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ABSTRACT

For AI systems to garner widespread public acceptance, we must develop meth-
ods capable of explaining the decisions of black-box models such as neural net-
works. In this work, we identify two issues of current explanatory methods. First,
we show that two prevalent perspectives on explanations—feature-additivity and
feature-selection—lead to fundamentally different instance-wise explanations. In
the literature, explainers from different perspectives are currently being directly
compared, despite their distinct explanation goals. The second issue is that cur-
rent post-hoc explainers are either validated under simplistic scenarios (on simple
models such as linear regression, or on models trained on syntactic datasets), or,
when applied to real-world neural networks, explainers are commonly validated
under the assumption that the learned models behave reasonably. However, neural
networks often rely on unreasonable correlations, even when producing correct
decisions. We introduce a verification framework for explanatory methods under
the feature-selection perspective. Our framework is based on a non-trivial neural
network architecture trained on a real-world task, and for which we are able to pro-
vide guarantees on its inner workings. We validate the efficacy of our evaluation
by showing the failure modes of current explainers. We aim for this framework to
provide a publicly available,1 off-the-shelf evaluation when the feature-selection
perspective on explanations is needed.

1 INTRODUCTION

A large number of post-hoc explanatory methods have recently been developed with the goal of
shedding light on highly accurate, yet black-box machine learning models (Ribeiro et al., 2016a;
Lundberg & Lee, 2017; Arras et al., 2017; Shrikumar et al., 2017; Ribeiro et al., 2016b; 2018;
Plumb et al., 2018; Chen et al., 2018). Among these methods, there are currently at least two
widely used perspectives on explanations: feature-additivity (Ribeiro et al., 2016a; Lundberg &
Lee, 2017; Shrikumar et al., 2017; Arras et al., 2017) and feature-selection (Chen et al., 2018;
Ribeiro et al., 2018; Carter et al., 2018), which we describe in detail in the sections below. While
both shed light on the overall behavior of a model, we show that, when it comes to explaining
the prediction on a single input in isolation, i.e., instance-wise explanations, the two perspectives
lead to fundamentally different explanations. In practice, explanatory methods adhering to different
perspectives are being directly compared. For example, Chen et al. (2018) and Yoon et al. (2019)
compare L2X, a feature-selection explainer, with LIME (Ribeiro et al., 2016a) and SHAP (Lundberg
& Lee, 2017), two feature-additivity explainers. We draw attention to the fact that these comparisons
may not be coherent, given the fundamentally different explanation targets, and we discuss the
strengths and limitations of the two perspectives.

Secondly, while current explanatory methods are successful in pointing out catastrophic biases, such
as relying on headers to discriminate between pieces of text about Christianity and atheism (Ribeiro
et al., 2016a), it is an open question to what extent they are reliable when the model that they aim to
explain (which we call the target model) has a less dramatic bias. This is a difficult task, precisely
because the ground-truth decision-making process of neural networks is not known. Consequently,
when applied to complex neural networks trained on real-world datasets, a prevalent way to evaluate
the explainers is to assume that the target models behave reasonably, i.e., that they did not rely

1Code, generated datasets, and trained models will be released.
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on irrelevant correlations. For example, in their morphosyntactic agreement paradigm, Pörner et al.
(2018) assume that a model that predicts if a verb should be singular or plural given the tokens before
the verb, must be doing so by focusing on a noun that the model had identified as the subject. Such
assumptions may be poor, since recent works show a series of surprising spurious correlations in
human-annotated datasets, on which neural networks learn to heavily rely (Gururangan et al., 2018;
Glockner et al., 2018; Carmona et al., 2018). Therefore, it is not reliable to penalize an explainer for
pointing to tokens that just do not appear significant to us.

We address the above issue by proposing a framework capable of generating evaluation tests for
the explanatory methods under the feature-selection perspective. Our tests consist of pairs of (tar-
get model, dataset). Given a pair, for each instance in the dataset, the specific architecture of our
model allows us to identify a subset of tokens that have zero contribution to the model’s prediction
on the instance. We further identify a subset of tokens clearly relevant to the prediction. Hence,
we test if explainers rank zero-contribution tokens higher than relevant tokens. We instantiated our
framework on three pairs of (target model, dataset) on the task of multi-aspect sentiment analysis.
Each pair corresponds to an aspect and the three models (of same architecture) have been trained
independently. We highlight that our test is not a sufficient test for concluding the power of explain-
ers in full generality, since we do not know the whole ground-truth behaviour of the target models.
Indeed, we do not introduce an explanation generation framework but a framework for generating
evaluation tests for which we provide certain guarantees on the behaviour of the target model. Un-
der these guarantees we are able to test the explainers for critical failures. Our framework therefore
generates necessary evaluation tests, and our metrics penalize explainers only when we are able to
guarantee that they produced an error. To our knowledge, we are the first to introduce an automatic
and non-trivial evaluation test that does not rely on speculations on the behavior of the target model.

