged and deduplicated to obtain a candidate skill
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Table 3: The hyperparameters we employ in WEBGRPO and baselines.

Method Hyperparameter Value

SFT

learning rate 1e-5
lr scheduler type cosine

warmup ratio 0.1
batch size 128

training epoch 1
cutoff length 16384

Filtered BC

learning rate 1e-6
lr scheduler type constant

batch size 128
training epoch 1
cutoff length 16384

filtering threshold 70th percentile

AWR

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1

DigiRL

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

instruction value function lr 1e-6
instruction value function lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1

instruction value function epoch 1
rollout temperature 1
replay buffer size 100000

WEBRL

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1
rollout temperature 1

WEBGRPO

actor learning rate 1e-6
actor lr scheduler type constant

mini batch size 64
discount factor 0.95

rollout temperature 1
validation temperature 0.5

max prompt length 4096
maximum response length 512

KL-divergence loss coefficient 0.001
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set. A subsequent ranking Prompt is used to select the Top-15 most relevant skill functions, which
are finally injected into the strategy model Prompt for task execution, as shown in Figure 19 and 20.

D SKILLS DISTRIBUTION AND USAGE

As illustrated in Figure 7, in the complete 165 test tasks, we analyzed the coverage rate, call fre-
quency, and complexity distribution of skill calls. After 160 exploration iterations, with composite
skill generation triggered every 20 Genesis iterations, the final skill library size reached 134 skills,
including 88 basic skills and 46 composite skills. In the test set, 86 skills were actually invoked,
with 67 basic skills and 19 composite skills. The total number of skill calls was 193 (approximately
1.17 per task), with basic skill calls accounting for 141 (73%) and composite skills for 52 (27%).
Although fewer in number, composite skills exhibited a higher reuse rate, with an average of 2.74
calls per skill, compared to 2.10 for basic skills. Task-level statistics show that 33% of tasks (55) can
be completed entirely with atomic operations, without invoking any skills; 36% (60) invoked only 1
skill; tasks requiring 2 and 3 skills account for 16% (27) and 8% (13), respectively; high-complexity
tasks requiring 4 skills constitute 6% (10). Thus, while simple tasks can often be solved with atomic
operations or few basic skills, high-complexity tasks (≥3 skill calls) significantly depend on skill
calls, contributing 41% of all invocations.

E OTHER QUANTITATIVE EXPERIMENTS

E.1 EVALUATION OF REWARD MECHANISMD RXERM

RXERM integrates Execution Reward (judging task completion) and Reasoning Reward (eval-
uating intermediate reasoning quality). We validated RXERM on 500 task trajectories using GPT-
4o, comparing with human annotations and other evaluators (Claude-3.5 Sonnet, DeepSeek-R1,
Gemini-1.5 Pro, GPT-4o-mini). As shown in Figure 8, GPT-4o achieved 92.7% execution ac-
curacy (second to DeepSeek-R1, 93.5%) and 92.1% reasoning accuracy (best, ∼3% higher than
Claude-3.5), leading to the highest overall accuracy (92.4%). Given its high consistency with hu-
man annotations, we ultimately chose GPT-4o as the RXERM model.
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Figure 8: Execution Reward and Reasoning Reward Accuracy of different LLMs.

E.2 ANALYSIS OF MODEL PERFORMANCE VARIANCE

Figure 9 presents the task success rates and error bars of various training methods on WebArena-
Lite using the GLM-4 (Left) and LLaMA3.1 (Right) model series. Each method was evaluated
with 5 runs using different random seeds to assess training stability and robustness. Due to the
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Figure 9: Task success rates and standard deviation error bars of different training methods on
WebArena-Lite using the GLM-4 (left) and LLaMA3.1 (right) model series.

stochastic nature of Skill Proposal, WebGRPO exhibits relatively high variance. Nevertheless, both
WebGRPO and its enhanced version, WebGRPO (+Skills), consistently outperform all baselines
across both model series, achieving the highest average success rates. Even at the lower bound of
the error bars, their performance remains superior, demonstrating the effectiveness and robustness
of the proposed approach.

E.3 SENSITIVE ANALYSIS REWARD BALANCING FACTOR α

Figure 10: Sensitivity Analysis of α

According to the sensitivity analysis, the choice of α has a significant impact on the success rate
across different websites. As shown in Figure 10, the highest success rates for Reddit (0.38), Gitlab
(0.38), CMS (0.34), Map (0.33), and OSS (0.42) are achieved when α is between 0.3 and 0.5,
indicating the importance of increasing the weight of execution rewards. Both excessively low and
high reasoning rewards reduce success rates—too low makes it hard to complete complex tasks,
while too high may hinder the successful completion of trajectories. A proper balance between
reasoning and execution rewards yields optimal performance.

