
The Impact of Nondeterminism on Reproducibility in
Deep Reinforcement Learning

Prabhat Nagarajan
Department of Computer Science
The University of Texas at Austin
prabhatn@cs.utexas.edu

Garrett Warnell
Computational and Information Sciences Directorate

U.S. Army Research Laboratory
garrett.a.warnell.civ@mail.mil

Peter Stone
Department of Computer Science
The University of Texas at Austin

pstone@cs.utexas.edu

Abstract

While deep reinforcement learning (DRL) has enjoyed several recent successes,
results reported in the literature are often difficult to reliably reproduce. Difficulties
in reproducibility can arise due to many factors, including the lack of access
to computational resources or the lack of knowledge of specific implementation
details. Another factor of particular importance in the specific case of DRL is the
ability to control for sources of nondeterminism during the training process. This
is because DRL is faced with the challenges of a nonstationary training distribution
and additional sources of randomness that are absent from other areas of machine
learning. In this paper, we (1) enable deterministic training in DRL by identifying
and controlling for all sources of nondeterminism present during training, and
(2) perform an ablation study that shows how these sources of nondeterminism
can impact the performance of a DRL agent. We find that even simple sources of
nondeterminism such as those stemming from nondeterministic GPU operations
can lead to large differences in performance between training runs. Lastly, we
make available our deterministic implementation of deep Q-learning [14].

1 Introduction

Progress in DRL relies on the reproducibility of state-of-the-art algorithms. In particular, reproducible
algorithms enable researchers to more easily improve upon and measure against state-of-the-art re-
search. However, reproducing DRL algorithms can be quite difficult due to several factors including
inconsistent evaluation methodologies [10, 12], computational limitations, and perhaps most com-
monly, the lack of knowledge of the implementation details necessary to achieve a performance
similar to a published result. Details such as the weight initialization scheme, network architectures,
learning rates, minibatch sizes, and other hyperparameters are often imperative for success, yet go
unreported in published work.

However, even with explicit knowledge of the implementation details, reproducing results exactly
remains a challenge. This issue highlights the important distinction between reproducibility and
replicability in machine learning [5]. While this distinction has been addressed in previous literature
and has been defined in different ways [5, 6, 8], we define these terms here as follows:

Reproducibility: the ability of an experiment to be repeated with minor differences from the original
experiment, while achieving the same qualitative result.

2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden.

Replicability: a stricter form of reproducibility in which the results are reproduced exactly,
achieving the same quantitative result.

Given a replicable experiment, researchers need not squander time acquiring the tribal knowledge
necessary to reproduce results and can instead focus on the underlying techniques behind algorithms.
Achieving replicability requires a deterministic implementation to be repeated under identical exper-
imental conditions. Experimental conditions refer to the software and hardware conditions under
which an experiment is executed, and we define a deterministic implementation as follows:

Deterministic implementation: a computer program that, when run under some fixed experimental
conditions, will always produce identical outputs for a given input.

It is important to emphasize that, as we have defined the terms here, having a deterministic im-
plementation does not necessarily imply replicability. That said, deterministic implementations
do have several benefits relevant to the reproducibility community. For example, comparing two
algorithms under deterministic conditions provides an impartial comparison of their performances
since nondeterminism can be eliminated as a cause of difference. Furthermore, debugging is made
easier because the determinism allows the state of the program to be more efficiently tracked, which
enables researchers to develop (or reproduce) algorithms more quickly.

We believe that deterministic implementations can be particularly useful in DRL. To understand
why, consider that DRL is more susceptible to nondeterminism than supervised deep learning (SDL).
Traditional SDL encounters nondeterminism primarily through random network initialization and
minibatch sampling from a stationary training distribution. On the other hand, DRL must contend
with additional sources of randomness such as environment and policy stochasticity. Moreover, DRL
also faces the challenge of learning from a nonstationary distribution of training data since the policy
continuously evolves, changing the distribution of states that the agent visits. Imagine how a small
difference between two agents’ early experiences can proliferate throughout the training process
as their experience distributions drift apart. The difference in experiences can result in drastically
different outcomes for the two agents. It is this cascading effect that makes DRL particularly
susceptible to nondeterminism. Furthermore, a recent empirical result shows that in a specific
implementation of a policy gradient DRL algorithm, it is possible to achieve statistically different
performances solely by altering the global random seed [10]. The cascading effect coupled with this
compelling empirical result motivates a deeper study of the impact of nondeterminism in DRL.