Finally, we evaluate L2X (Chen et al., 2018), a feature-selection explainer, under our test. Even
though our test is specifically designed for feature-selection explanatory methods, since, in prac-
tice, the two types of explainers are being compared, and, since LIME (Ribeiro et al., 2016a) and
SHAP (Lundberg & Lee, 2017) are two very popular explainers, we were interested in how the latter
perform on our test, even though they adhere to the feature-additivity perspective. Interestingly, we
find that, most of the time, LIME and SHAP perform better than L2X. We will detail in Section 5
the reasons why we believe this is the case. We provide the error rates of these explanatory meth-
ods to raise awareness of their possible modes of failure under the feature-selection perspective of
explanations. For example, our findings show that, in certain cases, the explainers predict the most
relevant token to be among the tokens with zero contribution. We will release our test, which can
be used off-the-shelf, and encourage the community to use it for testing future work on explanatory
methods under the feature-selection perspective. We also note that our methodology for creating
this evaluation is generic and can be instantiated on other tasks or areas of research.

2 RELATED WORK

The most common instance-wise explanatory methods are feature-based, i.e., they explain a predic-
tion in terms of the input unit-features (e.g., tokens for text and super-pixels for images). Among
the feature-based explainers, there are two major types of explanations: (i) feature-additive: provide
signed weights for each input feature, proportional to the contributions of the features to the model’s
prediction (Ribeiro et al., 2016a; Lundberg & Lee, 2017; Shrikumar et al., 2017; Arras et al., 2017),
and (ii) feature-selective: provide a (potentially ranked) subset of features responsible for the pre-
diction (Chen et al., 2018; Ribeiro et al., 2018; Carter et al., 2018). We discuss these explanatory
methods in more detail in Section 3. Other types of explanations are (iii) example-based (Koh &
Liang, 2017): identify the most relevant instances in the training set that influenced the model’s
prediction on the current input, and (iv) human-level explanations (Camburu et al., 2018; Park et al.,
2018; Kim et al., 2018; Bekele et al., 2018): explanations that are similar to what humans provide
in real-world, both in terms of arguments (human-biases) and form (full-sentence natural language).
In this work, we focus on verifying feature-based explainers, since they represent the majority of
current works.

While many explainers have been proposed, it is still an open question how to thoroughly validate
their faithfulness to the target model. There are four types of evaluations commonly performed:
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1. Interpretable target models. Typically, explainers are tested on linear regression and
decision trees (e.g., LIME (Ribeiro et al., 2016a)) or support vector representations (e.g.,
MAPLE (Plumb et al., 2018)). While this evaluation accurately assesses the faithfulness of
the explainer to the target model, these very simple models may not be representative for
the large and intricate neural networks used in practice.

2. Synthetic setups. Another popular evaluation setup is to create synthetic tasks where the
set of important features is controlled. For example, L2X (Chen et al., 2018) was evaluated
on four synthetic tasks: 2-dim XOR, orange skin, nonlinear additive model, and switch fea-
ture. While there is no limit on the complexity of the target models trained on these setups,
their synthetic nature may still prompt the target models to learn simpler functions than the
ones needed for real-world applications. This, in turn, may ease the job for the explainers.

3. Assuming a reasonable behavior. In this setup, one identifies certain intuitive heuristics
that a high-performing target model is assumed to follow. For example, in sentiment analy-
sis, the model is supposed to rely on adjectives and adverbs in agreement with the predicted
sentiment. Crowd-sourcing evaluation is often performed to assert if the features produced
by the explainer are in agreement with the model’s prediction (Lundberg & Lee, 2017;
Chen et al., 2018). However, neural networks may discover surprising artifacts (Gururan-
gan et al., 2018) to rely on, even when they obtain a high accuracy. Hence, this evaluation
is not reliable for assessing the faithfulness of the explainer to the target model.

4. Are explanations helping humans to predict the model’s behaviour? In this evaluation,
humans are presented with a series of predictions of a model and explanations from differ-
ent explainers, and are asked to infer the predictions (outputs) that the model will make on
a separate set of examples. One concludes that an explainer E1 is better than an explainer
E2 if humans are consistently better at predicting the output of the model after seeing ex-
planations from E1 than after seeing explanations from E2 (Ribeiro et al., 2018). While
this framework is a good proxy for evaluating the real-world usage of explanations, it is ex-
pensive and requires considerable human effort if it is to be applied on complex real-world
neural network models.

