
Workshop track - ICLR 2017

NEUROGENESIS-INSPIRED DICTIONARY LEARNING:
ONLINE MODEL ADAPTION IN A CHANGING WORLD

Sahil Garg
The Department of Computer Science, University of Southern California, Los Angeles, CA USA
sahilgar@usc.edu

Irina Rish, Guillermo Cecchi, Aurelie Lozano
IBM Thomas J. Watson Research Center, Yorktown Heights, NY USA
{rish, gcecchi, aclozano}@us.ibm.com

ABSTRACT

We address the problem of online model adaptation when learning representations
from non-stationary data streams. For now, we focus on single hidden-layer sparse
linear autoencoders (i.e. sparse dictionary learning), although in the future, the
proposed approach can be extended naturally to general multi-layer autoencoders
and supervised models. We propose a simple but effective online model-selection,
based on alternating-minimization scheme, which involves “birth” (addition of
new elements) and “death” (removal, via l1/l2 group sparsity) of hidden units rep-
resenting dictionary elements, in response to changing inputs; we draw inspiration
from the adult neurogenesis phenomenon in the dentate gyrus of the hippocam-
pus, known to be associated with better adaptation to new environments. Empiri-
cal evaluation on both real-life and synthetic data demonstrates that the proposed
approach can considerably outperform the state-of-art non-adaptive online sparse
coding of Mairal et al. (2009) in the presence of non-stationary data, especially
when dictionaries are sparse.

1 INTRODUCTION
1 Adaptation to a changing environment is essential for successful functioning of both natural and
artificial intelligent systems. In human brains, adaptation is achieved via neuroplasticity, which in-
cludes synaptic plasticity, i.e. change in strength of neuronal connections, and (adult) neurogenesis
(Kempermann, 2006), i.e. the birth and maturation of new neurons (primarily in dentate gyrus of the
hippocampus), accompanied by some neuronal death.

In the machine-learning, synaptic plasticity is analogous to parameter tuning (e.g., learning neural
net weights), while neurogenesis can be modeled as an online model selection via addition/deletion
of neurons in specific hidden-variable models, including dictionary learning, autoencoders and deep
neural nets, as well as general hidden-factor probabilistic models. Such dynamic architecture adapta-
tion can serve as a potentially more effective alternative to the standard off-line model selection (e.g.,
MDL-based off-line sparse coding (Ramirez & Sapiro, 2012)), as well as to the currently popular
network compression (distillation) approaches (Hinton et al., 2015; Mariet & Sra, 2015; Srivastava
et al., 2014; Ba & Caruana, 2014; Bucilu et al., 2006).

In this paper, we focus on dictionary learning, a.k.a. sparse coding (Olshausen & Field, 1997; Kreutz-
Delgado et al., 2003; Aharon et al., 2006; Lee et al., 2006) – a representation learning approach
which finds a set of basis vectors (atoms, or dictionary elements) and representations (encodings) of
the input samples as sparse linear combinations of those elements. More specifically, our approach
builds upon the computationally efficient online dictionary-learning method of Mairal et al. (2009),
where the data samples are processed sequentially, one at a time (or in small batches).

We propose a novel online model-selection approach for dictionary learning, inspired by the neuro-
genesis process, which involves addition and deletion of the elements, in response to the dynamically

1See the extended version of this paper at https://arxiv.org/abs/1701.06106

1

https://arxiv.org/abs/1701.06106

Workshop track - ICLR 2017

changing properties of the input data. 2 Note that, although the group-sparsity constraint enforcing
deletion of some dictionary elements was introduced earlier in the group-sparse coding method of
Bengio et al. (2009), it was only implemented and tested in the off-line rather than online setting,
and, most importantly, it was not accompanied by the neurogenesis. On the other hand, while some
prior work considered online node addition in hidden-variable models, and specifically, in neural
networks, from cascade correlations (Fahlman & Lebiere, 1989) to the recent works (Draelos et al.,
2016; Rusu et al., 2016), no model pruning was incorporated in those approaches in order to balance
the model expansion.

We demonstrate on natural images, as well as synthetic data and natural language task, that our
approach can significantly outperform non-adaptive, fixed-dictionary-size online method of Mairal
et al. (2009) when the input is non-stationary. Moreover, we identify certain parameter and data
settings associated with such improvements.

2 NEUROGENIC ONLINE DICTIONARY LEARNING

Our objective is to find a dictionary D ∈ Rm×k, which allows for an accurate encoding αi of each
sample xi ∈ Rm in the training data set by a linear combinations of a relatively small (thus, sparse
encoding) subset of dictionary elements. We extend the online dictionary learning of Mairal et al.
(2009) (see section A in the Appendix for details), which assumed stationary data, to an adaptive
approach tailored for nonstaitonary environments, with the objective of learning new data repre-
sentations without forgetting the old ones. We propose Neurogenetic Online Dictionary Learning
(NODL) (summarized in Alg. 1 in section of Appendix) which allows to extend and reduce the dic-
tionary size, i.e., the number of hidden units, in response to changes in the input data distribution
and complexity. The main changes, as compared to the non-adaptive, fixed-size algorithm of Mairal
et al. (2009), are highlighted in Alg. 1; the two parts involve (1) neurogenesis, i.e. the addition of
dictionary elements and (2) the death of old and/or new elements which are “less useful” than other
elements for the task of data reconstruction.

At each iteration in Alg. 1, the next batch of samples is received and their sparse codes are com-
puted using the current dictionary, as the solution to the standard LASSO problem, along with the
corresponding representation accuracy. The next step is neurogenesis: the algorithm adds kn new
random dictionary elements, where kn is determined by the above representation accuracy (lower
accuracy triggers more neurogenesis). Herein, we use as the accuracy measure the Pearson corre-
lation between a new sample and its representation in the current dictionary, pc(xt,D

(t−1),αt);
kn is proportional to the error 1 − pc(·). Finally, the sparse code is recomputed for xt (or, all the
samples in the current batch) with respect to the extended dictionary, which completes the current
sparse coding iteration of the alternating minimization scheme. Next, the dictionary update iteration
uses the block-coordinate descent to optimize the convex objective function:

min
D∈C

1

t

t∑
i=1

1

2
||xi −Dαi||22 + λg

∑
j

||dj ||2 +
∑
j

λj ||dj ||1. (1)

The first term is the standard data reconstruction error, while the second term, l1/l2-regularization,
is introduced here to promote group sparsity over the dictionary entries, where each group corre-
sponds to a column, i.e. a dictionary element. The group-sparsity (Yuan & Lin, 2006) regularizer
causes some columns in D (which contribute less than others to accurate data representation) to
become zero, thus effectively eliminating the corresponding dictionary elements from the dictionary
(“neuronal death” in neurogenesis process). The third term is to, optionally, impose sparsity con-
straint on the dictionary. The above objective is optimized by the block-coordinate descent, where
each block corresponds to a dictionary element (see Appendix for details).

The main focus of this work is to empirically investigate the conditions on the data and algorithm’s
parameters when the above interplay between the birth and death of new elements in online setting
can provide an advantage over standard, fixed-size approach.

3 EXPERIMENTS

We compare the proposed adaptive NODL approach against the standard ODL. Moreover, we also
investigate separately the effects of only adding or only deleting dictionary elements, using the
two restricted versions of our method: NODL+ performs only addition and NODL- includes only

2https://github.com/sgarg87/neurogenesis_inspired_dictionary_learning

2

https://github.com/sgarg87/neurogenesis_inspired_dictionary_learning

Workshop track - ICLR 2017

(a) Learned Dictionary Size(b) 1st domain (Oxford) (c) 2nd domain (Flowers) (d) 1st domain (Oxford) (e) 2nd domain (Flowers)

Figure 1: Reconstruction accuracy (Pearson correlation) of NODL and ODL with sparse dictionaries learned
on images, plotted against the final dictionary size learned by NODL and the corresponding fixed dictionary
size of ODL.
deletion. We use a simple non-stationary setting, where a sequence of training samples from one
environment, such as Oxford building images, is followed by image sequence from a different en-
vironment, such as Flowers and Animals. We converted the original color images into black&white
format and compressed them to smaller sizes, 32x32 and 100x100; also, here we use as the input
samples full images rather than image patches. We use two sets of 5700 images each for training
and for testing, respectively; each subset contained 1900 images of each type (i.e., Oxford, Flowers,
Animals). Specifically, during training phase, the algorithms receive a sequence of 1900 from the
first, urban domain (Oxford), and then a sequence of 3800 samples from the second, natural do-
main (1900 Flowers and 1900 Animals, permuted randomly). The batch size at each iteration is 200
images. The following parameters are used by our algorithm: γ = 0.9, ck = 50, λg = 0.03, and
λg = 0.07, for 32x32 and 100x100 images, respectively.