Motivated by these considerations, we propose in this paper a methodology for achieving a determin-
istic implementation of a popular DRL algorithm, deep Q-learning [14]. Our methodology consists of
eliminating all sources of nondeterminism from the training process. In order to quantify the benefit
of a deterministic implementation, we study the impact that individual sources of nondeterminism
have on the performance of DRL agents. In particular, we study three sources of nondeterminism:
nondeterminism originating from the GPU, from random exploration, and from random initialization.
We find that all three sources induce large variance in the learning curves. We also find that variance
is minimal early in the training process and grows large as training continues. In this work, our
specific contributions are:

1. to identify sources of nondeterminism that, when controlled, give rise to deterministic deep
Q-learning, and

2. to perform a systematic study of the effects of specific sources of nondeterminism.

In doing so, we demonstrate that our deterministic implementation, which we make publicly available,
can be particularly beneficial for reproducibility in DRL.

2 Related Work

While reproducibility has been explored across artificial intelligence, machine learning, and robotics
[5, 8, 3, 7], reproducibility in DRL remains relatively uncharted. In the context of DRL, the effects
of hyperparameters, codebases, evaluation metrics, random seeds, and aspects of the environment
have been studied to a degree [10, 11, 12]. However, existing work studies the aggregate effect of
random seeds, whereas here we investigate individual sources of randomness. Further, our work
studies value-based methods whereas previous research in reproducibility for DRL has focused on

2

policy gradient methods. Finally, previous work done in the context of DRL has focused primarily on
the broader notion of reproducibility from Section 1, whereas we emphasize determinism, which is
more closely related to replicability.

While not branded explicitly under reproducibility, other works have analyzed the impact of hyperpa-
rameters and randomness in DRL. For instance, it was shown [4] that the frame skip hyperparameter
commonly used in DRL algorithms can strongly influence a learning agent’s success in the Arcade
Learning Environment (ALE) [2], a standard evaluation platform for DRL agents. The ALE was
originally designed to be deterministic, allowing agents to succeed by simply memorizing action
sequences. Consequently, several methods of injecting stochasticity into the environment [9, 12]
have been proposed to address this issue. These methods of injecting stochasticity into the environ-
ment have been evaluated for their ability to cause memorizing agents to fail while simultaneously
not harming the performance of non-memorizing agents. It should be noted that these studies of
environment stochasticity are performed in the presence of other forms of nondeterminism, and do
not isolate sources of nondeterminism as we do. Many of these findings have been synthesized into
best practices for the DRL community [10, 12], with the hope of setting the standard for research to
follow.

3 Background

We now provide a brief background of the Markov decision process formulation of reinforcement
learning problems and of the deep Q-learning algorithm, which is our algorithm of interest in this
paper.

3.1 Markov Decision Processes

Reinforcement learning (RL) problems are formulated in the context of Markov decision processes
(MDPs). An MDP is a tuple (S,A, P, γ,R), where S denotes the set of states within the environment
and A denotes the set of actions available to the agent within the environment. The agent acts at
discrete timesteps where, at each timestep, it experiences a state, performs an action, and transitions
to another state. This is formalized by the transition model P , where P (s′|s, a) is the probability
that the agent transitions to state s′ when performing action a in state s. The discount rate γ ∈ [0, 1]
specifies the agent’s preference for immediate rewards versus future rewards. The reward function
R : S × A × S → R provides the agent with reward R(s, a, s′) as it transitions to state s′ after
performing action a in state s.

Given an MDP, an RL agent’s objective is to learn a policy π : S ×A → [0, 1] mapping a state-action
pair (s, a) to the probability that the agent performs action a in state s. Specifically, the agent tries
to learn an optimal policy π∗, a policy that maximizes the agent’s expected cumulative discounted
reward E[R(s0, a0, s1) + γ · R(s1, a1, s2) + ... + γt · R(st, at, st+1) + ...]. Oftentimes, rather
than directly learning an optimal policy π∗, the agent learns the optimal state-action value function
Q∗ : S ×A → R, which maps a state-action pair (s, a) to the expected cumulative discounted reward
the agent receives if action a is taken in state s and optimal actions are performed thereafter. If the
agent learns Q∗, then an optimal policy can be to perform action argmax

a
Q∗(s, a) in state s.

