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ABSTRACT

To train an inference network jointly with a deep generative topic model, making
it both scalable to big corpora and fast in out-of-sample prediction, we develop
Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet alloca-
tion, which infers posterior samples via a hybrid of stochastic-gradient MCMC
and autoencoding variational Bayes. The generative network of WHAI has a hier-
archy of gamma distributions, while the inference network of WHAI is a Weibull
upward-downward variational autoencoder, which integrates a deterministic-
upward deep neural network, and a stochastic-downward deep generative model
based on a hierarchy of Weibull distributions. The Weibull distribution can be
used to well approximate a gamma distribution with an analytic Kullback-Leibler
divergence, and has a simple reparameterization via the uniform noise, which help
efficiently compute the gradients of the evidence lower bound with respect to the
parameters of the inference network. The effectiveness and efficiency of WHAI
are illustrated with experiments on big corpora.

1 INTRODUCTION

There is a surge of research interest in multilayer representation learning for documents. To analyze
the term-document count matrix of a text corpus, Srivastava et al. (2013) extend the deep Boltzmann
machine (DBM) with the replicated softmax topic model of Salakhutdinov & Hinton (2009) to infer
a multilayer representation with binary hidden units, but its inference network is not trained to match
the true posterior (Mnih & Gregor, 2014) and the higher-layer neurons learned by DBM are difficult
to visualize. The deep Poisson factor models of Gan et al. (2015) are introduced to generalize
Poisson factor analysis (Zhou et al., 2012), with a deep structure restricted to model binary topic
usage patterns. Deep exponential families (DEF) of Ranganath et al. (2015) construct more general
probabilistic deep networks with non-binary hidden units, in which a count matrix can be factorized
under the Poisson likelihood, with the gamma distributed hidden units of adjacent layers linked via
the gamma scale parameters. The Poisson gamma belief network (PGBN) (Zhou et al., 2015; 2016)
also factorizes a count matrix under the Poisson likelihood, but factorizes the shape parameters of
the gamma distributed hidden units of each layer into the product of a connection weight matrix and
the gamma hidden units of the next layer, resulting in strong nonlinearity and readily interpretable
multilayer latent representations.

Those multilayer probabilistic models are often characterized by a top-down generative structure,
with the distribution of a hidden layer typically acting as a prior for the layer below. Despite be-
ing able to infer a multilayer representation of a text corpus with scalable inference (Patterson &
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Teh, 2013; Ruiz et al., 2016; Cong et al., 2017a), they usually rely on an iterative procedure to
infer the latent representation of a new document at the testing stage, regardless of whether vari-
ational inference or Markov chain Monte Carlo (MCMC) is used. The potential need of a large
number of iterations per testing document makes them unattractive when real-time processing is
desired. For example, one may need to rapidly extract the topic-proportion vector of a document
and use it for downstream analysis, such as identifying key topics and retrieving related documents.
A potential solution is to construct a variational autoencoder (VAE) that learns the parameters of
an inference network (recognition model or encoder) jointly with those of the generative model
(decoder) (Kingma & Welling, 2014; Rezende et al., 2014). However, most existing VAEs rely on
Gaussian latent variables, with the neural networks (NNs) acting as nonlinear transforms between
adjacent layers (Sonderby et al., 2016; Dai et al., 2016; Ishaan et al., 2017). A primary reason is
that there is a simple reparameterization trick for Gaussian latent variables that allows efficiently
computing the noisy gradients of the evidence lower bound (ELBO) with respect to the NN pa-
rameters. Unfortunately, Gaussian based distributions often fail to well approximate the posterior
distributions of sparse, nonnegative, and skewed document latent representations. For example, Sri-
vastava & Sutton (2017) propose autoencoding variational inference for topic models (AVITM), as
shown in Fig. 2b, which utilizes the logistic-normal distribution to approximate the posterior of the
latent representation of a document; even though the generative model is latent Dirichlet allocation
(LDA) (Blei et al., 2003), a basic single-hidden-layer topic model, due to the insufficient ability of
the logistic-normal distribution to model sparsity, AVITM has to rely on some heuristic to force the
latent representation of a document to be sparse. Another common shortcoming of existing VAEs
is that they often only provide a point estimate for the global parameters of the generative model,
and hence their inference network is optimized to approximate the posteriors of the local parameters
conditioning on the data and the point estimate, rather than a full posterior, of the global parameters.
In addition, from the viewpoint of probabilistic modeling, the inference network of a VAE is often
merely a shallow probabilistic model, whose parameters, though, are deterministically nonlinearly
transformed from the observations via a non-probabilistic deep neural network.