In contrast to the above, our evaluation is fully automatic, the target model is a non-trivial neural
network trained on a real-world task and for which we provide guarantees on its inner-workings. Our
framework is similar in scope with the sanity check introduced by Adebayo et al. (2018). However,
their test filters for the basic requirement that an explainer should provide different explanations for
a model trained on real data than when the data and/or model are randomized. Our test is therefore
more challenging and requires a stronger fidelity of the explainer to the target model.

3 INSTANCE-WISE EXPLANATIONS

As mentioned before, current explanatory methods adhere to two major perspectives of explanations:

Perspective 1 (Feature-additivity): For a model f and an instance x, the explanation of the predic-
tion f(x) consists of a set of contributions {wx

i (f)}i for each feature i of x such that the sum of the
contributions of the features in x approximates f(x), i.e.,

∑
i w

x
i (f) ≈ f(x).

Many explanatory methods adhere to this perspective (Arras et al., 2017; Shrikumar et al., 2017;
Ribeiro et al., 2016a). For example, LIME (Ribeiro et al., 2016a) learns the weights via a linear
regression on the neighborhood (explained below) of the instance. Lundberg & Lee (2017) unified
this class of methods by showing that the only set of feature-additive contributions that verify three
desired constraints (local accuracy, missingness, and consistency—we refer to their paper for details)
are given by the Shapley values from game theory:

wx
i (f) =

∑
x′∈x\{i}

|x′|!(|x| − |x′| − 1)!

|x|!
[f(x′ ∪ {i})− f(x′)] , (1)

where the sum enumerates over all subsets x′ of features in x that do not include the feature i, and
| · | denotes the number of features of its argument.

Thus, the contribution of each feature i in the instance x is an average of its contributions over a
neighborhood of the instance. Usually, this neighborhood consists of all the perturbations given by
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M: IF “very good” IN input: RETURN 0.9;
IF “nice” IN input: RETURN 0.7;
IF “good” IN input: RETURN 0.6;
RETURN 0.

x1: “The movie was good, it was actually x2: “The movie was nice, in fact, it was
nice.” very good.”

M(x1) = 0.7 M(x2) = 0.9

Feature-additivity Feature-selection Feature-additivity Feature-selection
nice: 0.4 {nice} good: 0.417 {good, very}
good: 0.3 nice: 0.367
rest of tokens: 0 very: 0.116

rest of tokens: 0

Figure 1: Examples on which the two perspectives give different instance-wise explanations.

masking out combinations of features in x; see, e.g., (Ribeiro et al., 2016a; Lundberg & Lee, 2017).
However, Laugel et al. (2018) show that the choice of the neighborhood is critical, and it is an open
question what neighborhood is best to use in practice.

Perspective 2 (Feature-selection): For a model f and an instance x, the explanation of f(x) consists
of a sufficient (ideally small) subset S(x) of (potentially ranked) features that alone lead to (almost)
the same prediction as the original one, i.e., f(S(x)) ≈ f(x).
Chen et al. (2018); Carter et al. (2018), and Ribeiro et al. (2018) adhere to this perspective. For
example, L2X (Chen et al., 2018) learns S(x) by maximizing the mutual information between S(x)
and the prediction. However, it assumes that the number of important features per instance, i.e.,
|S(x)|, is known, which is usually not the case in practice. A downside of this perspective is that
it may not always be true that the model relied only on a (small) subset of features, as opposed to
using all the features. However, this can be the case for certain tasks, such as sentiment analysis.

To better understand the differences between the two perspectives, in Figure 1, we provide the
instance-wise explanations that each perspective aims to provide for a hypothetical sentiment anal-
ysis regression model, where 0 is the most negative and 1 the most positive score. We note that our
hypothetical model is not far, in behaviour, from what real-world neural networks learn, especially
given the notorious biases in the datasets. For example, Gururangan et al. (2018) show that natural
language inference neural networks trained on SNLI (Bowman et al., 2015) may heavily rely on
the presence of a few specific tokens in the input, which should not even be, in general, indicators
for the correct target class, e.g., “outdoors” for the entailment class, “tall” for the neutral class, and
“sleeping” for the contradiction class.

In our examples in Figure 1, we clearly see the differences between the two perspectives. For the
instance x1, the feature-additive explanation tells us that “nice” was the most relevant feature, with
a weight of 0.4, but also that “good” had a significant contribution of 0.3. While for this instance
alone, our model relied only on “nice” to provide a positive score of 0.7, it is also true that, if
“nice” was not present, the model would have relied on “good” to provide a score of 0.6. Thus, we
see that the feature-additive perspective aims to provide an average explanation of the model on a
neighborhood of the instance, while the feature-selective perspective aims to tell us the pointwise
features used by the model on the instance in isolation, such as “nice” for instance x1.