3.2 Deep Q-learning

Deep Q-learning [13, 14] uses a deep neural network to approximate the state-action value function
Q and trains the network with Q-learning [18], an algorithm for learning Q∗. Deep Q-learning can
achieve human-level performance in many Atari games in the ALE while learning directly from
pixel representations of the state. As the agent interacts with its environment, it maintains a replay
buffer D of its last N transitions (typically N = 1 million). Each entry in this replay buffer contains
a tuple (st, at, rt, st+1), representing the state, action, reward, and subsequent state, respectively.
The network representing the state-action value function being learned is termed a deep Q-network
(DQN), where Q(s, a;θ) represents the predicted state-action value under the DQN parameters
θ. The algorithm also maintains a separate target network Q(s, a;θ−), where θ− represents the
parameters of a network from a prior training iteration. Periodically, the target network parameters
are reset to equal the DQN parameters: θ− ← θ. To train the DQN at iteration i, the agent minimizes
the loss [14]:

3

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′;θ−i)−Q(s, a;θi)

)2]
. (1)

Following techniques from stochastic optimization, the agent randomly samples minibatches of
transitions uniformly from the replay buffer, uses the DQN and the target network to compute the
loss, and then updates the DQN’s weights.

4 Nondeterminism in Deep Reinforcement Learning

In order to investigate the challenge that nondeterminism poses for reproducibility, we must identify
all the sources of nondeterminism that are present when implementing deep Q-learning. Once
identified, controlling or eliminating all of these sources from the learning process is sufficient for
obtaining a deterministic implementation of deep Q-learning.

4.1 Sources of Nondeterminism

While the exact sources of nondeterminism depend on the algorithm, problem domain, libraries, etc.,
we identify those sources common to most DRL algorithm implementations.

• GPU Neural networks are typically trained on graphics processings units (GPUs). However,
under certain experimental conditions, numerical operations carried out on the GPU yield
nondeterministic outcomes.

• Environment The environment in reinforcement learning can be stochastic. That is, the
transitions can be random.

• Policy During training, reinforcement learning agents typically employ a stochastic policy.
That is, the agent’s action is drawn from a non-degenerate distribution over the available
actions.

• Network initialization Prior to training, the weights of the neural network are randomly
initialized.

• Minibatch sampling When training neural networks, several algorithms sample random
minibatches of training data from some dataset.

In deep Q-learning, the neural network is typically trained using a GPU. Consequently, deep Q-
learning has nondeterminism stemming from both the network initialization and the GPU. The
algorithm also has randomness in the form of minibatch sampling of transitions from the replay
buffer during training. Furthermore, during training, the agent uses an ε-greedy policy, performing a
random action with probability ε at each timestep. The ALE was originally deterministic, and while a
new version of the ALE [12] permits stochastic environments, we use the deterministic environment
as in the original deep Q-learning papers [13, 14]. Furthermore, while the ALE exposes a random
seed for the environment, the seed takes no effect in most games, yielding deterministic dynamics
given a fixed action sequence. For completeness, however, we fix the random seed throughout our
experiments. Lastly, deep Q-learning introduces an additional source of randomness not listed above,
in the form of no-op (or "do nothing") actions. The agent performs a random number of no-op
actions at the beginning of each episode in order to randomize the initial state within the deterministic
environment.

4.2 Implementation: Eliminating Nondeterminism

Our implementation of Deep Q-learning is written in Python using the PyTorch library [16]. PyTorch1

exposes a modifiable boolean variable that allows us to enable or disable deterministic numerical
computations on the GPU. Furthermore, PyTorch permits us to set the seed used to initialize the

1We selected PyTorch for its ease of controlling GPU nondeterminism. However, the sources of nondeter-
minism can depend on the deep learning library used. For example, as of this writing, Tensorflow has certain
nondeterministic functions that require workarounds and enabling GPU determinism is not straightforward. In
fact, we were not able to do so.

4

weights of the deep Q-network, allowing us to obtain identical networks on separate runs. To control
for no-ops, exploration, and minibatch sampling, we assign each of these sources of nondeterminism
its own seeded random number generator. Any random operations required for no-ops, exploration,
or minibatch sampling is implemented using the assigned random number generator. Thus, across
training runs, the same “random” number of no-ops are performed at the beginning of episodes.
Exploratory actions are identical and occur at consistent timesteps across runs. Similarly, the same
minibatches are sampled across runs.

When all these sources of nondeterminism are held fixed, as well as the implementation details and
experimental conditions (as is the case in our experiments), we achieve identical results on separate
training runs, as desired. To validate the equivalence of separate runs, we verify that the learned
weights of the neural network are identical at intervals throughout training.