Evaluation. Once the training phase is completed, the resulting dictionary is evaluated on test im-
ages from both the first (urban) and the second (natural) domains; for the second domain, separate
evaluation is performed for flowers and animals. In Fig. 1(a), 1(b) and 1(c), we present the results
for sparse dictionaries, where each column (an element in the dictionary) has 5 nonzeros out of the
1024 dimensions; the codes are relatively dense, with at most 200 nonzeros out of k (the number of
dictionary elements), and k ranging from 5 to 1000 (i.e. the codes are not sparse for k ≤ 200).

Our main results demonstrating the advantages of the proposed NODL method are shown in Fig. 1(b)
and Fig. 1(c), for the “old” (Oxford) and “new” (Flowers) environment (domain), respectively. (Very
similar result are obtained for the Animals dataset). Not that the deletion-only version, NODL-, is
inferior to our NODL method. While the addition-only NODL+is as accurate as NODL, it tends to
unnecessarily increase the dictionary size. The interplay between the addition and deletion in NODL
seems achieves superior performance while keeping the dictionary size under control, in a narrower
range (400 to 650 elements), expanding, as necessary, small dictionaries, while compressing large
ones. The advantages of NODL are even more noticeable on larger inputs, e.g., 100x100 images (see
Fig. 1(d) and Fig. 1(e)), in similar setting - sparse dictionary, dense codes (dictionary elements have
same sparsity rate, 50 nonzeros out of 10,000, and just use completely non-sparse codes).

When experimenting with more traditional dense dictionaries, commonly used in sparse coding
literature, we observed that both adaptive NODL and non-adaptive ODL approaches behaved very
similarly (see Fig. 9 in Appendix). Furthermore, we also evaluated both types of dictionaries, sparse
vs dense, in both adaptive and non-adaptive approaches, for the purpose of classification where we
use the codes (i.e., feature vectors) computed on the test data from the second domain (Animals
and Flowers) to discriminate between the two classes. We find that the overall classification errors,
for both ODL and NODL, are much higher in dense dictionary setting (0.40) than in the sparse-
dictionary setting (0.24).

We also performed a variety of experiments, not included due to the space restrictions (see Ap-
pendix), which demonstrated robustness of our results to the parameter perturbations across a wide
range of γ, λg , ck, βc, βd, and batch-size parameters, as well as to various orders of the input
datasets. Moreover, we also experimented with an NLP task and simulated environments (Appendix,
Sec. C.2), and observed that adaptive NODL outperforms standard ODL considerably when (1) the
data in both domains are sparse and (2) across the domains, the supports (subsets of non-zero coor-
dinates) have limited overlap, which makes the old and new datasets nearly orthogonal. This phe-
nomenon was observed in a Natural Language Processing (NLP), further investigated on simulated
data, and summarized in Lemma 1 (Appendix, Sec. D).

3

Workshop track - ICLR 2017

In summary, the proposed online adaptive dictionary learning approach outperforms its nonadaptive
counterpart on several real-life (images and text) and simulated datasets, in non-stationary setting;
the advantages are most significant when the dictionary is sparse. The interplay between addition
and deletion is essential, outperforming addition- and deletion-only. In our future work, we plan to
extend this method to deep auto-encoders via alternating minimization across multiple layers.

REFERENCES

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. Signal Processing, IEEE Transactions on, 2006.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural information
processing systems, 2014.

Samy Bengio, Fernando Pereira, Yoram Singer, and Dennis Strelow. Group sparse coding. In Advances
in Neural Information Processing Systems 22. 2009.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.

Timothy J. Draelos, Nadine E. Miner, Jonathan A. Cox, Christopher C. Lamb, Conrad D. James, and
James B. Aimone. Neurogenic deep learning. In ICLR 2016 Workshop Track, 2016.

Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture. 1989.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah Smith. Sparse overcomplete
word vector representations. arXiv preprint arXiv:1506.02004, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and Francis Bach. Proximal methods for hierar-
chical sparse coding. Journal of Machine Learning Research, 2011.

Gerd Kempermann. Adult neurogenesis: stem cells and neuronal development in the adult brain. 2006.

Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee, and Terrence J
Sejnowski. Dictionary learning algorithms for sparse representation. Neural computation, 2003.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding algorithms. In
Advances in neural information processing systems, 2006.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine learning, 2009.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research, 2010.

Zelda Mariet and Suvrit Sra. Diversity networks. arXiv preprint arXiv:1511.05077, 2015.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed
by v1? Vision research, 1997.

Ignacio Ramirez and Guillermo Sapiro. An mdl framework for sparse coding and dictionary learning.
IEEE Transactions on Signal Processing, 60(6):2913–2927, 2012.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 2014.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word embeddings using l1 regular-
ized online learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, 2016.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 1996.

4

Workshop track - ICLR 2017

Dani Yogatama, Manaal Faruqui, Chris Dyer, and Noah A Smith. Learning word representations with
hierarchical sparse coding. In Proc. of ICML, 2015.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 2006.

5

Workshop track - ICLR 2017

A BACKGROUND ON DICTIONARY LEARNING

Traditional off-line dictionary learning (Olshausen & Field, 1997; Aharon et al., 2006; Lee et al.,
2006), also known as sparse coding, aims at finding a dictionary D ∈ Rm×k, which allows for
an accurate encoding of each sample in the training data set X = {x1, · · · ,xn ∈ Rm} by
a linear combinations of a relatively small (thus, sparse encoding) subset of dictionary elements
{d1, · · · ,dk ∈ Rm}. This is achieved by minimizing

fn(D) =
1

n

n∑
i=1

1

2
||xi −Dαi||22 + λc||αi||1 (2)

where the first term is the representation error, and the second term is the l1-regularization which
enforces the codes αi to be sparse. The joint minimization of fn(D) with respect to the dictionary
and codes is non-convex, and commonly used approach is to use an alternating minimization over
the codes and the dictionary.

However, the classical dictionary learning does not scale to very large datasets; moreover, it is not
immediately applicable to online learning from a continuous stream of data. The online dictionary
learning (ODL) method proposed by Mairal et al. (2009) overcomes both of these limitations, and
serves as a basis for our proposed approach, presented in Alg. 1 in the next section. While the high-
lighted lines in Alg. 1 represent our extension of ODL , the non-highlighted ones are common to both
approaches, and are discussed first. The algorithms start with some dictionary D0, e.g. a randomly
initialized one (other approaches include using some of the inputs as dictionary elements (Mairal
et al., 2010; Bengio et al., 2009)). At each iteration t, both online approaches consider the next input
sample xt (or a batch of samples), in step 3 and compute its sparse code αt by solving the LASSO
(Tibshirani, 1996) problem (step 4), with respect to the current dictionary. Next, ODL computes
the dictionary update, D(t) (denoted simply as D in the algorithm), by optimizing the surrogate
objective function f̂t(D), similar to the original one in eq. (2), for n = t, except for an important
change: in eq. (2), each codeαi is computed using the same dictionaryD, while the surrogate func-
tion keeps the codes αi from the previous iterations, computed using the corresponding previous
dictionaries D(i), i.e. does not recompute the codes of previously seen samples after each dictio-
nary update. This speeds up the learning without worsening the (asymptotic) performance, since the
surrogate objective converges to the original one in (2), under certain assumptions, including data
stationarity Mairal et al. (2009). Note that, in order to prevent the dictionary entries from growing
arbitrarily large, Mairal et al. (2009) impose the norm constraint, i.e. keep the columns ofD within
the convex set C = {D ∈ Rm×k s.t. ∀j dTj uj ≤ 1}. Then the dictionary update step computes
D(t) = arg minD∈C f̂t(D), ignoring l1-regularizer over the code which is fixed at this step, i.e. it
finds minD∈C

1
t

∑t
i=1

1
2 ||xi −Dαi||22, which is equivalent to finding

min
D∈C

1

2
Tr(DTDA)− Tr(DTB), (3)

where A =
∑t

i=1αiα
T
i and B =

∑t
i=1 xiα

T
i are the “bookkeeping” matrices (we also call them

“memories” of the model), compactly representing the input samples and encoding history. At each
iteration, once the new input sample xi is encoded, the matrices are updated as A ← A + αtα

T
t

andB ← B + xtα
T
t (see the step 11 of Alg. 1). In Mairal et al. (2009), a block coordinate descent

is used to optimize the convex objective in eq. 3; it iterates over the dictionary elements in a fixed
sequence, until convergence, optimizing each while keeping the others fixed as shown in eq. (4)
(steps 14 and 17 in Alg. 1, except that, in our approach, uj is transformed into wj to impose an
additional regularizer before computing step 17) 3.

uj ←
bj −

∑
k 6=j dkajk

ajj
; dj ←

uj

max(1, ||uj ||2)
(4)

It this work, we will also impose sparsity on dictionary elements (step 15 in Alg. 1), i.e. replace the
objective in eq. (3) with

3 Note that when the off-diagonal entries ajk inA are as large as the diagonal ajj , the dictionary elements
get “tied” to each other, playing complementary roles in the dictionary, thereby constraining the updates of each
other - an insight used later to explain empirical performance of the proposed approach.