To address these shortcomings and move beyond Gaussian latent variable based deep models and in-
ference procedures, we develop Weibull hybrid autoencoding inference (WHAI), a hybrid Bayesian
inference for deep topic modeling that integrates both stochastic-gradient MCMC (Welling & Teh,
2011; Ma et al., 2015; Cong et al., 2017a) and a multilayer Weibull distribution based VAE. WHAI
is related to a VAE in having both a decoder and encoder, but differs from a usual VAE in the fol-
lowing ways: 1) deep latent Dirichlet allocation (DLDA), a probabilistic deep topic model equipped
with a gamma belief network, acts as the generative model; 2) inspired by the upward-downward
Gibbs sampler of DLDA, as sketched in Fig. 2c, the inference network of WHAI uses a upward-
downward structure, as shown in Fig. 2a, to combine a non-probabilistic bottom-up deep NN and
a probabilistic top-down deep generative model, with the `th hidden layer of the generative model
linked to both the (`+1)th hidden layer of itself and the `th hidden layer of the deep NN; 3) a hybrid
of stochastic-gradient MCMC and autoencoding variational inference is employed to infer both the
posterior distribution of the global parameters, represented as collected posterior MCMC samples,
and a VAE that approximates the posterior distribution of the local parameters given the data and
a posterior sample (rather than a point estimate) of the global parameters; 4) we use the Weibull
distributions in the inference network to approximate gamma distributed conditional posteriors, ex-
ploiting the fact that the Weibull and gamma distributions have similar probability density functions
(PDFs), the Kullback-Leibler (KL) divergence from the Weibull to gamma distributions is analytic,
and a Weibull random variable can be efficiently reparameterized with a uniform noise.

Note that we have also tried gamma hybrid autoencoding inference (GHAI), which directly uses
the gamma distribution in the probabilistic top-down part of the inference network, while using
rejection sampling variational inference (RSVI) of Naesseth et al. to approximately compute the
gradient of the ELBO. While RSVI is a very general technique that can be applied to a wide vari-
ety of non-reparameterizable distributions, we find that for replacing the reparameterizable Weibull
with non-reparameterizable gamma distributions in the inference network, the potential gains are
overshadowed by the disadvantages of having to rely on an approximate reparameterization scheme
guided by rejection sampling. In the experiments for deep topic modeling, we show that WHAI
clearly outperforms GHAI, and both WHAI and GHAI outperform their counterparts that remove the
top-down links of the inference network, referred to as WHAI-independent and GHAI-independent,
respectively; WHAI is comparable to Gibbs sampling in terms performance, but is scalable to big
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training data via mini-batch stochastic-gradient based inference and is considerably fast in out-of-
sample prediction via the use of an inference network.

2 WHAI FOR MULTILAYER DOCUMENT REPRESENTATION

Below we first describe the decoder and encoder of WHAI, and then provide a hybrid stochastic-
gradient MCMC and autoencoding variational inference that is fast in both training and testing.

2.1 DOCUMENT DECODER: DEEP LATENT DIRICHLET ALLOCATION

In order to capture the hierarchical document latent representation, WHAI uses the Poisson gamma
belief network (PGBN) of Zhou et al. (2016), a deep probabilistic topic model, as the generative
network (encoder). Choosing a deep generative model as its decoder distinguishes WHAI from both
AVITM, which uses a “shallow” LDA as its decoder, and a conventional VAE, which often uses as
its decoder a “shallow” (transformed) Gaussian distribution, whose parameters are deterministically
nonlinearly transformed from the observation via “black-box” deep neural networks. With all the
gamma latent variables marginalized out, as shown in Cong et al. (2017a), the PGBN can also be
represented as deep LDA (DLDA). For simplicity, below we use DLDA to refer to both the PGBN
and DLDA representations of the same underlying deep generative model, as briefly described be-
low. Note the single-hidden-layer version of DLDA reduces to Poisson factor analysis of Zhou
et al. (2012), which is closely related to LDA. Let us denote Φ(1) ∈ RK0×K1

+ and θ(1)n ∈ RK1
+ as

the factor loading and latent representation of the first hidden layer of DLDA, respectively, where
R+ = {x, x ≥ 0} and K1 is the number of topics (factors) of the first layer. We further restrict
that the sum of each column of Φ(1) is equal to one. To model high-dimensional multivariate sparse
count vectors xn ∈ ZK0 , where Z = {0, 1, . . .}, under the Poisson likelihood, the DLDA generative
model with L hidden layers, from top to bottom, can be expressed as

θ(L)n ∼ Gam
(
r, c(L+1)

n

)
, . . . ,θ(l)n ∼ Gam

(
Φ(l+1)θ(l+1)

n , c(l+1)
n

)
, . . . ,

θ(1)n ∼ Gam
(
Φ(2)θ(2)n , c(2)n

)
, xn∼Pois

(
Φ(1)θ(1)n

)
. (1)

where the hidden units θ(l)n ∈ RKl
+ of layer l are factorized into the product of the factor loading

Φ(l) ∈ RKl−1×Kl

+ and hidden units of the next layer. It infers a multilayer data representation, and

can visualize its topic φ(l)k at hidden layer l as
[∏l−1

t=1 Φ(t)
]
φ
(l)
k , which tend to be very specific in

the bottom layer and become increasingly more general when moving upward. The unsupervisedly
extracted multilayer latent representations θ(l)n are well suited for additional downstream analysis,
such as document classification and retrieval.