The network architecture for our DQNs is two hidden convolutional layers, a hidden fully connected
layer, and a fully connected output layer with an output for each action [13]. The agent’s policy
during training is an ε-greedy policy, where at each timestep, it either performs a random action with
probability ε, or the greedy action argmax

a
Q∗(s, a;θ) with probability 1− ε. The value ε is initially

set to 1.0 and is linearly annealed to 0.1 over the first million frames, remaining at 0.1 thereafter. We
make our deterministic implementation2 available with all hyperparameters, implementation details,
and experimental conditions recorded.

5 Experiments

To quantify the benefit of controlling nondeterminism, we use our deterministic implementation
as a baseline and systematically allow individual sources of randomness to influence the training
process. We train multiple networks in the presence of individual sources of nondeterminism and
evaluate their performance under two different evaluation metrics: the game score and the maximum
predicted Q-values on a set of states. We use the standard deviations of the evaluations as a qualitative
measure of the impact of a source of nondeterminism on achieving reproducibility. The sources of
nondeterminism that we focus on are: GPU nondeterminism, exploration randomness, and random
weight initializations.

5.1 Training

In our experiments, we train four groups of networks using our deterministic implementation. For
each group, we train five networks, as is often done in DRL papers [12, 15]. The first group, which
we call the “deterministic” group, consists of five networks trained with the same random seeds and
with deterministic GPU operations enabled across all runs. The “initialization” group consists of
five networks each trained with a different set of randomly initialized weights and all other settings
identical to the deterministic group. The “exploration” group consists of five networks trained with
different random exploration seeds and all other settings identical to the deterministic group. The
final group is the “GPU” group, which has all settings identical to the deterministic group except with
deterministic GPU operations disabled. All of our agents were trained for 10 million timesteps in the
ALE [2] on the Atari game BREAKOUT, a domain where the agent uses a paddle to hit a moving ball
while trying to eliminate rows of bricks from the game screen. The agents are evaluated every 100K
timesteps of training, and we compute the mean and standard deviation of the agent’s performance
after each of these evaluation intervals. The hardware and software conditions are held constant for
all experiments.

5.2 Evaluation Protocol: Average Score

Typically, evaluation protocols [13, 14] for the (deterministic) ALE involve averaging the agent’s
game score over several episodes during which the agent performs an ε-greedy policy with some low
ε. This exploration is done in order to produce diversity in the episode trajectories which tests the
agent’s ability to generalize to different states. However, suppose we are evaluating two different
agents. If we have the customary random exploration during the evaluation phase, then after a
single deviation between the policies, the agents could be in different states, and the seeded random

2https://github.com/prabhatnagarajan/repro_dqn.git

5

https://github.com/prabhatnagarajan/repro_dqn.git

exploration would not have the same effect on the agents’ trajectories, confounding the results. Thus,
in alignment with our goal of measuring differences in performance that stem solely from agents’
policies, we utilize a greedy policy during evaluations. Consequently, any variation in the agents’
performance can be attributed to differences between their Q-networks alone. However, since the
ALE is deterministic, each greedy evaluation results in the same episode, which poses an issue. We
must ensure that our evaluation tests the agent’s ability to generalize to different states, because a
single episode is not representative of the agent’s overall performance.

Our solution to the above issue is to evaluate each agent for 100 episodes, where each episode is
capped at five minutes of play. Each of these episodes begins with a predetermined action sequence,
followed by the agent’s greedy policy for the remainder of the episode. This idea is similar to using
“human starts” at the beginning of episodes, where the agent completes an episode starting from a
trajectory of human expert play [15]. We obtained our start sequences by generating 1000 random
sequences, each with a random number (chosen uniformly between 55 and 95) of random actions
(performed without frame skipping). However, since the sequences were generated randomly, some
of these sequences may end in poor states. To address this, we used a trained DQN to evaluate the
Q-values for these states, and selected 100 start sequences randomly from those sequences that ended
in states with reasonable Q-values. While this method of generating start sequences is biased towards
those sequences that a DQN might perform well in, it enables us to generate longer sequences of
random actions, which improves the diversity of our start states. These same 100 start sequences
were used at each evaluation interval for all training runs. In this way, we are able to have a diverse
set of start states that remain constant across all evaluations, while still ensuring that differences in
performance are caused by the agents’ policies alone.

5.3 Evaluation Protocol: Average Maximum Q-Values

Because the above protocol yields noisy learning curves (discussed further in Section 5.4.1), our
second evaluation protocol uses a more stable metric that is commonly used [1, 13, 14, 17], based off
of the agent’s estimated action-value function Q. In a fashion similar to prior work [13], we run a
random policy for 50K timesteps, and sample 500 states from the 50K initial states. Denoting the set
of 500 held out states as SQ, we compute the average maximum predicted Q-value for each state over
that set, i.e.,

1

|SQ|
∑
s∈SQ

max
a

Q(s, a).