6

Workshop track - ICLR 2017

min
D∈C

1

t

t∑
i=1

1

2
||xi −Dαi||22 +

∑
j

λj ||dj ||1. (5)

From now on, ODL will refer to the above extended version of the fixed-size method of Mairal et al.
(2009) wherever we have sparsity in dictionary elements

B OUR APPROACH: NEUROGENIC ONLINE DICTIONARY LEARNING

Our objective is to extend the state-of-art online dictionary learning, designed for stationary input
distributions, to a more adaptive framework capable of handling nonstationary data effectively, and
learning to represent new types of data without forgetting how to represent the old ones. Towards this
end, we propose a novel algorithm, called Neurogenetic Online Dictionary Learning (see Alg. 1),
which can flexibly extend and reduce a dictionary in response to the changes in an input distribution,
and possibly to the inherent representation complexity of the data. The main changes, as compared to
the non-adaptive, fixed-dictionary-size algorithm of Mairal et al. (2009), are highlighted in Alg. 1;
the two parts involve (1) neurogenesis, i.e. the addition of dictionary elements (hidden units, or
“neurons”) and (2) the death of old and/or new elements which are “less useful” than other elements
for the task of data reconstruction.

At each iteration in Alg. 1, the next batch of samples is received and the corresponding codes, in
the dictionary, are computed; next, we add kn new dictionary elements sampled at random from
Rm (i.e., kn random linear projections of the input sample). The choice of the parameter kn is
important; one approach is to tune it (e.g., by cross-validation), while another is to adjust it dynam-
ically, based on the dictionary performance: e.g., if the environment is changing, the old dictionary
may not be able to represent the new input well, leading to decline in the representation accuracy,
which triggers neurogenesis. Herein, we use as the performance measure the Pearson correlation
between a new sample and its representation in the current dictionary r(xt,D

(t−1)αt), i.e. denoted
as pc(xt,D

(t−1),αt) (for a batch of data, the average over pc(.) is taken). If it drops below a certain
pre-specified threshold γ (where 0� γ ≤ 1), the neurogenesis is triggered (the step 5). The number
kn of new dictionary elements is proportional to the error 1− pc(·), so that worse performance will
trigger more neurogenesis, and vice versa; the maximum number of new elements is bounded by ck
(the step 6). We refer to this approach as conditional neurogenesis as it involves the conditional birth
of new elements. Next, kn random elements are generated and added to the current dictionary (the
step 7), and the memory matrices A,B are updated, respectively, to account for larger dictionary
(the step 8). Finally, the sparse code is recomputed for xt (or, all the samples in the current batch)
with respect to the extended dictionary (the step 9).
The next step is the dictionary update, which uses block-coordinate descent, with the following
objective function:

min
D∈C

1

t

t∑
i=1

1

2
||xi −Dαi||22 + λg

∑
j

||dj ||2 +
∑
j

λj ||dj ||1. (6)

The first term is the standard reconstruction error, as before. The second term, l1/l2-regularization,
promotes group sparsity over the dictionary entries, where each group corresponds to a column, i.e.
a dictionary element. The group-sparsity (Yuan & Lin, 2006) regularizer causes some columns in
D to be set to zero (i.e. the columns less useful for accurate data representation), thus effectively
eliminating the corresponding dictionary elements from the dictionary (“killing” the corresponding
hidden units). As mentioned previously, Bengio et al. (2009) used the l1/l2-regularizer in dictionary
learning, though not in online setting, and without neurogenesis.

Finally, the third term imposes l1-regularization on dictionary elements thus promoting sparse dic-
tionary, besides the sparse coding. Introducing sparsity in dictionary elements, corresponding to the
sparse connectivity of hidden units in the neural net representation of a dictionary, is motivated by
both their biological plausibility (neuronal connectivity tends to be rather sparse in multiple brain
networks), and by the computational advantages this extra regularization can provide, as we observe
later in experiments section (Sec. C).

As in the original algorithm of Mairal et al. (2009), the above objective is optimized by the block-
coordinate descent, where each block of variables corresponds to a dictionary element, i.e., a column
in D; the loop in steps 12-19 of the Alg. 1 iterates until convergence, defined by the magnitude of

7

Workshop track - ICLR 2017

Algorithm 1 Neurogenetic Online Dictionary Learning (NODL)

Require: Data stream x1,x2, · · · ,xn ∈ Rm; initial dictionaryD ∈ Rm×k; conditional neurogenesis threshold, γ; max
number of new elements added per data batch, ck; group sparsity regularization parameter, λg ; number of non-zeros in
a dictionary element, βd; number of non-zeros in a code, βc.

1: Initialize:A← 0,B ← 0 % reset the ‘‘memory’’
% single data in a batch, for simpler exposition

2: for t = 1 to n do
3: Input xt % representing the tth batch of data

% Sparse coding of data:
4: αt = argα∈Rk min 1

2
||xt −Dα||22 + λc||α||1 % λc tuned to have βc non-zeros in αt

% Conditional neurogenesis: if accuracy below threshold, add more elements
5: if pc(xt,D,αt) ≤ γ then
6: kn = (1− pc(xt,D,αt))ck % the count of the births
7: Dn ← initializeRand(kn),

D ← [D Dn]

8: A←
[
A 0
0 0

]
, B ← [B 0], k ← k + kn

% Repeat sparse coding, with the new elements
9: αt = argα∈Rk min 1

2
||xt −Dα||22 + λc||α||1

10: end if % End of neurogenesis
% ‘‘Memory’’ update:

11: A← A+αtαTt , B ← B + xtαTt
% Dictionary update by block-coordinate descent

12: repeat
13: for j = 1 to k do
14: uj ←

bj−
∑

k 6=j dkajk
ajj

% Sparsifying elements (optional):
15: vj ← Proxλj ||.||1 (uj) = sgn(uj)(|uj | − λj)+, % λj tuned to get βd non-zeros in vj

% Killing useless elements with l1/l2 group sparsity

16: wj ← vj

(
1− λg

||vj ||2

)
+

17: dj ←
wj

max(1,||wj ||2)
18: end for
19: until convergence
20: end for
21: return D

change between the two successive versions of the dictionary falling below some threshold. For
each column update, the first and the last steps (the steps 14 and 17) are the same as in the original
method of Mairal et al. (2009), while the two intermediate steps (the steps 15 and 16) are implement-
ing additional regularization. Both steps 15 and 16 (sparsity and group sparsity regularization) are
implemented using the standard proximal operators as described in Jenatton et al. (2011). Note that
we actually use as input the desired number of non-zeros, and determine the corresponding sparsity
parameter λc and λj using a binary search procedure. Overall, the key features of our algorithm is
the interplay of both the (conditional) birth and (group-sparsity) death of dictionary elements in an
online setting.

B.1 DISCUSSION OF IMPORTANT ALGORITHMIC DETAILS

A rationale behind sparsity of dictionary elements. We focus here on sparse dictionary ele-
ments, which, in the network terms, correspond to sparse connectivity between hidden units and
their inputs; one reason for this choice was that sparse connectivity appears to be a more biologi-
cally plausible assumption than a fully-connected architecture implied by dense dictionary, in many
brain areas, and specifically between dentate gyrus and CA3. The other reason relates to computa-
tional advantages.

Note that Mairal et al. (2009) state that convergence guaranties for the original ODL algorithm would
also hold for the case of sparse dictionary elements. However, no empirical evaluation is provided
for this case; furthermore, we are not aware of any previous work on sparse coding which would
involve and extensive empirical evaluation for such setting. Prior focus on dense rather than sparse
dictionary elements is perhaps more natural when the input consists of a large number of relatively
small image patches, and thus each element also represents a small patch. In our work, however,
dictionary is being learned on full images, and thus a nonzero pattern in a sparse dictionary element
corresponds to a small patch within a larger image, with multiple sparse elements (patches) covering

8

Workshop track - ICLR 2017

the image. Thus, rather than explicitly representing an image as a set of patches and then learning
a dictionary of dense elements for accurate representation of such patches, a dictionary of full-
image-size, but sparse dictionary elements can be used to implicitly represents an image as a linear
combination of those elements, with possible overlap of non-zero pixels between elements; the non-
zero pixels in a sparse element of a dictionary are learned automatically. Computational advantages
of using sparse dictionaries are demonstrated in our experiment results (Sec. C), where classifiers
learned on top of representations extracted with sparse dictionaries yield smaller errors.