E.4 SENSITIVITY ANALYSIS OF FORMATTING REWARD WEIGHT β

In multi-turn tasks, reward signals are often sparse, delayed, and heavily outcome-based. As a
result, models may produce the correct final answer through trial-and-error or shortcut strategies
rather than coherent reasoning. We observe that in the absence of structural constraints, models
frequently generate illogical or hallucinated reasoning traces—a phenomenon known as reasoning
collapse. To address this, we introduce a formatting reward coefficient β, which penalizes outputs
that do not conform to the expected <think>–<answer> structure, even when the final answer is
correct. This encourages the model to maintain interpretable and logically consistent intermediate
reasoning steps. As shown in Figure 11a, increasing the formatting reward weight to a moderate
level (e.g., β = 0.4) leads to improved model stability and task success rate. Conversely, when
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Figure 11: Sensitivity Analysis. Left: Sensitivity analysis of the formatting reward weight β. The
plot shows the average task success rate across different values of β, which determines the influence
of structural correctness in the overall reward. Performance improves significantly as β increases,
peaking at β = 0.4 with a success rate of 60.4%. A too-small or absent formatting reward leads
to reasoning collapse and poor learning stability, while overly large values reduce performance due
to excessive emphasis on structure. Right: Sensitivity analysis when varying percentile thresholds
for execution and reasoning uncertainty. The figure shows the average task success rate under two
settings: fixing the reasoning uncertainty percentile q = 45% (blue line) while varying p, and fixing
the execution uncertainty percentile p = 35% (orange line) while varying q. The best performance
(60.4%) is observed at (p = 35%, q = 45%).

Figure 12: Success rate (%) of different LLMs on five web environments and the overall average in
the SkillEvo workflow. GPT-4o achieves the highest average performance and leads on most tasks,
while Claude-3.5-Sonnet slightly outperforms others on CMS and DeepSeek-R1 performs best on
Map.

the formatting reward is too small or absent, the model’s reasoning process often collapses, making
policy learning unstable and more difficult to converge.

E.5 SENSITIVITY ANALYSIS OF DUAL-UNCERTAINTY TASK FILTERING

We conduct a systematic sensitivity analysis over the execution uncertainty percentile p and reason-
ing uncertainty percentile q. As shown in Figure 11b, the highest average task success rate (60.4%)
is achieved when selecting the top 35% of task instances based on execution uncertainty and further
filtering the top 45% based on reasoning uncertainty. This confirms that selecting moderately uncer-
tain tasks contributes to both informativeness and stable policy optimization. In contrast, increasing
either p or q leads to overly permissive filtering, allowing low-information or noisy instances to
be included, which can destabilize training and even cause policy collapse. Conversely, excessively
small p/q values may discard too many useful samples, slightly lowering performance due to reduced
diversity.
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Figure 13: Reddit Example:Tell me the count of comments that have received more downvotes than
upvotes for the user who made the latest post on the Showerthoughts forum.

Figure 14: Workflow comparison between the w/o SPG and w/ SPG for task “Tell me the count of
comments that have received more downvotes than upvotes for the user who made the latest post on
the Showerthoughts forum.”.

E.6 PERFORMANCE COMPARISON OF SKILLEVO WITH DIFFERENT LLMS

In LLaMA3.1 + WebGRPO (+Skills), we compare the performance of SkillEvo during the SkillGe-
nesis stage when implemented with different large language models (LLMs). The figure presents the
results of five LLMs—GPT-4o, Claude-3.5-Sonnet, GPT-4o-mini, Gemini-2.5-Pro, and DeepSeek-
R1—across five web-based tasks (Reddit, GitLab, CMS, Map, OSS) and their average success rate
(Avg. SR). The results show that GPT-4o consistently outperforms others on most tasks and achieves
the highest average performance; Claude-3.5-Sonnet performs best on CMS, while DeepSeek-R1
slightly outperforms others on Map. Based on the overall performance, we ultimately select GPT-4o
to implement the Skills component in SkillEvo.