The upward-downward Gibbs sampling for DLDA, as described in detail in Zhou et al. (2016), is
sketched in Fig. 2c, where Zl represent augmented latent counts that are sampled upward given the
observations and model parameters. While having closed-form update equations, the Gibbs sampler
requires processing all documents in each iteration and hence has limited scalability. Consequently,
a topic-layer-adaptive stochastic gradient Riemannian (TLASGR) MCMC for DLDA, referred to as
DLDA-TLASGR, is proposed to process big corpora (Cong et al., 2017a). Different from AVITM
(Srivastava & Sutton, 2017) that models a probabilistic simplex with the expanded-natural repre-
sentation (Patterson & Teh, 2013), DLDA-TLASGR uses a more elegant simplex constraint and
increases the sampling efficiency via the use of the Fisher information matrix (FIM) (Cong et al.,
2017a;b), with adaptive step-sizes for the topics of different layers. Specifically, suppose φ(l)

k is the
kth topic in layer ` with prior φ(l)

k ∼ Dirichlet(η(l)k ), sampling it can be efficiently realized as

(φk)t+1 =

[
(φk)t +

εt
Mk

[
(ρz̃:k· + η

(l)
k )− (ρz̃·k· + η

(l)
k V )(φk)t

]
+N

(
0,

2εt
Mk

diag(φk)t

)]
∠

, (2)

where Mk is calculated using the estimated FIM, both z̃:k· and z̃·k· come from the augmented latent
counts Z, and [·]∠ denotes a simplex constraint; more details about TLASGR-MCMC for DLDA
can be found in Cong et al. (2017a) and are omitted here for brevity.
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Figure 1: The KL divergence from the inferred Weibull distribution to the target gamma one as (a)
Gamma(0.05, 1), (b) Gamma(0.5, 1), and (c) Gamma(5, 1). Subplot (d) shows the KL divergence
as a function of the gamma shape parameter, where the gamma scale parameter is fixed at 1.

Despite the attractive properties, neither the Gibbs sampler nor TLASGR-MCMC of DLDA can
avoid taking a potentially large number of MCMC iterations to infer the latent representation of a
testing document, which hinders real-time processing of the incoming documents and motivates us
to construct an inference network with fast out-of-sample prediction, as described below.

2.2 DOCUMENT ENCODER: WEIBULL UPWARD-DOWNWARD VARIATIONAL ENCODER

A VAE uses an inference network to map the observations directly to their latent representations.
However, their success so far is mostly restricted to Gaussian distributed latent variables, and does
not generalize well to model sparse, nonnegative, and skewed latent document representations. To
move beyond latent Gaussian models, below we propose Weibull upward-downward variational en-
coder (WUDVE) to efficiently produce a document’s multilayer latent representation under DLDA.

Assuming the global parameters φ(l)
k of DLDA shown in (1) are given and the task is to infer the

local parameters θ(l+1)
n , the usual strategy of mean-field variational Bayes (Jordan et al., 1999) is to

maximize the ELBO that can be expressed as

L =

N∑
n=1

E
[
ln p

(
xn |Φ(1),θ(1)n

)]
−

N∑
n=1

L∑
l=1

E

ln
q
(
θ(l)n

)
p
(
θ(l)n |Φ

(l+1),θ(l+1)
n

)
 , (3)

where the expectations are taken with respect to (w.r.t.) a fully factorized distribution as

q
(
{θ(l)n }

N,L
n=1,l=1

)
=

N∏
n=1

L∏
l=1

q
(
θ(l)n

)
. (4)

Instead of using a conventional latent Gaussian based VAE, in order to model sparse and nonnegative
latent document representation, it might be more appropriate to use a gamma distribution based
inference network defined as q(θn |xn) = Gamma(fW(xn), gW(xn)), where f and g are two
related deep neural networks parameterized by W. However, it is hard to efficiently compute the
gradient of the ELBO with respect to W, due to the difficulty to reparameterize a gamma distributed
random variable (Kingma & Welling, 2014; Ruiz et al., 2016; Knowles, 2015), motivating us to
identify a surrogate distribution that can not only well approximate the gamma distribution, but also
be easily reparameterized. Below we show the Weibull distribution is an ideal choice.

2.2.1 WEIBULL AND GAMMA DISTRIBUTIONS

A main reason that we choose the Weibull distribution to construct the inference network is that the
Weibull and gamma distributions have similar PDFs:

Weibull PDF: P (x | k, λ) =
k

λk
xk−1e(x/λ)

k

, Gamma PDF: P (x |α, β) =
βα

Γ(α)
xα−1e−βx,

where x ∈ R+. Another reason is due to a simple reparameterization for x ∼Weibull(k, λ) as

x = λ(− ln(1− ε))1/k, ε ∼ Uniform(0, 1).
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Moreover, its KL-divergence from the gamma distribution has an analytic expression as

KL(Weibull(k, λ)||Gamma(α, β)) = α lnλ− γα
k
− ln k−βλΓ

(
1+

1

k

)
+γ+1+α lnβ− ln Γ(α).

Minimizing this KL divergence, one can identify the two parameters of a Weibull distribution to
approximate a given gamma one. As shown in Fig. 1, the inferred Weibull distribution in general
quite accurately approximates the target gamma one, as long as the gamma shape parameter is
neither too close to zero nor too large.