The memory matrixA and its properties. The matrixA keeps the “memory” of the encodings
αt for the previous data samples, in a sense, as it accumulates the sum of αtα

T
t matrices from

each iteration t. It turns out that the matrix A can have a significant effect on dictionary learning
in both ODL and NODL algorithms. As it is pointed out in Mairal et al. (2009), the quadratic
surrogate function in (3) is strictly convex with a lower-bounded HessianA ensuring convergence to
a solution. From the practical standpoint, when the matrixA has a high condition number (the ratio
of the largest to smallest singular value in the singular value decomposition of a matrix), despite
its lower-bounded eigenvalues, the adaptation of a dictionary elements using the standard ODL
algorithm can be difficult, as we see in our experiments. Specifically, when the dictionary elements
are sparse, this effect is more pronounced, since the condition number of A becomes high due
to the complementary roles of sparse dictionary elements in the reconstruction process (see the
comparison of A from dense elements and sparse elements in 7(a) and 7(b), respectively). In such
scenarios, the submatrix of A corresponding to the new elements in a dictionary, added by our
NODL algorithm, can have a better condition number, leading to an improved adaptation of the
dictionary.

Code Sparsity. Code sparsity is controlled by the parameter βc, the number of nonzeros, which
determines the corresponding regularization weight λc in step 4 of Alg. 1; note that λc is determined
via binary search for each input sample separately, as shown in Algorithm 2, and thus may vary
slightly for different instances given a fixed βc.

Selecting an appropriate level of code sparsity depends on the choice of other parameters, such as the
input batch size, sparsity of the dictionary elements, the extent of non-stationarity and complexity
of the data, and so on. When the dictionary elements are themselves sparse, denser codes may be
more appropriate, since each sparse dictionary element represents only a relatively small subset of
image pixels, and thus a large number of those subsets covering the whole image may be needed for
an accurate input representation.

Interestingly, using very sparse codes in combination with non-sparse dictionary elements in the
standard ODL approach can sometimes lead to creation of “dead” (zero l2-norm) elements in the
dictionary, especially if the input batch size is small. This is avoided by our NODL algorithm, since
such dead elements are implicitly removed via group sparsity at the dictionary update step, along
with the “weak” (very small l2-norm) elements. Also, a very high code sparsity in combination with
dense dictionary elements can lead to a significant decrease in the reconstruction accuracy for both
ODL and our NODL when the online data stream is non-stationary. Such shortcomings were not
encountered in Mairal et al. (2009; 2010), where only stationary data streams were studied, both in
theoretical and empirical results. On the other hand, high sparsity in dictionary elements does not
seem to cause a degradation in the reconstruction accuracy, as long as the codes are not too sparse.

The choice and tuning of metric for conditional neuronal birth. In the “conditional birth” ap-
proach described above, the number of new elements kn is determined based on the performance of
the current dictionary, using the Pearson correlation between the actual and reconstructed data, for
the current batch. This is, of course, just one particular approach to measuring data nonstationarity
and the need for adaptation, but we consider it a reasonable heuristic. Low reconstruction error in-
dicates that the old dictionary is still capable of representing the new data, and thus less adaptation
might be needed, while a high error indicates that the data distribution might have changed, and
trigger neurogenesis in order to better adapt to a new environment. We choose the Pearson correla-
tion as the measure of reconstruction accuracy since its value is easily interpretable, is always in the
range [0, 1] (unlike, for example, the mean-square error), which simplifies tuning the threshold pa-
rameter γ. Clearly, one can also try other interpretable metrics, such as, for example, the Spearman
correlation.

9

Workshop track - ICLR 2017

Tuning parameters: group sparsity λg and others. The group sparsity regularization parameter
λg controls the amount of removal (“death”) of elements in NODL : in step 16 of the Alg. 1, all ele-
ments with l2-norm below λg (i.e., “weak” elements), are set to zero (“killed”). Since the dictionary
elements are normalized to have l2-norm less than one, we only need to consider λg ∈ [0, 1]. (Note
that the step of killing dictionary elements precedes the normalization step in the algorithm. Thus,
the tuning of λg is affected by the normalization of the elements from the previous iteration.) Note
that increasing the sparsity of the dictionary elelments, i.e. decreasing βd (the number of nozeros in
dictionary elements) may require the corresponding reduction of λg , while an increase in the input
dimensionalitymmay also require an increase in the λg parameter. Tuning the rest of the parameters
is relatively easy. Clearly, the batch size should be kept relatively small, and, ideally, not exceed the
“window of stationarity” size in the data (however, the frequency of the input distribution change
may need to be also estimated from the data, and thus the batch size may need to be tuned adaptively,
which is outside of the scope of this paper). Mairal et al. (2009) suggest to use a batch size of 256 in
their experiments while getting similar performance with values 128 and 512. As to the maximum
number of new elements ck added at each iteration, it is reasonable to keep it smaller than the batch
size.

B.2 BINARY SEARCH

In our implementation of a sparsity constraint with a given number of non-zeros, we perform a
binary search for the value of the corresponding regularization parameter, λ, as shown in Alg. 2.
This approach costs much lesser than other techniques such as LARS while the quality of solutions
are very similar.

Algorithm 2 Binary search of λ with the proximal method based sparsity
Require: u (vector to be sparsified) , β (numbers of non-zeros),

εβ (acceptable error in β), ελ (acceptable error in λ)
1: u+ = abs(u)
2: λmin = 0 (if no sparsity)
3: λmax = max(u+)
4: while true do
5: λmean = λmin+λmax

2

6: β∗ = nnz((u+ − λmean)+) (non zeros with proximal operator)
7: if abs(λmax−λmin)

λmax
< ελ or abs(β∗ − β) ≤ εβ then

8: λ = λmean
9: return λ

10: else if β∗ > β then
11: λmin = λmean
12: else if β∗ < β then
13: λmax = λmean
14: else
15: error: this condition is not possible.
16: end if
17: end while

C EXPERIMENTS

We now evaluate empirically the proposed approach, NODL, against ODL, the standard (non-
adaptive) online dictionary learning of Mairal et al. (2009). Moreover, in order to evaluate separately
the effects of either only adding, or only deleting dictionary elements, we also evaluate two restricted
versions of our method: NODL+ involves only addition but no deletion (equivalent to NODL with
no group-sparsity, i.e. λg = 0), and NODL- which, vice versa, involves deletion only but no addition
(equivalent to NODL with the number of new elements ck = 0). The above algorithms are evalu-
ated in a non-stationary setting, where a sequence of training samples from one environment (first
domain) is followed by another sequence from a different environment (second domain), in order to
test their ability to adapt to new environments without “forgetting” the previous ones.

10

Workshop track - ICLR 2017

C.1 REAL-LIFE IMAGES

Our first domain includes the images of Oxford buildings 4 (urban environment), while the second
uses a combination of images from Flowers 5 and Animals 6 image databases (natural environment);
examples of both types of images are shown in Fig. 2(a) and 2(b). We converted the original color
images into black&white format and compressed them to smaller sizes, 32x32 and 100x100. Note
that, unlike (Mairal et al., 2009), we used full images rather than image patches as our inputs.

(a) Urban: Oxford Buildings (b) Nature: Flowers and Animals
Figure 2: The image data sets for the evaluation of the online dictionary learning algorithms.

We selected 5700 images for training and another 5700 for testing; each subset contained 1900
images of each type (i.e., Oxford, Flowers, Animals). In the training phase, as mentioned above,
each online dictionary learning algorithm receives a sequence of 1900 samples from the first, urban
domain (Oxford), and then a sequence of 3800 samples from the second, natural domain (1900
Flowers and 1900 Animals, permuted randomly). At each iteration, a batch of 200 images is received
as an input. (For comparison, Mairal et al. (2009) used a batch of size 256, though image patches
rather than full images.) The following parameters are used by our algorithm: Pearson correlation
threshold γ = 0.9, group sparsity parameter λg = 0.03 and λg = 0.07, for 32x32 and 100x100
images, respectively. The upper bound on the number of new dictionary elements at each iteration is
ck = 50. (We observed that the results are only mildly sensitive to the specified parameter values.)

Once the training phase is completed, the resulting dictionary is evaluated on test images from both
the first (urban) and the second (natural) domains; for the second domain, separate evaluation is
performed for flowers and animals. First, we evaluate the reconstruction ability of the resulting
dictionary D, comparing the actual inputs x versus approximations x∗ = Dα, using the mean
square error (MSE), Pearson correlation, and the Spearman correlation. We present the results for
Pearson correlations between the actual and reconstructed inputs, since all the three metrics show
consistent patterns (for completeness, MSE results are shown in Appendix). Moreover, we evaluate
the dictionaries in a binary classification setting (e.g., flowers vs animals), using as features the
codes of test samples in a given dictionary. Finally, we explored a wide range of sparsity parameters
for both the codes and the dictionary elements.

Our key observations are that: (1) the proposed method frequently often outperforms (or is at least
as good as) its competitors, on both the new data (adaptation) and the old ones (memory); (2) it is
most beneficial when dictionary elements are sparse; (3) vice versa, when dictionary elements are
dense, neurogenetic approach matches the baseline, fixed-size dictionary learning. We now discuss
the results in detail.