F CASES STUDIES

To qualitatively analyze the impact of the SPG (Skill Path Graph) mechanism on action planning
efficiency, we illustrate a representative Reddit example. Figure 13 presents the action trajectory
for accomplishing the task “Tell me the count of comments that have received more downvotes than
upvotes for the user who made the latest post on the Showerthoughts forum.” . This multi-hop
reasoning task requires understanding temporal posting order, user identity, and comment-level vote
analysis. As shown in Figure 14, compared to the baseline agent (w/o SPG), which completes the
task in four discrete steps, the agent with SPG (w/ SPG) achieves the same goal in a single step by
optimizing the existing simple skills and composing them with more complex and advanced skills,
which effectively improves the efficiency and cost of implementing web tasks.
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G FAILURE CASE ANALYSIS

Our preliminary analysis reveals two major categories of failure. First, skill invocation degrada-
tion is observed after WebGRPO training. Although the model can recognize appropriate skills
during the exploration phase, in the execution phase it often reverts to atomic webpage operations
instead of leveraging the skill library. For instance, in the task “view details of a book”, the model
should invoke the API search_books_by_title(’...’), but instead fails to call it. This
suggests that the policy lacks a global mechanism for evaluating the utility of skill calls, resulting
in underutilization of evolved skills. Second, parameter filling errors are frequently encountered.
In the task “find recipes containing broccoli but no dairy products”, the model incorrectly gen-
erates the API call search_recipes_by_ingredients(’broccoli, milk-free’),
whereas the correct call should be search_recipes_by_ingredients(’broccoli’,
exclude=’dairy’). These errors typically stem from insufficient understanding of negation
and exclusion constraints, which leads to semantic misinterpretations when constructing API pa-
rameters. Together, these cases highlight current limitations of our approach, particularly in skill
integration into policy execution and robust handling of fine-grained constraints.

H DETAILS OF PROMPTS USED IN SKILLEVO

To enable the evaluation of reasoning and execution behaviors, as well as the generation and veri-
fication of skills for web-interacting agents, we have designed a series of carefully crafted prompt
templates. These templates cover key aspects such as reasoning rewards, execution rewards, and the
core components of the SkillGenesis framework, including skill proposal, validation, and composi-
tion.

As illustrated in Figure 21, we designed a reasoning quality evaluation prompt to assess the logical
coherence, relevance, and interpretability of the agent’s intermediate reasoning during task execu-
tion. This evaluation provides fine-grained reward signals. The execution success evaluation prompt,
shown in Figure 22, determines whether the agent’s sequence of actions successfully achieves the
user’s goal, serving as a key basis for execution rewards.

For skill generation, we introduced the SkillGenesis prompting system. The skill proposal prompt,
shown in Figure 16, guides the agent to propose reusable and high-value interaction skills. The
skill validation prompt, shown in Figure 15, evaluates the effectiveness and utility of proposed skills
in specific tasks. Additionally, Figure 17 presents a prompt for abstracting reusable functions and
rewriting action trajectories, promoting modularity and reusability in agent behaviors and Figure 18
shows a prompt for composing new skills from existing ones, supporting structured skill evolution
and enhancing task efficiency. Together, these prompts form the core mechanism that supports the
agent’s learning and self-evolution process.
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Skill Verification Prompt:

You are an expert in **verifying the validity of web interaction skills** generated by an
autonomous agent. The agent attempts to complete a task using a combination of primitive
actions and invoked skills. Please analyze the following based on the trajectory and invoked
skills.
The user’s goal is: {Task}
You will assess the trajectory against the following three criteria:
1. **Correctness** — Does the agent successfully complete the task goal?
2. **Skill Usage** — Does the trajectory include explicit invocations of reusable skills?
3. **Skill Effectiveness** — Do the invoked skills result in meaningful changes to the
webpage state (e.g., navigation, DOM updates, successful form submission)?

## [Trajectory]: ## {State-action sequence; includes primitive actions and SKILL calls}

## [Invoked Skills]: ## {List of skills invoked in the trajectory}

For each criterion, respond with **YES** or **NO**, followed by a brief explanation.
Finally, answer the following:

**Should the invoked skills be added to the skill library?**
Respond only with YES or NO.

Figure 15: Prompt for validating generated skills in the SkillGenesis framework.
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Skill Proposal Prompt:

You are a **web agent** learning how to use a website. Your goal is to propose **"skills"**
— Python functions that automate common tasks on the website. Each skill should act as
a shortcut that combines multiple user interactions into a single reusable function. You are
**not allowed** to interact with login/logout/account-related features on any site. If the site
uses Magento, avoid the "Advanced Reporting" tab. If the site is OpenStreetMap, do not
interact with community features.