2.2.2 UPWARD-DOWNWARD INFORMATION PROPAGATION

For the DLDA upward-downward Gibbs sampler sketched in Fig. 2c, the corresponding Gibbs
sampling update equation for θ(l)n can be expressed as

(θ(l)n | −) ∼ Gamma
(
m(l)(l+1)
n + Φ(l+1)θ(l+1)

n , f(p(l)n , c
(l+1)
n )

)
, (5)

wherem(l)(l+1)
n and p(l)n are latent random variables constituted by information upward propagated

to layer l, as described in detail in Zhou et al. (2016) and hence omitted here for brevity. It is
clear from (5) that the conditional posterior of θ(l)n is related to both the information at the higher
(prior) layer, and that upward propagated to the current layer via a series of data augmentation
and marginalization steps described in Zhou et al. (2016). Inspired by this instructive upward-
downward information propagation in Gibbs sampling, as shown in Fig. 2a, we construct WUDVE,
the inference network of our model, as q(θ(L)n |h(L)

n )
∏L−1
l=1 q(θ(l)n |Φ

(l+1),h(l)
n ,θ

(l+1)
n ), where

q(θ(l)n |Φ
(l+1),h(l)

n ,θ
(l+1)
n ) = Weibull(k(l)n + Φ(l+1)θ(l+1)

n ,λ(l)
n ). (6)

The Weibull distribution is used to approximate the gamma distributed conditional posterior, and its
parameters k(l)n ∈ RKl and λ(l)

n ∈ RKl are both deterministically transformed from the observa-
tion xn using the neural networks, as illustrated in Fig. 2a and specified as

k(l)n = ln[1 + exp(W
(l)
1 h

(l)
n + b

(l)
1 )], (7)

λ(l)
n = ln[1 + exp(W

(l)
2 h

(l)
n + b

(l)
2 )], (8)

h(l)
n = ln[1 + exp(W

(l)
3 h

(l−1)
n + b

(l)
3 )], (9)

where h(0)
n = log(1 + xn), W

(l)
1 ∈ RKl×Kl , W

(l)
2 ∈ RKl×Kl , W

(l)
3 ∈ RKl×Kl−1 , b(l)1 ∈ RKl ,

b
(l)
2 ∈ RKl , and b(l)3 ∈ RKl . This upward-downward inference network is distinct from that of

a usual VAE, where it is common that the inference network has a pure bottom-up structure and
only interacts with the generative model via the ELBO (Kingma & Welling, 2014; Ishaan et al.,
2017). Note that WUDVE no longer follows mean-field variational Bayes to make a fully factorized
assumption as in (4).

Comparing Figs. 2c and 2a show that in each iteration, both Gibbs sampling and WUDVE have not
only an upward information propagation (orange arrows), but also a downward one (blue arrows),
but their underlying implementations are distinct from each other. Gibbs sampling in Fig. 2c does
not have an inference network and needs the local variables θ(l)n to help perform stochastic upward
information propagation, whereas WUDVE in Fig. 2a uses its non-probabilistic part to perform
deterministic upward information propagation, without relying on the local variables θ(l)n . It is also
interesting to notice that the upward-downward structure of WUDVE, motivated by the upward-
downward Gibbs sampler of DLDA, is closely related to that used in the ladder VAE of Sonderby
et al. (2016). However, to combine the bottom-up and top-down information, ladder VAE relies on
some heuristic restricted to Gaussian latent variables.

2.3 HYBRID MCMC/VAE INFERENCE

In Section 2.1, we describe how to use TLASGR-MCMC of Cong et al. (2017a), a stochastic-
gradient MCMC algorithm for DLDA, to sample the global parameters {Φ(l)}1,L; whereas in Sec-
tion 2.2.2, we describe how to use WUDVE, an autoencoding variational inference network, to
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Figure 2: (a-b): Inference (or encoder/recognition) and generative (or decoder) models for (a) WHAI
and (b) AVITM; (c) the generative model and a sketch of the upward-downward Gibbs sampler of
DLDA, where Zl are augmented latent counts that are upward sampled in each Gibbs sampling
iteration. Circles are stochastic variables and squares are deterministic variables. The orange and
blue arrows denote the upward and downward information propagation respectively, and the red
ones denote the data generation.

approximate the conditional posterior of the local parameters {θ(l)n }1,L given {Φ(l)}1,L and ob-
servation xn. Rather than merely finding a point estimate of the global parameters {Φ(l)}1,L,
we describe in Algorithm 1 how to combine TLASGR-MCMC and the proposed WUDVE into
a hybrid MCMC/VAE inference algorithm, which infers posterior samples for both the global pa-
rameters {Φ(l)}1,L of the generative network, and the corresponding neural network parameters
Ω = {W(l)

1 , b
(l)
1 ,W

(l)
2 , b

(l)
2 ,W

(l)
3 , b

(l)
3 }1,L of the inference network. Being able to efficiently eval-

uating the gradient of the ELBO is important to the success of a variational inference algorithm
(Hoffman et al., 2013; Paisley et al., 2012; Kingma & Welling, 2014; Mnih & Gregor, 2014; Ran-
ganath et al., 2015; Ruiz et al., 2016; Rezende et al., 2014). An important step of Algorithm 1 is
calculating the gradient of the ELBO in (3) with respect to the NN parameters Ω. Thanks to the
choice of the Weibull distribution, the second term of the ELBO in (3) is analytic, and due to sim-
ple reparameterization of the Weibull distribution, the gradient of the first term of the ELBO with
respect to Ω can be accurately evaluated, achieving satisfactory performance using even a single
Monte Carlo sample, as shown in our experimental results. Thanks to the architecture of WUDVE,
using the inference network, for a new mini-batch, we can directly find the conditional posteriors
of {θ(l)n }1,L given {Φ(l)}1,L and the stochastically updated Ω, with which we can sample the local
parameters and then use TLASGR-MCMC to stochastically update the global parameters {Φ(l)}1,L.