Sparse Dictionary Elements
In Fig. 3, we present the results for sparse dictionaries, where each column (an element in the
dictionary) has 5 nonzeros out of the 1024 dimensions; the codes are relatively dense, with at most
200 nonzeros out of k (the number of dictionary elements), and k ranging from 5 to 1000 (i.e. the
codes are not sparse for k ≤ 200). Due to space limitations, we put in the Appendix (Sec. E.2)

4http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/index.html
5http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
6http://www.robots.ox.ac.uk/˜vgg/data/pets/

11

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://www.robots.ox.ac.uk/~vgg/data/pets/

Workshop track - ICLR 2017

(a) Learned Dictionary Size (b) 1st domain (Oxford) (c) 2nd domain (Flowers)
Figure 3: Reconstruction accuracy of NODL and ODL on 32x32 images (sparse dictionary).

(a) 1st domain (Oxford) (b) 2nd domain (Flowers) (c) Classification Error
Figure 4: Reconstruction accuracy of NODL and ODL on 100x100 images with sparse dictionary
elements (50 non-zeros) and non-sparse codes.
our results on a wider range of values for the dictionary and code sparsity (Fig. 13). In Fig. 3(a),
we compare the dictionary size for different methods: the final dictionary size after completing the
training phase (y-axis) is plotted against the initial dictionary size (x-axis). Obviously, the baseline
(fixed-size) ODL method (magenta plot) keeps the size constant, deletion-only NODL- approach
reduces the initial size (red plot), and addition-only NODL+ increases the size (light-blue plot).
However, the interplay between the addition and deletion in our NODL method (dark-blue) produces
a more interesting behavior: it tends to adjust the representation complexity towards certain balanced
range, i.e. very small initial dictionaries are expanded, while very large ones are, vice versa, reduced.

Our main results demonstrating the advantages of the proposed NODL method are shown next in
Fig. 3(b) and Fig. 3(c), for the “old” (Oxford) and “new” (Flowers) environment (domain), respec-
tively. (Very similar result are shown for Animals as well, in the Appendix). The x-axis shows the
final dictionary size, and the y-axis is the reconstruction accuracy achieved by the trained dictionary
on the test samples, measured by Pearson correlation between the actual and reconstructed data.
NODL clearly outperforms the fixed-size ODL, especially on smaller dictionary sizes; remarkably,
this happens on both domains, i.e. besides improved adaptation to the new data, NODL is also better
at preserving the “memories” of the old data, without increasing the representation complexity, i.e.
for the same dictionary size.

Interestingly, just deletion would not suffice, as deletion-only version, NODL-, is inferior to our
NODL method. On the other hand, addition-only, or NODL+, method is as accurate as NODL, but
tends to increase the dictionary size too much. The interplay between the addition and deletion pro-
cesses in our NODL seems to achieve the best of the two worlds, achieving superior performance
while keeping the dictionary size under control, in a narrower range (400 to 650 elements), expand-
ing, as necessary, small dictionaries, while compressing large ones7.

We will now focus on comparing the two main methods, the baseline ODL and the proposed NODL
method. The advantages of our approach become even more pronounced on larger input sizes, e.g.
100x100 images, in similar sparse-dictionary, dense-code settings. (We keep the dictionary elements
at the same sparsity rate, 50 nonzeros out of 10,000 dimensions, and just use completely non-sparse
codes). In Fig. 4(a) and Fig. 4(b), we see that NODL considerably outperforms ODL on both the
first (Oxford) and the (part of the) second domain (Flowers); the results for Animals are very similar
and are given in the Appendix in Fig. 11. In Appendix Sec. E.6, Fig. 18 depicts examples of actual
animal images and the corresponding reconstructions by the fixed-size ODL and our NODL methods

7In our experiments, we also track which dictionary elements are deleted by our method; generally, both old
and newly added elements get deleted, depending on specific settings.

12

Workshop track - ICLR 2017

(not included here due to space restrictions). A better reconstruction quality of our method can be
observed (e.g., a more visible dog shape, more details such as dog’s legs, as opposed to a collection
clusters produced by the ODL methods note however that printer resolution may reduce the visible
difference, and looking at the images in online version of this paper is recommended).

Moreover, NODL can be also beneficial in classification settings. Given a dictionary, i.e. a sparse lin-
ear autoencoder trained in an unsupervised setting, we use the codes (i.e., feature vectors) computed
on the test data from the second domain (Animals and Flowers) and evaluate multiple classifiers
learned on those features in order to discriminate between the two classes. In Fig. 4(c), we show the
logistic regression results using 10-fold cross-validation; similar results for several other classifiers
are presented in the Appendix, Fig. 11. Note that we also perform filter-based feature subset selec-
tion, using the features statistical significance as measured by its p-value as the ranking function,
and selecting subsets of top k features, increasing k from 1 to the total number of features (the code
length, i.e. the number of dictionary elements). The x-axis in Fig. 4(c) shows the value of k, while
the y-axis plots the classification error rate for the features derived by each method. We can see that
our NODL method (blue) yields lower errors than the baseline ODL (magenta) for relatively small
subsets of features, although the difference is negligible for the full feature set. Overall, this suggests
that our NODL approach achieves better reconstruction performance of the input data, without extra
overfitting in classification setting, since it generalizes at least as good as, and often better than the
baseline ODL method.

Non-sparse dictionary elements
When exploring a wide range of sparsity settings (see Appendix), we observed quite different results
for non-sparse dictionaries as opposed to those presented above. Fig. 9(b) (in Appendix, due to
space constraints) summarizes the results for a particular setting of fully dense dictionaries (no
zero entries), but sparse codes (50 non-zeros out of up to 600 dictionary elements; however, the
codes are still dense when dictionary size is below 50). In this setting, unlike the previous one,
we do not observe any significant improvement in accuracy due to neurogenetic approach, neither in
reconstruction nor in classification accuracy; both methods perform practically the same. (Also, note
a somewhat surprising phenomenon: after a certain point, i.e. about 50 elements, the reconstruction
accuracy of both methods actually declines rather than improves with increasing dictionary size.)

It is interesting to note, however, that the overall classification errors, for both methods, are much
higher in this setting (from 0.4 to 0.52) than in the sparse-dictionary setting (from 0.22 to 0.36).
Even using non-sparse codes in the non-sparse dictionary setting still yields inferior results when
compared to sparse dictionaries (see the results in the Appendix).

In summary, on real-life image datasets we considered herein, our NODL approach is often superior
(and never inferior) to the standard ODL method; also, there is a consistent evidence that our
approach is most beneficial in sparse dictionary settings.

C.2 SPARSE ORTHOGONAL INPUTS: NLP AND SYNTHETIC DATA

So far, we explored some conditions on methods properties (e.g., sparse versus dense dictionaries,
as well as code sparsity/density) which can be beneficial for the neurogenetic approach. Our further
question is: what kind of specific data properties would best justify neurogenetic versus traditional,
fixed-size dictionary learning? As it turns out, the fixed-size ODL approach has difficulties adapting
to a new domain in nonstationary settings, when the data in both domains are sparse and, across
the domains, the supports (i.e., the sets of non-zero coordinates) are almost non-overlapping (i.e.,
datasets are nearly orthogonal). This type of data properties is related to a natural language process-
ing problem considered below. Furthermore, pushing this type of structure to the extreme, we used
simulations to better understand the behavior of our method. Herein, we focused, again, on sparse
dictionary elements, as a well-suited basis for representing sparse data. Moreover, our empirical re-
sults confirm that using dense dictionary elements does not yield good reconstruction of sparse data,
as expected.

Sparse Natural Language Processing Problem
We consider a very sparse word co-occurrence matrix (on average, about 14 non-zeros in a column
of size 12,883) using the text from two different domains, biology and mathematics, with the total
vocabulary size of approximately 12,883 words. The full matrix was split in two for illustration
purposes and shown in Fig. 5(c) and 5(d), where math terms correspond to the first block of columns

13

Workshop track - ICLR 2017

(a) 1st domain (Biology) (b) 2nd Domain (Mathematics) (c) Biology (d) Math

Figure 5: Reconstruction accuracy for the sparse NLP data.
and the biology terms correspond to the second one (though it might be somewhat hard to see in the
picture, the average number of nozeros per row/column is indeed about 14).

We use the sparse columns (or rows) in the matrix, indexed by the vocabulary words, as our input
data to learn the dictionary of sparse elements (25 non-zeros) with sparse codes (38 non-zeros). The
corresponding word codes in the learned dictionary can be later used as word embeddings, or word
vectors, in various NLP tasks such as information extraction, semantic parsing, and others Yogatama
et al. (2015); Faruqui et al. (2015); Sun et al. (2016). (Note that many of the non-domain specific
words were removed from the vocabulary to obtain the final size of 12,883.) Herein, we evaluate
our NODL method (i.e. NODL (sparse) in the plots) versus baseline ODL dictionary learning ap-
proach (i.e. ODL (sparse)) in the settings where the biology domain is processed first and then one
have to switch to the the mathematics domain. We use 2750 samples from each of the domains
for training and the same number for testing. The evaluation results are shown in Fig. 5. For the
first domain (biology), both methods perform very similarly (i.e., remember the old data equally
well), while for the second, more recent domain, our NODL algorithm is clearly outperforming its
competitor. Moreover, as we mention above, non-sparse (dense) dictionaries are not suited for the
modeling of highly sparse data such as our NLP data. In the Fig. 5, both random dense dictionar-
ies (random-D) and the dense dictionaries learned with ODL (i.e. ODL (dense)) do poorly in the
biology and mathematics domains.