An even more pronounced difference between the two perspectives is visible on instance x2, where
the ranking of features is now different. The feature-selective explanation ranks “good” and “nice”
as the two most important features, while on the instance x2 in isolation, the model relied on the
tokens “very” and “good”, that the feature-selection perspective would aim to provide.

Therefore, we see that, while both perspectives of explanations give insights into the model’s behav-
ior, one perspective might be preferred over the other in different real-world use-cases. In the rest of
the paper, we propose a verification framework for the feature-selection perspective of instance-wise
explanations.

4



Under review as a conference paper at ICLR 2020

4 OUR VERIFICATION FRAMEWORK

Our proposed verification framework leverages the architecture of the RCNN model introduced by
Lei et al. (2016). We further prune the original dataset on which the RCNN had been trained to
ensure that, for each datapoint x, there exists a set of tokens that have zero contribution (irrelevant
features) and a set of tokens that have a significant contribution (clearly relevant features) to RCNN’s
prediction on x. We further introduce a set of metrics that measure how explainers fail to rank the
irrelevant tokens lower than the clearly revelant ones. We describe each of these steps in detail below.

The RCNN. The RCNN (Lei et al., 2016) consists of two modules: a generator followed by
an encoder, both instantiated with recurrent convolutional neural networks (Lei et al., 2015). The
generator is a bidirectional network that takes as input a piece of text x and, for each of its tokens,
outputs the parameter of a Bernoulli distribution. According to this distribution, the RCNN selects
a subset of tokens from x, called Sx = generator(x), and passes it to the encoder, which makes the
final prediction solely as a function of Sx. Thus:

RCNN(x) = encoder(generator(x)) = encoder(Sx) . (2)

There is no direct supervision on the subset selection, and the generator and encoder were trained
jointly, with supervision only on the final prediction. The authors also used two regularizers: one to
encourage the generator to select a short sub-phrase, rather than disconnected tokens, and a second
to encourage the selection of fewer tokens. At training time, to circumvent the non-differentiability
introduced by the intermediate sampling, the gradients for the generator were estimated using a
REINFORCE-style procedure (Williams, 1992).

IF “very good” IN input: SELECT “very” & RETURN 1;
IF “not good” IN input: SELECT “not” & RETURN 0.1;
IF “good” IN input: SELECT “good” & RETURN 0.8;
ELSE SELECT ∅ & RETURN 0.5.

Figure 2: Example of handshake.

This intermediate hard selection facili-
tates the existence of tokens that do not
have any contribution to the final pre-
diction. While Lei et al. (2016) aimed
for Sx to be the sufficient rationals for
each prediction, the model might have
learned an internal (emergent) commu-
nication protocol (Foerster et al., 2016)
that encodes information from the non-selected via the selected tokens, which we call a handshake.
For example, the RCNN could learn a handshake such as the one in Figure 2, where the feature
“good” was important in all three cases, but not selected in the first two.

Eliminating handshakes. Our goal is to gather a dataset D such that for all x ∈ D, the set of
non-selected tokens, which we denoteNx = x \Sx, has zero contribution to the RCNN’s prediction
on x. Equivalently, we want to eliminate instances that contain handshakes. We show that:

SSx = Sx =⇒ no handshake in x . (3)

The proof is in Appendix B. On our example in Figure 2, on the instance “The movie was very
good.”, the model selects “very” and predicts a score of 1. However, if we input the instance con-
sisting of just “very”, the model will not select anything2 and would return a score of 0.5. Thus,
Equation 7 indeed captures the handshake in this example. From now on, we refer to non-selected
tokens as irrelevant or zero-contribution interchangeably.

On the other hand, we note that SSx 6= Sx does not necessarily imply that there was a handshake.
There might be tokens (e.g., the or a at the ends of the selection sequence(s)) that might have
been selected in the original instance x and that become non-selected in the instance formed by
Sx without significantly changing the actual prediction. However, since it would be difficult to
differentiate between such a case and an actual handshake, we simply prune the dataset by retaining
only the instances for which SSx

= Sx.