2.4 VARIATIONS OF WHAI

To clearly understand how each component contributes to the overall performance of WHAI, below
we consider two different variations: GHAI and WAI. We first consider gamma hybrid autoencoding
inference (GHAI). In WUDVE, the inference network for WHAI, we have a deterministic-upward
and stochastic-downward structure, where the reparameterizable Weilbull distribution is used to con-
nect adjacent stochastic layers. Although we choose to use the Weibull distribution for the reasons
specified in Section 2.2.1, one may also choose some other distribution in the downward structure.
For example, one may choose the gamma distribution and replace (6) with

q(θ(l)n |Φ
(l+1),h(l)

n ,θ
(l+1)
n ) = Gamma(k(l)n + Φ(l+1)θ(l+1)

n ,λ(l)
n ). (10)

Even though the gamma distribution does not have a simple reparameteriation, one may use the
RSVI of Naesseth et al. to define an approximate reparameterization procedure via rejection
sampling. More specifically, following Naesseth et al., to generate a gamma random variable
z ∼ Gamma(α, β), one may first use the rejection sampler of Marsaglia & Tsang (2000) to generate
z̃ ∼ Gamma(α+B, 1), for which the proposal distribution is expressed as

z̃ =

(
α+B − 1

3

)(
1 +

ε√
9(α+B)− 3

)3

, ε ∼ N (0, 1),
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Algorithm 1 Hybrid stochastic-gradient MCMC and autoencoding variational inference for WHAI

Set mini-batch size m and the number of layer L
Initialize encoder parameter Ω and model parameter {Φ(l)}1,L.
for iter = 1, 2, · · · do

Randomly select a mini-batch of m documents to form a subset X = {xi}1,m;
Draw random noise

{
εli
}m,L
i=1,l=1

from uniform distribution;

Calculate∇ΩL
(
Ω,Φ{l}; X, εli

)
according to (3), and update Ω;

Sample θ{l}i from (6) via Ω to update topics {Φ(l)}Ll=1 according to (2);
end for

where B is a pre-set integer to make the acceptance probability be close to 1; one then lets
z = β−1z̃

∏B
i=1 ui

1/(α+i−1), where ui ∼ Uniform(0, 1). The gradients of the ELBO, however,
could still suffer from relatively high variance, as how likely a proposed ε will be accepted depends
on the gamma distribution parameters, and B extra uniform random variables {ui}1,B need to be
introduced.

To demonstrate the advantages of the proposed hybrid inference for WHAI, which infers posterior
samples of the global parameters, including {Φ(l)}1,L and Ω, using TLASGR-MCMC, we also
consider Weibull autoencoding inference (WAI) that has the same inference network as WHAI but
infers {Φ(l)}1,L and Ω using stochastic gradient decent (SGD) (Kingma & Ba, 2015). Note that as
argued in Mandt et al. (2017), SGD can also be used for approximate Bayesian inference. We will
show in experiments that sampling the global parameters via TLASGR-MCMC provides improved
performance in comparison to sampling them via SGD.

To understand the importance of the stochastic-downward structure used in the inference network,
and further understand the differences between using the Weibull distribution with simple reparame-
terization and using the gamma distribution with RSVI, we also consider DLDA-GHAI-Independent
and DLDA-WHAI-Independent that remove the stochastic-downward connections of DLDA-GHAI
and DLDA-WHAI, respectively. More specifically, they define q(θ(l)n |Φ

(l+1),h(l)
n ,θ

(l+1)
n ) in (6)

as Weilbull(k(l)n ,λ
(l)
n ) and Gamma(k(l)n ,λ

(l)
n ), respectively, and use variational inference and RSVI,

respectively, to infer Ω.

3 EXPERIMENTAL RESULTS

We compare the performance of different algorithms on 20Newsgroups (20News), Reuters Corpus
Volume I (RCV1), and Wikipedia (Wiki). 20News consists of 18,845 documents with a vocabulary
size of 2,000. RCV1 consists of 804,414 documents with a vocabulary size of 10,000. Wiki, with a
vocabulary size of 7,702, consists of 10 million documents randomly downloaded from Wikipedia
using the script provided for Hoffman et al. (2010). Similar to Cong et al. (2017a), we randomly
select 100,000 documents for testing. To be consistent with previous settings (Gan et al., 2015;
Henao et al., 2015; Cong et al., 2017a), no precautions are taken in the Wikipedia downloading
script to prevent a testing document from being downloaded into a mini-batch for training. Our code
is written in Theano (Theano Development Team, 2016).

For comparison, we consider the deep Poisson factor analysis (DPFA) of Gan et al. (2015), DLDA-
Gibbs of Zhou et al. (2016), DLDA-TLASGR of Cong et al. (2017a), and AVITM of Srivastava &
Sutton (2017), using the code provided by the authors. Note that as shown in Cong et al. (2017a),
DLDA-Gibbs and DLDA-TLASGR are state-of-the-art topic modeling algorithms that clearly out-
perform a large number of previously proposed ones, such as the replicated softmax of Salakhutdi-
nov & Hinton (2009) and the nested Hierarchical Dirichlet process of Paisley et al. (2015).

3.1 PER-HELDOUT-WORD PERPLEXITY

Per-heldout-word perplexity is a widely-used performance measure. Similar to Wallach et al. (2009),
Paisley et al. (2011), and Zhou et al. (2012), for each corpus, we randomly select 70% of the word
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Table 1: Comparison of per-heldout-word perplexity and testing time (average seconds per docu-
ment) on three different datasets.