However, the reconstruction accuracy as measured by Pearson correlation was not too high, overall,
i.e. the problem turned out to be more challenging than encoding image data. It gave us an intuition
about the structure of sparse data that may be contributing to the improvements due to neurogenesis.
Note that the word co-occurrence matrix from different domains such as biology and mathemat-
ics tends to have approximately block-diagonal structure, where words from the same domain are
occurring together more frequently than they co-occur with the words from the different domain.
Pushing this type of structure to extreme, we studied next the simulated sparse dataset where the
samples from the two different domains are not only sparse, but have completely non-overlapping
supports, i.e. the data matrix is block-diagonal (see Fig. 8(a) in Appendix).

Synthetic Sparse Data
We generated a synthetic sparse dataset with 1024 dimension, and only 50 nonzeros in each sam-
ple. Moreover, we ensured that the data in both domains had non-overlapping supports (i.e., non-
intersecting sets of non-zero coordinates), by always selecting nonzeros in the first domain from the
first 512 dimensions, while only using the last 512 dimensions for the second domain Fig. 8(a) in
Appendix). For the evaluation on the synthetic data, we use the total of 200 samples for the training
and testing purposes each (100 samples for each of the two domains), and smaller batches for online
training, containing 20 samples each (instead of 200 samples used earlier for images and language
data).

Since the data is sparse, we accordingly adjust the sparsity of dictionary elements (50 nonzeros in
an element; for the code sparsity, we will present the results with 50 nonzeros as well). In Fig. 6,
we see reconstruction accuracy, for the first and second domain data. For the first domain, the base-
line ODL method (i.e. ODL (sparse) in the plots) and our NODL (i.e. NODL (sparse)) perform
equally well. On the other hand, for the second domain, the ODL algorithm’s performance degrades
significantly compared to the first domain. This is because the data from the second domain have
non-overlapping support w.r.t. the data from the first domain. Our method is able to perform very
well on the second domain (almost as good as the first domain). It is further interesting to analyze

14

Workshop track - ICLR 2017

(a) Pearson- First Domain (b) Pearson- Second Domain (c) D- ODL (d) D- NODL (ours)

Figure 6: Reconstruction accuracy for the sparse synthetic data.
the case of random non-sparse dictionary (random-D) which even performs better than the baseline
ODL method, for the second domain. This is because random dictionary elements remain non-sparse
in all the dimensions thereby doing an average job in both of the domains. Along the same lines,
ODL (dense) performs better than the ODL (sparse) in the second domain. Though, the performance
of non-sparse dictionaries should degrade significantly with an increase in the sparsity of data, as
we see above for the NLP data. Clearly, our NODL (sparse) gives consistently better reconstruction
accuracy, compared to the other methods, across the two domains.

In Fig. 6(c) and Fig. 6(d), we see the sparsity structure of the dictionary elements learned using the
baseline ODL method and our NODL method respectively. From these plots, we get better insights
on why the baseline method does not work. It keeps same sparsity structure as it used for the data
from the first domain. Our NODL adapts to the second domain data because of its ability to add new
dictionary elements, that are randomly initialized with non-zero support in all the dimensions.

Next, in Sec. D, we discuss our intuitions on why NODL performs better than the ODL algorithm
under certain conditions.

D WHEN NEUROGENESIS CAN HELP, AND WHY

In the Sec. C, we observed that our NODL method outperforms the ODL algorithm in two general
settings, both involving sparse dictionary elements: (i) non-sparse data such as real-life images, and
(ii) sparse data with (almost) non-overlapping supports. In this section, we attempt to analyze what
contributes to the success of our approach in these settings, starting with the last one.

Sparse data with non-overlapping supports, sparse dictionary
As discussed above, in this scenario, the data from both the first and the second domain are sparse,
and their supports (non-zero dimensions) are non-overlapping, as shown in the Fig. 8(a). Note that,
when training a dictionary using the fixed-size, sparse-dictionary ODL method, we observe only a
minor adaptation to the second domain after training on the first domain, as shown in Fig. 6(c).

Our empirical observations are supported by the theoretical result summarized in Lemma 1 below.
Namely, we prove that when using the ODL algorithm in the above scenario, the dictionary trained
on the first domain can not adapt to the second domain. (The minor adaptation, i.e., a few nonzeros,
observed in our results in Fig. 6(c) occurs only due to implementation details involving normal-
ization of sparse dictionary elements when computing codes in the dictionary – the normalization
introduces non-zeros of small magnitude in all dimensions (see Appendix for the experiment results
with no normalization of the elements, conforming to the Lemma 1)).

Lemma 1. Let x1,x2, · · · ,xt−1 ∈ Rm be a set of samples from the first domain, with non-zeros
(support) in the set of dimensions P ⊂ M = {1, · · · ,m}, and let xt,xt+1, · · · ,xn ∈ Rm be a
set of samples from the second domain, with non-zeros (support) in dimensions Q ⊂ M , such that
P ∩Q = ø, |P | = |Q| = l. Let us denote as d1,d2, · · · ,dk ∈ Rm dictionary elements learned by
ODL algorithm, with the sparsity constraint of at most l nonzeros in each element 8, on the data from
the first domain, x1, · · · ,xt−1. Then (1) those elements have non-zero support in P only, and (2)
after learning from the second domain data, the support (nonzero dimensions) of the corresponding
updated dictionary elements will remain in P .

8l corresponds to βd in Alg. 1

15

Workshop track - ICLR 2017

(a) A with ODL method (with dense elements) (b) A with ODL method (with sparse elements)

(c) A with our method (with sparse elements) (d) D with ODL method (with sparse elements)

Figure 7: Visualization of the sparse dictionary and the matrix A learned on the first imaging
domain (Oxford images), using the baseline ODL method and our method.
Proof Sketch. Let us consider processing the data from the first domain. At the first iteration, a
sample x1 is received, its code α1 is computed, and the matricesA andB are updated, as shown in
Alg. 1 (non-highlighted part); next, the dictionary update step is performed, which optimizes

D(1) =arg min
D∈C

1

2
Tr(DTDA)− Tr(DTB) +

∑
j

λj ||dj ||1. (7)

Since the support of x1 is limited to P , we can show that optimal dictionary D∗ must also have
all columns/elements with support in P . Indeed, assuming the contrary, let dj(i) 6= 0 for some
dictionary element/column j, where i /∈ P . But then it is easy to see that setting dj(i) to zero
reduces the sum-squared error and the l1-norm in (7), yielding another dictionary that achieves a
lower overall objective; this contradicts our assumption that D∗ was optimal. Thus, the dictionary
update step must produce a dictionary where all columns have their support in P . By induction,
this statement will also be true for the dictionary obtained after processing all samples from the first
domain. Next, the samples from the second domain start arriving; note that those samples belong to a
different subspace, spanning the dimensions within the support set Q, which is not intersecting with
P . Thus, using the current dictionary, the encoding αt of first sample xt from the second domain
(i.e. the solution of the LASSO problem in step 4 of the Alg. 1) will be a zero vector. Therefore, the
matricesA andB remains unchanged during the update in step 11, and thus the support of each bj ,
and, consequently, uj and the updated dictionary elements dj will remain in P . By induction, every
dictionary update in response to a new sample from the second domain will preserve the support of
the dictionary elements, and thus the final dictionary elements will also have their support only in
P .

Non-sparse data, sparse dictionary
We will now discuss an intuitive explanation behind the success of neurogenetic approach in this
scenario, leaving a formal theoretical analysis as a direction for future work. When learning sparse
dictionaries on non-sparse data such as natural images, we observed that many dictionary elements

16

Workshop track - ICLR 2017

have non-overlapping supports with respect to each other; see, for example, Fig. 7(d), where each
column corresponds to a 10000-dimensional dictionary element with nonzero dimensions shown
in black color. Apparently, the non-zeros dimensions of an element tend to cluster spatially, i.e.
to form a patch in an image. The non-overlapping support of dictionary elements results into a
specific structure of the matrix A. As shown in Fig. 7(b), for ODL approach, the resulting matrix
A includes many off-diagonal nonzero elements of large absolute values (along with high values
on the diagonal). Note that, by definition, A is an empirical covariance of the code vectors, and
it is easy to see that a nonzero value of ajk implies that the j-th and the k-th dictionary elements
were used jointly to explain the same data sample(s). Thus, the dense matrix structure with many
non-zero off-diagonal elements, shown in Fig. 7(b), implies that, when the dictionary elements are
sparse, they will be often used jointly to reconstruct the data. On the other hand, in the case of
non-sparse dictionary elements, the matrixA has an almost diagonally-dominant structure, i.e. only
a few dictionary elements are used effectively in the reconstruction of each data sample even with
non-sparse codes (see Appendix for details).