At least one clearly relevant feature. With our pruning above, we ensured that the non-selected
tokens have no contribution to the prediction. However, we are yet not sure that all the non-selected

2Our experiments show that the RCNN is capable of not selecting anything and providing its “bias” score
as prediction. For example, this happened when we inputted sentences completely irrelevant to the task.
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tokens are relevant to the prediction. In fact, it is possible that some tokens (such as “the” or “a”) are
actually noise, but have been selected only to ensure that the selection is a contiguous sequence (as
we mentioned, the RCNN was penalized during training for selecting disconnected tokens). Since
we do not want to penalize explainers for not differentiating between noise and zero-contribution
features, we further prune the dataset such that there exists at least one selected token which is,
without any doubt, clearly relevant for the prediction. To ensure that a given selected token s is
clearly relevant, we check that, when removing the token s, the absolute change in prediction with
respect to the original prediction is higher than a significant threshold τ . Precisely, if for the selected
token s ∈ Sx, we have that |encoder(Sx−s)−encoder(Sx)| ≥ τ , then the selected token s is clearly
relevant for the prediction.

Figure 3: Partition of the fea-
tures in our instances.

Thus, we have further partitioned Sx into Sx = SRx ∪ SDKx,
where SRx are the clearly relevant tokens, and SDKx are the rest
of the selected tokens for which we do not know if they are relevant
or noise (SDK stands for “selected don’t know”). We see a dia-
gram of this partition in Figure 3. We highlight that simply because
a selected token alone did not make a change in prediction higher
than a threshold does not mean that this token is not relevant, as
it may be essential in combination with other tokens. Our proce-
dure only ensures that the tokens that change the prediction by a
given (high) threshold are indeed important and should therefore be
ranked higher than any of the non-selected tokens, which have zero
contribution. We thus further prune the dataset to retain only the
datapoints x for which |SRx| ≥ 1, i.e., there is at least one clearly
relevant token per instance.

Evaluation metrics. First, we note that our procedure does not provide an explainer in itself,
since we do not give an actual ranking, nor any contribution weights, and it is possible for some of
the tokens in SDKx to be even more important than tokens in SRx. However, we guarantee the
following two properties:

P1: All tokens in Nx have to be ranked lower than any token in SRx.

P2: The first most important token has to be in Sx.

We evaluate explainers that provide a ranking over the features. We denote by
r1(x), r2(x), . . . , rn(x) the ranking (in decreasing order of importance) given by an explainer on
the n = |x| features in the instance x. Under our two properties above, we define the following error
metrics:

(A) Percentage of instances for which the most important token provided by the explainer
is among the non-selected tokens:

% first = 1
|Da|

∑
x∈Da

1{r1(x)∈Nx} , (4)

where 1 is the indicator function.
(B) Percentage of instances for which at least one non-selected token is ranked higher

than a clearly relevant token:

% misrnk = 1
|Da|

∑
x∈Da

1{∃i<j such that ri(x)∈Nx and rj(x)∈SRx} . (5)

(C) Average number of non-selected tokens ranked higher than any clearly relevant to-
ken:

avg misrnk = 1
|Da|

∑
x∈Da

∑
i<last si

1{ri(x)∈Nx} , (6)

where last si = argmaxj{rj(x) ∈ SRx} is the lowest rank of the clearly relevant tokens.

Metric (A) shows the most dramatic failure: the percentage of times when the explainer tells us that
the most relevant token is one of the zero contribution ones. Metric (B) shows the percentage of
instances for which there is at least an error in the explanation. Finally, metric (C) quantifies the
number of zero-contribution features that were ranked higher than any clearly relevant feature.
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Table 1: Error rates of the explainers. The lower the values, the better the explainer. Best results in
bold. In parenthesis are the standard deviations when averages are reported.

APPEARANCE AROMA PALATE

Model % first % misrnk avg misrnk % first % misrnk avg misrnk % first % misrnk avg misrnk

LIME 4.24 24.39 7.02 (24.12) 14.79 32.08 12.74 (33.54) 2.92 13.93 3.48 (17.38)
SHAP 4.74 16.81 1.16 (7.75) 4.24 13.53 0.83 (7.10) 2.65 9.20 9.25 (9.70)
L2X 6.58 28.85 3.54 (12.66) 12.95 31.61 4.41 (16.25) 12.77 29.83 3.70 (13.05)

5 RESULTS AND DISCUSSION

In this work, we instantiate our framework on the RCNN model trained on the BeerAdvocate cor-
pus,3 on which the RCNN was initially evaluated (Lei et al., 2016). BeerAdvocate consists of a
total of ≈ .100K human-generated multi-aspect beer reviews, where the three considered aspects
are appearance, aroma, and palate. The reviews are accompanied with fractional ratings originally
between 0 and 5 for each aspect independently. The RCNN is a regression model with the goal to
predict the rating, rescaled between 0 and 1 for simplicity. Three separate RCNNs are trained, one
for each aspect independently, with the same default settings.4

With the above procedure, we gathered three datasets Da, one for each aspect a. For each dataset,
we know that for each instance x ∈ Da, the set of non-selected tokens Nx has zero contribution
to the prediction of the model. For obtaining the clearly relevant tokens, we chose a threshold of
τ = 0.1, since the scores are in [0, 1], and the ground-truth ratings correspond to {0, 0.1, 0.2, . . . ,
1}. Therefore, a change in prediction of 0.1 is to be considered clearly significant for this task.