Model Size Perplexity Test Time
20News RCV1 Wiki 20News RCV1 Wiki

DLDA-Gibbs 128-64-32 571 938 966 10.46 23.38 23.69
DLDA-Gibbs 128-64 573 942 968 8.73 18.50 19.79
DLDA-Gibbs 128 584 951 981 4.69 12.57 13.31

DLDA-TLASGR 128-64-32 579 950 978 10.46 23.38 23.69
DLDA-TLASGR 128-64 581 955 979 8.73 18.50 19.79
DLDA-TLASGR 128 590 963 993 4.69 12.57 13.31

DPFA 128-64-32 637 1041 1056 20.12 34.21 35.41
AVITM 128 654 1062 1088 0.23 0.68 0.80

DLDA-GHAI-Independent 128-64-32 613 970 999 0.62 1.22 1.47
DLDA-GHAI-Independent 128-64 614 970 1000 0.41 0.94 1.01
DLDA-GHAI-Independent 128 615 972 1003 0.22 0.69 0.80

DLDA-GHAI 128-64-32 604 963 994 0.66 1.25 1.49
DLDA-GHAI 128-64 608 965 997 0.44 0.96 1.05
DLDA-GHAI 128 615 972 1003 0.22 0.69 0.80

DLDA-WHAI-Independent 128-64-32 588 964 990 0.58 1.15 1.38
DLDA-WHAI-Independent 128-64 589 965 992 0.38 0.87 0.97
DLDA-WHAI-Independent 128 592 966 996 0.20 0.66 0.78

DLDA-WAI 128-64-32 581 954 984 0.63 1.20 1.43
DLDA-WAI 128-64 583 958 986 0.42 0.91 1.02
DLDA-WAI 128 593 967 999 0.20 0.66 0.78

DLDA-WHAI 128-64-32 581 953 980 0.63 1.20 1.43
DLDA-WHAI 128-64 582 957 982 0.42 0.91 1.02
DLDA-WHAI 128 591 965 996 0.20 0.66 0.78

tokens from each document to form a training matrix T, holding out the remaining 30% to form a
testing matrix Y. We use T to train the model and calculate the per-heldout-word perplexity as

exp

{
− 1

y··

V∑
v=1

N∑
n=1

yvn ln

∑S
s=1

∑K1

k=1 φ
(1)s
vk θ

(1)s
kn∑S

s=1

∑V
v=1

∑K1

k=1 φ
(1)s
vk θ

(1)s
kn

}
, (11)

where S is the total number of collected samples and y·· =
∑V
v=1

∑N
′

n=1 yvn. For the proposed
model, we set the mini-batch size as 200, and use as burn-in 2000 mini-batches for both 20News
and RCV1 and 3500 for wiki. We collect 3000 samples after burn-in to calculate perplexity. The
hyperparameters of WHAI are set as: η(l) = 1/Kl, r = 1, and c(l)n = 1.

Table 1 lists for various algorithms both the perplexity and the average run time per testing document
given a single sample (estimate) of the global parameters. Clearly, given the same generative net-
work structure, DLDA-Gibbs performs the best in terms of predicting heldout word tokens, which is
not surprising as this batch algorithm can sample from the true posteriors given enough Gibbs sam-
pling iterations. DLDA-TLASGR is a mini-batch algorithm that is much more scalable in training
than DLDA-Gibbs, at the expense of slighted degraded performance in out-of-sample prediction.
Both DLDA-WAI, using SGD to infer the global parameters, and DLDA-WHAI, using a stochastic-
gradient MCMC to infer the global parameters, slightly underperform DLDA-TLASGR; all mini-
batch based algorithms are scalable to a big training corpus, but due to the use of the WUDVE in-
ference network, both DLDA-GHAI and DLDA-WHAI, as well as their variations, are considerably
fast in processing a testing document. In terms of perplexity, all algorithms with DLDA as the gener-
ative model clearly outperform both DPFA of Gan et al. (2015) and AVITM of Srivastava & Sutton
(2017), while in terms of the computational cost for testing, all algorithms with an inference network,
such as AVITM, DLDA-GHAI, and DLDA-WHAI, clearly outperform these relying on an interac-
tive procedure for out-of-sample prediction, including DPFA, DLDA-Gibbs, and DLDA-TLASGR.
It is also clear that except for DLDA-GHAI-Independent and DLDA-WHAI-Independent that have
no stochastic-downward components in their inference, all the other algorithms with DLDA as the
generative model have a clear trend of improvement as the generative network becomes deeper, in-
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Figure 3: Plot of per-heldout-word perplexity as a function of time for (a) 20News, (b) RCV1, and
(c) Wiki. Except for AVITM that has a single hidden layer with 128 topics, all the other algorithms
have the same network size of 128-64-32 for their deep generative models.

dicating the importance of having stochastic-downward information propagation during posterior
inference; and DLDA-WHAI with a single hidden layer already clearly outperforms AVITM, indi-
cating that using the Weibull distribution is more appropriate than using the logistic-normal distri-
bution to model the document latent representation. Furthermore, thanks to the use of the stochastic
gradient based TLASGR-MCMC rather than a simple SGD procedure, DLDA-WHAI consistently
outperforms DLDA-WAI. Last but not least, while DLDA-GHAI that relies on RSVI to approxi-
mately reparameterize the gamma distributions clearly outperforms AVITM and DPFA, it clearly
underperforms DLDA-WHAI that has simple reparameterizations for its Weibull distributions.