You have already proposed the following skills:
<proposed>
##{procedural knowledge}##
</proposed>

The structure of the current website is provided below as HTML:
<html>
##{HTML structure}##
</html>

Please propose a new skill that reflects a task a real user might frequently perform. The
skill should be meaningful and combine multiple interactions into a single callable function.
**Avoid skills that perform only a single click.**

Follow these design guidelines for each skill:
- The skill name must be expressed in natural language.
- Do **not** use ‘*id‘ as a parameter.
- Each skill should simulate a multi-step sequence of interactions.
- **Prioritize tasks of the following types**:

-Creating data (e.g., submitting a form)
-Editing data (e.g., modifying entries)
-Querying or filtering data (e.g., using search or filters)

- The total number of interactions (clicks, inputs, etc.) must **not exceed 10 steps**.

For each skill, evaluate it across the following three dimensions:
1. **Usefulness (1–3 points)**

-3: A complex and frequently performed task with high user value.
-2: A moderately frequent or moderately valuable task.
-1: A rare or low-impact task.

2. **Generalizability (1–3 points)**
-3: Can be reused across multiple pages or components.
-2: Applies only to the current page but has a stable structure.
-1: Depends on very specific or fragile HTML structure.

3. **Interaction Steps Score (1–10 points)**
-Count the number of user interactions (click, input, select, etc.).
-The more steps, the better — skills with more steps are more worthwhile to automate.
-Maximum allowed steps: **10**

**Final Score = Usefulness + Generalizability + Number of Steps**

Your response must include a ‘step by step reasoning‘ section explaining the three individual
scores and listing each interaction step, followed by a ‘proposed skill‘ section that names the
highest-scoring skill using natural language.

Figure 16: Prompt used for skill proposer to propose reusable skills.
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Reusable Function Abstraction and Trajectory Rewriting Prompt:

You are a proficient software engineer. Your task is to:
(1) **Summarize reusable functions as APIs** from the provided action trajectories;
(2) **Rewrite the trajectories using the reusable functions** you generated in (1).

**Step 1: Generate reusable functions**
From the provided trajectory, extract Python functions that encapsulate reusable and mean-
ingful tasks.
- Each function should:

- Contain **at least 3 actions**, but no more than 10 lines of code;
- Be **general enough** for reuse in related scenarios;
- Use **only common variables** as arguments (e.g., strings, lists), **not functions

or complex objects**;
- **Avoid try-except blocks**.

- The only valid actions are:

• **Click**: Clicks an element with a specific ID.
• **Hover**: Hovers over an element with a specific ID.
• **Type**: Types a message into an input box with a specific ID.
• **Search**: Types a message into an input box with a specific ID and presses Enter to

initiate a search.
• **Press**: Emulates a specific keyboard key combination.
• **Scroll**: Scrolls the page up or down.
• **Select dropdown option**: Selects an option from a dropdown menu with a specific

ID.
• **New tab**: Opens a new tab in the current browser.
• **Tab focus**: Switches focus to a browser tab at a specified index.
• **Close tab**: Closes the current tab.
• **Goto**: Navigates to a specific URL.
• **Go back**: Returns to the previous page.
• **Go forward**: Moves to the next page if available.
• **Exit**: Terminates the operation, returns the response, and exits.

- Each function must include the following in its docstring:
- **Args** – Describe parameters;
- **Returns** – Describe return values;
- **Examples** – Show how the function is used.

**Step 2: Rewrite trajectories**
For each example:
- Provide an **instruction** describing the refactoring;
- Rewrite the original trajectory using the reusable functions;
- Do **not** include any response content or example-specific logic in the function calls.

**Important**:
- Make sure all used element IDs or URLs are visible in the original trajectory;
- If you use ‘Exit‘, ensure the message is defined **within** the function;
- Each function should contain **2–10 steps only** to ensure simplicity;
- You may generate **zero, one, or multiple functions** depending on the input examples.

Figure 17: Prompt for reusable function abstraction and trajectory rewriting using WebArena-Lite
action set.
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Skill Composition Prompt:

You are an expert in skill modeling and composition. Your task is to help the system design
a new composite skill by combining several existing skills in the skill library. The goal is to
improve the efficiency and reusability of web agents in completing complex tasks.

Current Skill Library:
##{skill1, skill2, skill3, ...}##

##Skill Path Graph (SPG):##
- List of skill nodes:
<vt> ##{vt}## </vt>
- List of skill dependency edges:
<et> ##{et}## </et>

In the SPG:
→ means sequential invocation, e.g., f1 → f2 → f3;
⇝ means strong dependency, e.g., f2 ⇝ f3.

**Your Task:**
1. Select **2–4 existing skills** and design a new composite skill fcomp;
2. Assign a **natural language name** to the skill;
3. Explain:
- What this skill does;
- When it is useful;
- Why this combination makes sense;
4. Specify:
- The invocation order: f1 → f2 → f3;
- Any strong dependencies: f2 ⇝ f3;
- A validation task Tcomp that can test this skill.