Note that in the dictionary update expression uj ←
bj−

∑
k 6=j dkajk

ajj
in (4), when the values ajk/ajj

are large for multiple k, the jth dictionary element becomes tightly coupled with other dictionary
elements, which reduces its adaptability to new, non-stationary data. In our algorithm, the values
ajk/ajj remain high if both elements j and k have similar “age”; however, those values are much
lower if one of the elements is introduced by neurogenesis much more recently than the other one.
In 7(c), the upper left block on the diagonal, representing the oldest elements (added during the
initialization), is not diagonally-dominant (see the sub-matrices of A with NODL in Fig. 15 in the
Appendix). The lower right block, corresponding to the most recently added new elements, may also
have a similar structure (though not visible due to relatively low magnitudes of the new elements;
see the Appendix). Overall, our interpretation is that the old elements are tied to each other whereas
the new elements may also be tied to each other but less strongly, and not tied to the old elements,
yielding a block-diagonal structure of A in case of neurogenetic approach, where blocks correspond
to dictionary elements adapted to particular domains. In other words, neurogenesis allows for an
adaptation to a new domain without forgetting the old one.

E EXPERIMENTAL RESULTS

E.1 ADDITIONAL PLOTS FOR THE EXPERIMENT RESULTS DISCUSSED IN SEC. C

0 20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

600

700

800

900

1000

nz = 10200

(a) Synthetic data

Figure 8: The data sets for the evaluation of the online dictionary learning algorithms.

Fig. 10 is an extension of the original Fig. 3 in the main paper, for the same experiments, on the im-
ages compressed to size 32x32, in the learning settings of sparse dictionary elements, and relatively
less sparse codes. This figure is included to show that: (i) our analysis for the results presented in
Fig. 3 extends to the other metric, mean square error (MSE); (ii) the results for the second domain
data of flowers and animals are also highly similar to each other. Along the same lines, Fig. 11,
Fig. 12 extend Fig. 4, Fig. 9 respectively. In these extended figures, we see the similar generaliza-
tions across the evaluation metrics, the data sets and the classifiers.

17

Workshop track - ICLR 2017

(a) 1st domain (Oxford) (b) 2nd domain (Flowers) (c) Classification Error

Figure 9: Reconstruction accuracy for 100x100 size images with non-sparse dictionary but sparse
code (50 non-zeros) settings.
E.2 TRADE OFF BETWEEN THE SPARSITY OF DICTIONARY ELEMENTS AND CODES

In this section, our results from the experiments on 32x32 size compression of images are presented
where we vary the sparsity of codes as well as the sparsity of dictionary elements for a further
analysis of the trade off between the two. From the left to right in Fig. 13, we keep dictionary
elements sparse but slowly decrease their sparsity while increasing the sparsity of codes. Here,
the number of nonzeros in a dictionary element (dnnz) and a code (cnnz) are decided such that it
produces the overall number of non-zeros approx. to the size of an image (i.e. 32x32) if there were
no overlaps of non-sparse patches between the elements. We observe the following from the figure:
(i) the overall reconstruction gets worse when we trade off the sparsity of dictionary elements for
the sparsity of codes. (ii) the performance of our NODL method is better than the baseline ODL
method, especially when there is higher sparsity in dictionary elements.

E.3 NON-SPARSE DICTIONARY ELEMENTS AND NON-SPARSE CODES

We also performed experiments for the settings where dictionary elements and codes are both non-
sparse. See Fig. 14. For this scenario, while we get very high reconstruction accuracy, the overall
classification error remains much higher (ranging between 0.48 to 0.32) compared to the sparse
dictionary elements setting in Fig. 11 (0.36 to 0.22), though lower than the settings of non-sparse
dictionary with sparse codes in Fig. 12 (0.52 to 0.40).

E.4 ADDITION PLOTS FOR THE ANALYSIS OF SPARSE DICTIONARY ELEMENTS

Fig. 15 extends Fig. 7. For the case of non-sparse dictionary elements, the structure of matrix A
with the ODL algorithm after processing the first domain image data (oxford images) is shown in
Fig. 15(a) for non-sparse codes settings (similar structure for sparse code settings). In both cases of
non-sparse elements, sparse codes as well as non-sparse codes, the matrix is diagonally dominant,
in contrast to the scenario of sparse dictionary elements in Fig. 7(b). For our algorithm NODL in
the settings of sparse dictionary elements, we show the matrix A in Fig. 7(c) and its sub-matrices
in Fig. 15(b), 15(c) and 15(d). Fig. 15(b) demonstrates that the old dictionary elements are tied to
each other (i.e. high values of ajk

ajj
∀k 6= j). Similar argument applies to the recently added new

dictionary elements, as in Fig. 15(d), though the overall magnitude range is smaller compared to the
old elements in Fig. 15(b). Also, we see that the new elements are not as strongly tied to each other
as the old elements, but more than the case of non-sparse dictionary elements. In Fig. 15(c), we can
see more clearly that the new elements are not tied to the old elements. Overall, from the above plots,
our analysis is that the new elements are more adaptive to the new non-stationary environments as
those new elements are not tied to the old elements, and only weakly tied to each other.

E.5 SYNTHETIC SPARSE DATA SETTINGS

For the case of modeling the synthetic sparse data with sparse dictionary elements, Fig. 16 extends
Fig. 6 with the plots on the other metric, mean square error (MSE). In this figure, the ODL algorithm
adapts to the second domain data though not as good as our algorithm NODL. Even this adaptation
of ODL is due to the normalization of dictionary elements, when computing codes, as we mention

18

Workshop track - ICLR 2017

in the main draft. If there is no normalization of dictionary elements, the ODL algorithm doesn’t
adapt to the second domain data at all. For these settings, the results are shown in Fig. 17.

E.6 RECONSTRUCTED IMAGES

In Fig. 18, 19, we show the reconstruction, for some of the randomly picked images from the ani-
mals data set, with sparse dictionary elements, and non-sparse elements respectively (500 elements).
We suggest to view these reconstructed images in the digital version to appreciate the subtle com-
parisons. For the case of non-sparse elements in Fig. 19, the reconstructions are equally good for
both ODL and our NODL algorithm. On the other hand, for the sparse elements settings, our algo-
rithm NODL gives much better reconstruction than the baseline ODL, as we see visually in Fig. 18.
These comparisons of the reconstructed images conform to the evaluation results presented above.
It is interesting to see that, with sparse dictionary elements, the background is smoothed out with
an animal in the focus in an image, with good reconstruction of the body parts (especially the ones
which distinguish between the different species of animals).

Whereas, the non-sparse dictionary does not seem to distinguish between the two, the background
and animal in an image; in some of the reconstructed images, it is hard to distinguish an animal
from the background. Clearly, the background in an image should lead to noise in features for tasks
such as the binary classification considered above (discussed in Sec. C). This should also explain
why we get much better classification accuracy with the use of sparse dictionary elements rather
than non-sparse elements. For the scenario of sparse codes with non-sparse dictionary elements, the
reconstructed images are even worse; not shown here due to space constraints.

E.7 RE-INITIALIZATION OF “DEAD” DICTIONARY ELEMENTS

In Mairal et al. (2009), it was also noted that, during dictionary updates, some elements may turn
into zero-column (i.e., zero l2 norm); those elements were referred to as “dead” elements, since
they do not contribute to the data reconstruction task. The fraction of such dead elements elements
was typically very small in our experiments with the original ODLmethod (i.e., without the explicit
“killing” of the elements via the group sparsity regularization). In Mairal et al. (2009), it is proposed
to reinitialize such dead elements, using, for example, the existing batch of data (random values are
another option). Here, we will refer to such extension of the baseline ODL method as to ODL*.
Specifically, in ODL*, we reinitialize the “dead” elements with random values, and then continue
updating them along with the other dictionary elements, on the current batch of data. Fig. 20 extends
Fig. 3 with the additional plots including the ODL* extension of the baseline ODLalgorithm, while
keeping all experiment settings the same. We can see that there the difference in the performance of
ODL and its extension ODL* is negligible, perhaps due to the the fact that the number of the dead
elements, without an explicit group-sparsity regularization, is typically very small, as we already
mentioned above. We observe that our method outperforms the ODL* version, as well as the original
ODL baseline.