We provide several statistics of our datasets in Appendix A. For example, we provide the average
lengths of the reviews, of the selected tokens per review, of the clearly relevant tokens among the
selected, and of the non-selected tokens. We note that we usually obtained 1 or 2 clearly relevant
tokens per datapoints, showing that our threshold of 0.1 is likely very strict. However, we prefer to
be more conservative in order to ensure high guarantees on our evaluation test. We also provide the
percentages of datapoints eliminated in order to ensure the no-handshake condition (Equation 7).

Evaluating explainers. We test three popular explainers: LIME (Ribeiro et al., 2016a), SHAP
(Lundberg & Lee, 2017), and L2X (Chen et al., 2018). We used the code of the explainers as pro-
vided in the original repositories,5 with their default settings for text explanations, with the exception
that, for L2X, we set the dimension of the word embeddings to 200 (the same as in the RCNN), and
we also allowed training for a maximum of 30 epochs instead of 5.

As mentioned in Section 3, LIME and SHAP adhere to the feature-additivity perspective, hence our
evaluation is not directly targeting these explainers. However, we see in Table 1 that, in practice,
LIME and SHAP outperformed L2X on the majority of the metrics, even though L2X is a feature-
selection explainer. We hypothesize that a major limitation of L2X is the requirement to know the
number of important features per instance. Indeed, L2X learns a distribution over the set of features
by maximizing the mutual information between subsets of K features and the response variable,
where K is assumed to be known. In practice, one usually does not know how many features per
instance a model relied on. To test L2X under real-world circumstances, we used as K the average
number of tokens highlighted by human annotators on the subset manually annotated by McAuley
et al. (2012). We obtained an average K of 23, 18, and 13 for the three aspects, respectively.

In Table 1, we see that, on metric (A), all explainers are prone to stating that the most relevant
feature is a token with zero contribution, as much as 14.79% of the time for LIME and 12.95% of
the time for L2X in the aroma aspect. We consider this the most dramatic form of failure. Metric
(B) shows that both explainers can rank at least one zero-contribution token higher than a clearly
relevant feature, i.e., there is at least one mistake in the predicted ranking. Finally, metric (C) shows

3http://people.csail.mit.edu/taolei/beer/
4https://github.com/taolei87/rcnn
5https://github.com/marcotcr/lime/tree/master/lime; https://github.com/slundberg/shap;

https://github.com/Jianbo-Lab/L2X/tree/master/imdb-token.
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that, in average, SHAP only places one zero-contribution token ahead of a clearly relevant token
for the first two aspects and around 9 tokens for the third aspect, while L2X places around 3-4
zero-contribution tokens ahead of a clearly relevant one for all three aspects.

LIME: shared at kahns with aasher , 2009 vintage . poured black and beautiful 1. taste

with a chewing tobbaco brown colored head . smelled and tasted like roasty 2. mouthfeel

malts and barley . slight coffee , slight bitter chocolate . barely any bourbon 3. lacing

present in the smell and taste.. great mouthfeel and gorgeous 4. great

lacing . it ’s a solid beer . i however was expecting more . 5. and

SHAP: shared at kahns with aasher , 2009 vintage . poured black and beautiful 1. mouthfeel

with a chewing tobbaco brown colored head . smelled and tasted like roasty 2. lacing

malts and barley . slight coffee , slight bitter chocolate . barely any bourbon 3. great

present in the smell and taste.. great mouthfeel and gorgeous 4. gorgeous

lacing . it ’s a solid beer . i however was expecting more . 5. and

L2X: shared at kahns with aasher , 2009 vintage . poured black and beautiful 1. mouthfeel

with a chewing tobbaco brown colored head . smelled and tasted like roasty 2. lacing

malts and barley . slight coffee , slight bitter chocolate . barely any 3. and

bourbon present in the smell and taste.. great mouthfeel and gorgeous 4. and

lacing . it ’s a solid beer . i however was expecting more . 5. ,

1

Figure 4: Explainers’ rankings (with top 5 features on the right-hand side) on an instance from the
palate aspect in our evaluation dataset.