**Output Format:**
1.**Skill Name**: <natural language name>
2.**Composed From**: <list of component skills>
3.**Invocation Order**: <e.g., f1→ f2→ f3>
4.**Dependency Edges**: <e.g., f2⇝ f3> (optional)
5.**Validation Task**: <task to test the skill>
6.**Why Useful**: <brief explanation>

**Notes:**
1.The composite skill must have **no more than 10 steps**;
2.Only propose meaningful, reusable, and testable combinations;
3.Return nothing if no reasonable skill composition exists;
4.Focus on complete user flows, frequent patterns, or performance benefits;
5.The skill must be verifiable by outcome.

Figure 18: Prompt for proposing composite skills in the Skill Evolution stage.
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Skill Filtering Prompt:

You are provided with a list of Python functions that represent action shortcuts available on
a website (in addition to basic actions like click, type, hover, select option, etc.).

##Function Space:##
<functions>...</functions>

##Task Description:##
{repr task}

**Your Task:**
1. Analyze each function and determine whether it is relevant or potentially useful for the
task (not only the most obvious ones).
2. Include all functions that could be useful, even if they are not strictly necessary but might
help in completing the task.
3. Output the result in the following JSON format:
{ "step by step reasoning": "Explain your reasoning process", "function names": ["func-
tion_name_1", "function_name_2", "function_name_3", ...] }

Figure 19: Prompt for filtering skills in the SkillGenesis framework.

Skill Ranking Prompt:

Now you have a list of candidate functions:
{candidate functions list}

##Task Description:##
{repr task}

**Your Task:**
1. Rank these functions based on their relevance to the task;
2. Return the Top-15 most relevant functions;
3. Output the result in the following JSON format:
{ "step by step reasoning": "Explain how you determined the ranking", "function names":
["Top1_function_name", "Top2_function_name", ..., "Top15_function_name"] }

**Notes:**
1. Ensure reasoning is clear and directly tied to task requirements;
2. Return only valid JSON structures;
3. If fewer than 15 functions are relevant, return all that apply.

Figure 20: Prompt for ranking skills in the SkillGenesis framework.
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Reasoning Quality Evaluation Prompt:

You are an **expert reasoning evaluator for web-based interactive agents**. Your task is
to analyze the agent’s intermediate reasoning and assess its quality for reward feedback.
Follow the evaluation criteria carefully.

##[Task Goal]:## {Task}
##[Current Webpage State]:## {Html of Current State}
##[Interaction History]:## {Action History}
##[Agent’s Reasoning Trace]:## {Reasoning Trace}

Please evaluate the reasoning based on the following four criteria, assigning a score between
0 and 1 for each:
1. **Relevance to Task Goal (0–1)**
- Does the reasoning clearly connect to the specified task goal?
- Are the identified webpage elements or proposed reasoning directly helpful for achieving
the task?
2. **Understanding of Webpage State (0–1)**
- Does the reasoning accurately describe relevant elements on the current webpage (e.g.,
buttons, forms, navigation bars)?
- Is there clear evidence that the agent understands the current structure and state of the
webpage?
3. **Logical Consistency of Reasoning (0–1)**
- Does the reasoning exhibit a clear and coherent causal relationship between observations
and planned actions?
- Are the proposed actions logically justified, explaining why these actions are necessary to
achieve the task goal?
4. **Interpretability and Intermediate Steps (0–1)**
- Does the reasoning explicitly describe intermediate goals or sub-tasks rather than jumping
directly to the final goal?
- Are the intermediate steps clearly explained, with reasoning about why each step is neces-
sary?

##[Final Reasoning Quality Score] (Weighted average of the four criteria, range [0, 1]):##
{Final Score}

##[Brief Explanation of Evaluation]## (Why did you assign this score?):

**IMPORTANT:** Only provide the final numerical score and a concise explanation. Do
**not** solve the task direct.

Figure 21: Prompt for evaluating agent reasoning quality.

Task Completion Evaluation Prompt:

You are an expert in **evaluating the performance of a website navigation agent**.
The agent is designed to help a human user navigate the website to complete a task.
Please observe the following action history of an agent assisting a user on a website.
The user’s goal is: {Task}
Based on the agent’s action history and the final screen state, your goal is to determine
whether the agent successfully completed the task.
Respond only with YES or NO.
##[Interaction History]:##
{Action History}
##[Final Webpage State]:##
{Html of Final Webpage State}

Figure 22: Prompt for evaluating agent’s task completion status.
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