E.8 EVALUATING POSSIBLE EFFECTS OF VARYING THE ORDER OF TRAINING DATASETS

In our original experiments presented in the main paper (Sec. C), the Oxford buildings images are
processed as part of the first domain data set, followed by the mixture of flower and animal images
as the second domain data set. One can ask whether a particular sequence of the input datasets had
a strong influence on our results; in this section, we will evaluate different permutations of the input
data sets. Specifically, we will pick any two out of the three data sets available, and use them as
the first and the second domain data, respectively. In Fig. 21, we present test results on the second
domain data for the baseline ODL and for our NODL methods, with each subfigure corresponding to
one of the six processing orders on data sets used for training. All experimental settings are exactly
the same as those used to produce the plots in Fig. 3. Overall, we observe that, for all possible orders
of the input datasets, our NODL approach is either superior or comparable to ODL , but never
inferior. We see a significant advantage of NODL over ODL when using Oxford or Flowers data
sets as the first domain data. However, this advantage is less pronounced when using the Animals
data set as the first domain. One possible speculation can be that animal images can be somewhat
more complex to reconstruct as compared to the other two types of data, and thus learning their
representation first is sufficient for subsequent representation of the other two types of datasets.

19

Workshop track - ICLR 2017

Investigating this hypothesis, as well as, in general, the effects of the change in the training data
complexity, from simpler to more complex or vice versa, where complexity can be measured, for
example, as image compressibility, remains an interesting direction for further research.

E.9 ROBUSTNESS OF OUR NODL ALGORITHM W.R.T. THE TUNING PARAMETERS

To demonstrate the robustness of our NODL algorithm w.r.t. the tuning parameters, we perform
additional experiments by varing each of the tuning parameters, over a wide range of values, while
keeping the others same as those used for producing the Fig. 3. In Fig. 22, 23, 24, 25, 26, 27, we
vary the tuning parameters batchsize, ck, λg , βc, βd, γ respectively, and show the corresponding
test results on the flowers dataset of the second domain (see the Alg. 1, in the Sec. B, for the roles
of the tuning parameters in our NODL algorithm). In these plots, we see that our NODL algorithm
outperforms the baseline ODL algorithm, consistently across all the parameter settings.

20

Workshop track - ICLR 2017

(a) Pearson- Animals (b) MSE- Oxford

(c) MSE- Flowers (d) MSE- Animals
Figure 10: Reconstruction Error for 32x32 size images with sparse dictionary settings.

(a) Pearson- Animals (b) MSE- Flowers (c) MSE- Animals

(d) Random Forest (e) Nearest Neighbor (f) Naive Bayes
Figure 11: Reconstruction Error for 100x100 size images with sparse dictionary (50 non-zeros) and
non-sparse code settings (2000 non-zeros).

21

Workshop track - ICLR 2017

(a) Pearson- Animals (b) MSE- Flowers (c) MSE- Animals

(d) Random Forest (e) Nearest Neighbor (f) Naive Bayes
Figure 12: Reconstruction Error for 100x100 size images with non-sparse dictionary but sparse
code (50 non-zeros) settings.

(a) Dnnz:10, Cnnz:100 (Pearson) (b) Dnnz:30, Cnnz:33 (Pearson) (c) Dnnz:100, Cnnz:10 (Pearson)

(d) Dnnz:10, Cnnz:100 (MSE) (e) Dnnz:30, Cnnz:33 (MSE) (f) Dnnz:100, Cnnz:10 (MSE)

Figure 13: Reconstruction Error for 32x32 size images, on the animals data, with varying sparsity
in dictionary elements and codes.

22

Workshop track - ICLR 2017

(a) Pearson- Oxford (b) Pearson- Flowers (c) Pearson- Animals

(d) MSE- Flowers (e) MSE- Animals (f) Random Forest

(g) Nearest Neighbor (h) Logistic Regression (i) Naive Bayes
Figure 14: Reconstruction Error for 100x100 size images with non-sparse dictionary and non-sparse
codes (500 non-zeros) settings.

23

Workshop track - ICLR 2017

(a) A with ODL method (non-sparse codes, non-
sparse dictionary)

(b) A with our method–the old 50 ele-
ments (non-sparse codes, sparse dictionary)

(c) A with our method–all the new ele-
ments (non-sparse codes, sparse dictionary)

(d) A with our method–the recently added new
elements (non-sparse codes, sparse dictionary)

Figure 15: The structure of a sparse dictionary that is learned from the processing of the first domain
image data (Oxford images) using the baseline ODL method.

(a) MSE- First Domain (b) MSE- Second Domain
Figure 16: Reconstruction error for the synthetic data from sub-spaces with non-overlapping sup-
ports of non-zeros.

24

Workshop track - ICLR 2017

(a) Pearson- First Domain (b) Pearson- Second Domain (c) MSE- Second Domain
Figure 17: Reconstruction error for the synthetic data from sub-spaces with non-overlapping sup-
ports of non-zeros (without normalization of dictionary elements when computing codes).

Figure 18: Reconstructed animal images of size
100x100 (test data), with 500 sparse dictionary ele-
ments (non-sparse codes). In each row, the original im-
age is on the left, and the reconstructions, computed with
ODL and NODL (our algorithm), are in the center and
right respectively.

Figure 19: Reconstructed animal images of size
100x100 (test data), with 500 non-sparse dictionary ele-
ments (non-sparse codes). In each row, the original image
is on the left, and the reconstructions, computed with ODL
and NODL (our algorithm), are in the center and right re-
spectively.

25

Workshop track - ICLR 2017

(a) 2nd domain (Flowers) (b) 2nd domain (Animals)

Figure 20: Extension of Fig. 3, with the results for the ODL* version of ODL where occasional
“dead” elements are reinitialized with random values.

26

Workshop track - ICLR 2017

(a) Training Order: 1st domain (Oxford), 2nd do-
main (Flowers)

(b) Training Order: 1st domain (Oxford), 2nd do-
main (Flowers)

(c) Training Order: 1st domain (Flowers), 2nd do-
main (Oxford)

(d) Training Order: 1st domain (Flowers), 2nd do-
main (Animals)

(e) Training Order: 1st domain (Animals), 2nd do-
main (Oxford)

(f) Training Order: 1st domain (Animals), 2nd do-
main (Flowers)

Figure 21: Evaluating the effects of the input data order; the experimental setup coincides with the
one used to produce Fig. 3 (32x32 images). Different processing orders of the available datasets are
used during the training phase; performance results on the test subset taken from the second domain
are presented.

27

Workshop track - ICLR 2017

(a) Batch Size- 125 (b) Batch Size- 200

(c) Batch Size- 350 (d) Batch Size- 500
Figure 22: Evaluating the effects w.r.t. batch size while keeping the other experimental settings
same as the ones used to produce Fig. 3 (32x32 images).

(a) ck = 10 (b) ck = 50

(c) ck = 100 (d) ck = 250
Figure 23: Evaluating the effects w.r.t. the tuning parameter ck (the upper bound on the number of
new elements added in a batch) while keeping the other experimental settings same as the ones used
to produce Fig. 3 (32x32 images).

28

Workshop track - ICLR 2017

(a) λg = 3e− 3 (b) λg = 1e− 2

(c) λg = 3e− 2 (d) λg = 5e− 2
Figure 24: Evaluating the effects w.r.t. the tuning parameter λg (the regularization parameter for the
killing of “weak” elements) while keeping the other experimental settings same as the ones used to
produce Fig. 3 (32x32 images).

(a) βc = 100 (b) βc = 200

(c) βc = 500 (d) βc = 1000
Figure 25: Evaluating the effects w.r.t. the tuning parameter βc (the number of non-zeros in a
code) while keeping the other experimental settings same as the ones used to produce Fig. 3 (32x32
images).

29

Workshop track - ICLR 2017

(a) βd = 5 (b) βd = 10

(c) βd = 20 (d) βd = 50
Figure 26: Evaluating the effects w.r.t. the tuning parameter βd (the number of non-zeros in a
dictionary element) while keeping the other experimental settings same as the ones used to produce
Fig. 3 (32x32 images).

(a) γ = 0.7 (b) γ = 0.8

(c) γ = 0.9 (d) γ = 1.0
Figure 27: Evaluating the effects w.r.t. the tuning parameter γ (the threshold parameter for condi-
tional neurogenesis) while keeping the other experimental settings same as the ones used to produce
Fig. 3 (32x32 images).

30

	Introduction
	Neurogenic Online Dictionary Learning
	Experiments
	Background on Dictionary Learning
	Our Approach: Neurogenic Online Dictionary Learning
	Discussion of Important Algorithmic Details
	Binary search

	Experiments
	Real-life Images
	Sparse Orthogonal Inputs: NLP and Synthetic Data

	When Neurogenesis Can Help, and Why
	Experimental Results
	Additional plots for the experiment results discussed in Sec. C
	Trade off between the sparsity of dictionary elements and codes
	Non-sparse dictionary elements and non-sparse codes
	Addition plots for the analysis of sparse dictionary elements
	Synthetic Sparse data settings
	Reconstructed Images
	Re-initialization of ``dead" dictionary elements
	Evaluating possible effects of varying the order of training datasets
	Robustness of our NODL algorithm w.r.t. the tuning parameters