Below we examine how various inference algorithms progress over time during training, evaluated
with per-holdout-word perplexity. As clearly shown in Fig. 3, DLDA-WHAI outperforms DPFA
and AVITM in providing lower perplexity as time progresses, which is not surprising as the DLDA
multilayer generative model is good at document representation, while AVITM is only "deep" in
the deterministic part of its inference network and DPFA is restricted to model binary topic usage
patterns via its deep network. When DLDA is used as the generative model, in comparison to Gibbs
sampling and TLASGR-MCMC on two large corpora, RCV1 and Wiki, the mini-batch based WHAI
converges slightly slower than TLASGR-MCMC but much faster than Gibbs sampling; WHAI con-
sistently outperforms WAI, which demonstrates the advantage of the hybrid MCMC/VAE infer-
ence; in addition, the RSVI based DLDA-GHAI clearly converges more slowly in time than DLDA-
WHAI. Note that for all three datasets, the perplexity of TLASGR decreases at a fast rate, followed
by closely by WHAI, while that of Gibbs sampling decreases slowly, especially for RCV1 and
Wiki, as shown in Figs. 3(b-c). This is expected as both RCV1 and Wiki are much larger corpora,
for which a mini-batch based inference algorithm can already make significant progress in inferring
the global model parameters, before a batch-learning Gibbs sampler finishes a single iteration that
needs to go through all documents. We also notice that although AVITM is fast for testing via the
use of a VAE, its representation power is limited due to not only the use of a shallow topic model,
but also the use of a latent Gaussian based inference network that is not naturally suited to model
document latent representation.

3.2 TOPIC HIERARCHY AND MANIFOLD

In addition to quantitative evaluations, we have also visually inspected the inferred topics at different
layers and the inferred connection weights between the topics of adjacent layers. Distinct from
many existing deep learning models that build nonlinearity via “black-box” neural networks, we
can easily visualize the whole stochastic network, whose hidden units of layer l − 1 and those of
layer l are connected by φ

(l)
k′k that are sparse. In particular, we can understand the meaning of

each hidden unit by projecting it back to the original data space via
[∏l−1

t=1 Φ(t)
]
φ

(l)
k . We show in

Fig. 4 a subnetwork, originating from units 16, 19, and 24 of the top hidden layer, taken from the
generative network of size 128-64-32 inferred on Wiki. The semantic meaning of each topic and the
connections between different topics are highly interpretable. We provide several additional topic
hierarchies for Wiki in the Appendix.
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Figure 4: An example of hierarchical topics learned from Wiki by a three-hidden-layer WHAI of
size 128-64-32.

(a) (b) (c)

(d) (e) (f)

Figure 5: Learned topics on MNIST digits with a three-hidden-layer WHAI of size 128-64-
32. Shown in (a)-(c) are example topics for layers 1, 2 and 3, respectively, learned with a
deterministic-upward-stochastic-downward encoder, and shown in (d)-(f) are the ones learned with
a deterministic-upward encoder.

To further illustrate the effectiveness of our multilayer representation in our model, we apply a three-
hidden-layer WHAI to MNIST digits and present the learned dictionary atoms. We use the Poisson
likelihood directly to model the MNIST digit pixel values that are nonnegative integers ranging from
0 to 255. As shown in Figs. 5a-5c, it is clear that the factors at layers one to three represent localized
points, strokes, and digit components, respectively, that cover increasingly larger spatial regions.
This type of hierarchical visual representation is difficult to achieve with other types of deep neural
networks (Srivastava et al., 2013; Kingma & Welling, 2014; Rezende et al., 2014; Sonderby et al.,
2016).

WUDVE, the inference network of WHAI, has a deterministic-upward-stochastic-downward struc-
ture, in contrast to a conventional VAE that often has a pure deterministic bottom-up structure. Here,
we further visualize the importance of the stochastic-downward part of WUDVE through a simple
experiment. We remove the stochastic-downward part of WUDVE shown in (6) and define the
inference network as q(θ(l)n |h

(l)
n ) = Weibull(k(l)n ,λ

(l)
n ), in other words, we ignore the top-down

information. As shown in Figs. 5d-5f, although some latent structures are learned, the hierarchical
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(a) (b) (c)

Figure 6: Latent space interpolations on the MNIST test set. Left and right columns correspond to
the images generated from z(3)1 and z(3)2 , and the others are generated from the latent representations
interpolated linearly from z

(3)
1 to z(3)2 .

relationships between adjacent layers almost all disappear, indicating the importance of having a
stochastic-downward structure together with a deterministic-upward one in the inference network.

As a sanity check for latent representation and overfitting, we shown in Fig. 6 the latent space
interpolations between the test set examples on MNIST dataset, and provide related results in the
Appendix for the 20News corpus. With the 3-layer model learned before, following Dumoulin
et al. (2016), we sample pairs of test set examples x1 and x2 and project them into z(3)1 and z(3)2 .
We then linearly interpolate between z(3)1 and z(3)2 , and pass the intermediary points through the
generative model to generate the input-space interpolations. In Fig. 6, the left and right column are
the digits generated from z

(3)
1 and z(3)2 , while the middle ones are generated from the interpolation

latent space. We observe a smooth transitions between pairs of example, and intermediary images
remain interpretable. In other words, the latent space the model learned is on a manifold, indicating
that WHAI has learned a generalizable latent feature representation rather than concentrating its
probability mass exclusively around training examples.