Qualitative Analysis. In Figure 6, we present an example from our dataset of the palate aspect.
More examples in Appendix C. The heatmap corresponds to the ranking determined by each ex-
plainer, and the intensity of the color decreases linearly with the ranking of the tokens.6 We only
show in the heatmap the first K = 10 ranked tokens, for visibility reasons. Tokens in Sx are in
bold, and the clearly relevant tokens from SRx are additionally underlined. The first selected by the
explainer is marked wth a rectangular. Additionally the 5 ranks tokens by each explainer are on the
right-hand side. Firstly, we notice that both explainers are prone to attributing importance to non-
selected tokens, with LIME and SHAP even ranking the tokens “mouthfeel” and “lacing” belonging
to Nx as first two (most important). Further, “gorgeous”, the only relevant word used by the model,
did not even make it in top 13 tokens for L2X. Instead, L2X gives “taste”, “great”, “mouthfeel” and
“lacing” as most important tokens. We note that if the explainer was evaluated by humans assuming
that the RCNN behaves reasonably, then this choice could have well been considered correct.

6 CONCLUSIONS AND FUTURE WORK

In this work, we first shed light on an important distinction between two widely used perspectives
of explanations. Secondly, we introduced an off-the-shelf evaluation test for post-hoc explanatory
methods under the feature-selection perspective. To our knowledge, this is the first automatic veri-
fication framework offering guarantees on the behaviour of a non-trivial real-world neural network.
We presented the error rates on different metrics for three popular explanatory methods to raise
awareness of the types of failures that these explainers can produce, such as incorrectly predicting
even the most relevant token. While instantiated on a natural language processing task, our method-
ology is generic and can be adapted to other tasks and other areas. For example, in computer vision,
one could train a neural network that first makes a hard selection of super-pixels to retain, and sub-
sequently makes a prediction based on the image where the non-selected super-pixels have been
blurred. The same procedure of checking for zero contribution of non-selected super-pixels would
then apply. We also point out that the core algorithm in the majority of the current post-hoc explain-
ers are also domain-agnostic. Therefore, we expect our evaluation to provide a representative view
of the fundamental limitations of the explainers.

6While for LIME and SHAP we could have used the actual weights, for consistency, and since we evaluate
the explainers only on their rankings, we keep the ranking-like heatmap.
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A STATISTICS OF OUR GATHERED DATASETS

We provide the statistics of our dataset in Table 2. N is the number of instances that we retain
with our procedure, |x| is the average length of the reviews, and |Sx|, |SRx|, and |Nx| are the
average numbers of selected tokens, selected tokens that give an absolute difference of prediction of
at least 0.1 when eliminated individually, and non-selected tokens, respectively. In parenthesis are
the standard deviations. The column %(SSx

6= Sx) provides the percentage of instances eliminated
from the original BeerAdvocate dataset due to a potential handshake. Finally, %(|SRx| = 0) shows
the percentage of datapoints (out of the non-handshake ones) further eliminated due to the absence
of a selected token with absolute effect of at least 0.1 on the prediction.

Table 2: Statistics of our datasets Da for each aspect.

Aspect N |x| |Sx| |SRx| |Nx| %(SSx 6= Sx) %(|SRx| = 0)

APPEARANCE 20508 145 (79) 16.9 (8.4) 1.33 (0.70) 121 (56) 15.9 73.2
AROMA 7621 139 (74) 11.15 (6.48) 1.16 (0.49) 123 (57) 72.0 58.0
PALATE 16494 153 (76) 9.14 (5.38) 1.21 (0.55) 137 (59) 39.2 66.5

B PROOF FOR NO HANDSHAKE CONDITION

We show that:
SSx = Sx =⇒ no handshake in x . (7)

Proof: We note that if there is a handshake in the instance x, i.e., at least one non-selected token
xk ∈ Nx is actually influencing the final prediction via an internal encoding of its information into
the selected tokens, then the model should have a different prediction when xk is eliminated from
the instance, i.e., RCNN(x) 6= RCNN(x− xk). Equivalently, if RCNN(x− xk) = RCNN(x), then
xk could not have been part of a handshake. Thus, if the RCNN gives the same prediction when
eliminating all the non-selected tokens, it means that there was no handshake for the instance x, and
hence the tokens in Nx have indeed zero contribution. Hence, we have that:

RCNN(x−Nx) = RCNN(x) =⇒ no handshake in x . (8)

Since x−Nx = Sx, Equation 8 rewrites as:

RCNN(Sx) = RCNN(x) =⇒ no handshake in x . (9)

From Equation 2, we further rewrite Equation 9 as:

encoder(generator(Sx)) = encoder(generator(x)) =⇒ no handshake in x . (10)

Since, by definition, generator(x) = Sx, we have that:

encoder(SSx
) = encoder(Sx) =⇒ no handshake in x . (11)

Hence, it is sufficient to have SSx = Sx in order to satisfy the right-hand-side condition of Equa-
tion 11, which finishes our proof. �
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C MORE EXAMPLES FROM OUR EVALUATION

LIME: nice brown “ grolsch ” like bottle ( good for re-use ) . pours a dark 1. laces

yellow color with a lot of head in the beginning which laces well . 2. yellow

very fizzy . smells like fruit , maybe some apple and blueberry . no mouthfeel 3. lot

whatsover . besides being wet and a small initial alcohol , i could n’t feel 4. dark

anything . tastes of fruit and not much alcohol , but i can start to feel a slight 5. of

warming as i finish off the bottle . better than most american lagers , but very

smooth . i think i would normally drink this too fast .