4 CONCLUSION

To infer a hierarchical latent representations of a big corpus, we develop Weibull hybrid autoencod-
ing inference (WHAI) for deep latent Dirichlet allocation (DLDA), a deep probabilistic topic model
that factorizes the observed high-dimensional count vectors under the Poisson likelihood and models
the latent representation under the gamma likelihood at multiple different layers. WHAI integrates
topic-layer-adaptive stochastic gradient Riemannian (TLASGR) MCMC to update the global param-
eters given the posterior sample of a mini-batch’s local parameters, and a Weibull distribution based
upward-downward variational autoencoder to infer the conditional posterior of the local parameters
given the stochastically updated global parameters. The use of the Weibull distribution, which re-
sembles the gamma distribution and has a simple reparameterization, makes one part of the evidence
lower bound (ELBO) analytic, and makes it efficient to compute the gradient of the non-analytic part
of the ELBO with respect to the parameters of the inference network. Moving beyond deep models
and inference procedures based on Gaussian latent variables, WHAI provides posterior samples for
both the global parameters of the generative model and these of the inference network, yields highly
interpretable multilayer latent document representation, is scalable to a big training corpus due to
the use of a stochastic-gradient MCMC, and is fast in out-of-sample prediction due to the use of an
inference network. Compelling experimental results on big text corpora demonstrate the advantages
of WHAI in both quantitative and qualitative analysis.
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A HIERARCHICAL TOPICS LEARNED FROM WIKI
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Figure 7: An example of hierarchical topics learned from Wiki by a three-hidden-layer WHAI of
size 128-64-32.

65144
Federal

bank

credit

financial

Exchange

Tax

billion

costs

paid

Income

workers

28

war army government

military time battle general

law forces two union

5

government state national law 
public members act people 
union department united

law court act rights legal

state justice police judge 

case commission

53

government union war

president law party political

minister office general rights

125

left days sent two battle 

came union continued 

forced attack lost

77

killed days police

men death found left

attack dead sent said

52

6

war government state

first time new national

two law general united

war army battle military 

forces attack troops

force civil commander 

50

business federal project act 

bank financial tax office 

private market report

19

116
report

agreement

security

stated

reported

plan

reports

new

due

plans

signed

101

court
legal
Decision
legal
bill
Practice
murder
arrested
Criminal
Court
lawyer

142
Rights
law
state
government
human
public
constitution
right
political
Civil
laws

153

political
movement
religious
people
freedom
politics
peace
press
war
led
nation

102
government
economic
trade
capital
minister
economy
political
governments
ministry
nations
relations

176

territory
treaty
power
independence
land
led
colonial
rule
region
government
provinces

191

days

found
decided

Occurred
believed
months

turned

saw

incident
taken

leave

killed
death
men
dead
shot
killing
people
escape
murder
Man
kill

179

battle
army
fort
soldiers
killed
fought
troops
command
wounded
captain
siege

133
war
military
army
civil
general
soldiers
forces
major
wars
camp
front

Figure 8: An example of hierarchical topics learned from Wiki by a four-hidden-layer WHAI of size
256-128-64-32.
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B MANIFOLD ON DOCUMENTS

From a sci.medicine document to an eci.space one

1. com, writes, article, edu, medical, pitt, pain, blood, disease, doctor, medicine, treatment, patients,
health, ibm

2. com, writes, article, edu, space, medical, pitt, pain, blood, disease, doctor, data, treatment, pa-
tients, health

3. space, com, writes, article, edu, data, medical, launch, earth, states, blood, moon, disease, satel-
lite, medicine,

4. space, data, com, writes, article, edu, launch, earth, states, moon, satellite, shuttle, nasa, price,
lunar

5. space, data, launch, earth, states, moon, satellite, case, com, shuttle, price, nasa, price, lunar,
writes,

6. space, data, launch, earth, states, moon, orbit, satellite, case, shuttle, price, nasa, system, lunar,
spacecraft

From a alt.atheism document to a soc.religion.christian one

1. god, just, want, moral, believe, religion, atheists, atheism, christian, make, atheist, good, say,
bible, faith

2. god, just, want, believe, jesus, christian, atheists, bible, atheism faith, say, make, religious,
christians, atheist

3. god, jesus, just, faith, believe, christian, bible, want, church, say, religion, moral, lord, world,
writes

4. god, jesus, faith, just, bible, church, christ, believe, say, writes, lord, religion, world, want, sin

5. god, jesus, faith, church, christ, bible, christian, say, write, lord, believe, truth, world, human,
holy

6. god, jesus, faith, church, christ, bible, writes, say, christian, lord, sin, human, father, spirit, truth

From a com.graphics document to a comp.sys.ibm.pc.hardware one

1. image, color, windows, files, image, thanks, jpeg, gif, card, bit, window, win, help, colors, format

2. image, windows, color, files, card, images, jpeg, thanks, gif, bit, window, win, colors, monitor,
program

3. windows, image, color, card, files, gov, writes, nasa, article, images, program, jpeg, vidio, display,
monitor

4. windows, gov, writes, nasa, article, card, going, program, image, color, memory, files, software,
know, screen

5. gov, windows, writes, nasa, article, going, dos, card, memory, know, display, says, screen, work,
ram

6. gov, writes, nasa, windows, article, going, dos, program, card, memory, software, says, ram,
work, running
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