SHAP: nice brown “ grolsch ” like bottle ( good for re-use ) . pours a dark 1. fizzy

yellow color with a lot of head in the beginning which laces well . 2. laces

very fizzy . smells like fruit , maybe some apple and blueberry . no mouthfeel 3. head

whatsover . besides being wet and a small initial alcohol , i could n’t feel 4. nice

anything . tastes of fruit and not much alcohol , but i can start to feel a slight 5. yellow

warming as i finish off the bottle . better than most american lagers , but very

smooth . i think i would normally drink this too fast .

L2X: nice brown “ grolsch ” like bottle ( good for re-use ) . pours a dark 1. laces

yellow color with a lot of head in the beginning which laces well . 2. brown

very fizzy . smells like fruit , maybe some apple and blueberry . no mouthfeel 3. lot

whatsover . besides being wet and a small initial alcohol , i could n’t feel 4. whatsover

anything . tastes of fruit and not much alcohol , but i can start to feel a slight 5. nice

warming as i finish off the bottle . better than most american lagers , but very

smooth . i think i would normally drink this too fast .

1

Figure 5: Explainers’ rankings (with the top 5 features on the right-hand side) on an instance from
the appearance aspect in our evaluation.
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LIME: pours out very dark amber-red . almost no head , which dissappears quickly . 1. and

“ thick ” aroma , rich maltiness , some toast , maybe a bit of cherry or 2. maltiness

some berry ( i do n’t often eat berries of any type , makes it hard to descern ) . 3. ,

alcohol is pretty easy to pick up though . very rich malty flavour , a little 4. flavour

sweet at first ; i get a hit of choclate malt , maybe very slightly fruity . alcohol 5. malt

quite prominent . sweet malt flavour falls off at finish and leaves mouth a little

dry . mouthfeel quite thick , and more carbon dioxide in beer than is suggested by

lack of head . all in all , i give it a pretty ok , its definately a strong flavour and

aroma . got ta give it a little while for drinking , ca n’t down this quick ( not

that i ’d ever want to ) .

SHAP: pours out very dark amber-red . almost no head , which dissappears quickly . 1. aroma

“ thick ” aroma , rich maltiness , some toast , maybe a bit of cherry or 2. aroma

some berry ( i do n’t often eat berries of any type , makes it hard to descern ) . 3. rich

alcohol is pretty easy to pick up though . very rich malty flavour , a little 4. some

sweet at first ; i get a hit of choclate malt , maybe very slightly fruity . alcohol 5. ,

quite prominent . sweet malt flavour falls off at finish and leaves mouth a little

dry . mouthfeel quite thick , and more carbon dioxide in beer than is suggested by

lack of head . all in all , i give it a pretty ok , its definately a strong flavour and

aroma . got ta give it a little while for drinking , ca n’t down this quick ( not

that i ’d ever want to ) .

L2X: pours out very dark amber-red . almost no head , which dissappears quickly . 1. aroma

“ thick ” aroma , rich maltiness , some toast , maybe a bit of cherry or 2. rich

some berry ( i do n’t often eat berries of any type , makes it hard to descern ) . 3. little

alcohol is pretty easy to pick up though . very rich malty flavour , a little 4. which

sweet at first ; i get a hit of choclate malt , maybe very slightly fruity . alcohol 5. .

quite prominent . sweet malt flavour falls off at finish and leaves mouth a little

dry . mouthfeel quite thick , and more carbon dioxide in beer than is suggested by

lack of head . all in all , i give it a pretty ok , its definately a strong flavour and

aroma . got ta give it a little while for drinking , ca n’t down this quick ( not

that i ’d ever want to ) .

1

Figure 6: Explainers’ rankings (with the top 5 features on the right-hand side) on an instance from
the aroma aspect in our evaluation.

13


	Introduction
	Related Work
	Instance-wise Explanations
	Our Verification Framework
	Results and Discussion
	Conclusions and Future Work
	Statistics of our gathered datasets
	Proof for no handshake condition
	More examples from our evaluation