Plotting the average maximum Q-value shows smoother learning not seen in curves that plot the
average score.

5.4 Results

Our results are summarized in Figure 1. For each experimental group and evaluation metric, we plot
the mean and population standard deviation of the metric. We discuss the results for each group
individually and provide additional analysis.

5.4.1 Determinism

Figure 1(a) depicts the mean and standard deviation of the average scores from five deterministic
runs with all sources of nondeterminism controlled. The extreme volatility of the curve, with rising
and falling performance, is consistent with prior results [13]. This volatility is attributed to minor
changes in the policy’s weights that change the agent’s state distribution. In fact, when we inspected
the learning curve for each individual start sequence, we found that the score fluctuates wildly —
far more than in Figure 1(a). Thus, even for individual start sequences, we do not observe a stable
improvement in performance, which is consistent with the agent’s state distribution changing in
tandem with minor changes to the policy. If the agent’s policy is only equipped to perform well
in a subset of the state space, then that provides an explanation for the lack of stable learning for
individual start sequences. Each individual start sequence exists in a different part of the state space.
If the set of states for which an agent performs well on is constantly changing, then it is unlikely
that there is a start sequence for which there is consistent improvement. Figure 1(b) shows the more
stable learning of the agent as its estimated Q-values steadily increase throughout training.

6

(a) Deterministic: score (b) Deterministic: max
a

Q

(c) Initialization: score (d) Exploration: score (e) GPU: score

(f) Initialization: max
a

Q (g) Exploration: max
a

Q (h) GPU: max
a

Q

Figure 1: The learning curves for four groups of agents trained with our deterministic implementation.
A single group was trained deterministically with identical settings, while the remaining three groups
permitted a single source of nondeterminism. Each curve depicts either the mean score or the
mean maximum Q-value achieved from five different agent evaluations. The shaded area represents
values within one population standard deviation of the mean. The absence of a shaded area in the
deterministic curves indicates that the results are identical across the five runs.

The key point from Figures 1(a) and 1(b), however, is that both graphs lack any shaded area. That is,
there is no variance in the evaluations, confirming that each of the five deterministic training runs
produces identical evaluations.

5.4.2 Random Initialization

The results for the initialization group are shown in Figure 1(c) and Figure 1(f). Random initialization
is a unique source of nondeterminism in that it is the only source in which the networks in the group
do not have identical policies to begin with. However, recall from Section 4.2 that the agents perform
a large amount of exploration early in training. Since the agents in this group have identical random
exploration seeds, they have roughly the same early experiences from which to learn. However, given
that their Q-networks start off differently, these common experiences affect their respective policies
differently. As a result, we anticipated the variance to be nontrivial even in the early stages of training.
However, in Figure 1(c), we observe that the variance is quite low at the beginning of training.

7

Figure 1(f) offers a possible explanation for this low initial variance. The Q-values provide a finer-
grained view of the network’s predictions than the game score. We find that, even under different
initializations, the predicted Q-values are similar early in training. Since these networks predict
similar Q-values, it is not unreasonable to expect them to have similar policies in the early stages of
learning, resulting in similar performances. Another possible explanation is that their policies are
quite different, but perform similarly in terms of game score. This may be the case because the set
of policies that perform poorly is less restrictive than the set of policies that perform well. That is,
in BREAKOUT there are more policies that can achieve a score of 0 than there are policies that can
score 150. Consequently, different random initializations may cause different policies to perform
similarly poorly during the early stages of training. The differences between these policies may only
be reflected in the game score in the later stages of training when the networks improve and individual
differences between policies have larger impacts on performance.

Random initialization is a source of nondeterminism that is fairly trivial to control. However, when
uncontrolled, it can lead to large variations in performance, as shown in Figures 1(c) and 1(f).

5.4.3 Exploration

The results for the exploration group are shown in Figure 1(d) and Figure 1(g). We expected that
altering exploration seeds would have the largest effect on performance. At the beginning of training,
the agents perform large amounts of exploration, and different exploration seeds cause the experience
distributions to diverge from the beginning, yielding different policies. Despite the Q-networks having
identical weights at the beginning of training, we felt the differing experiences would substantially
impact the policy. Indeed, Figure 1(d) exhibits the two key characteristics also shown in the curves for
weight initialization: the low variance early in training followed by larger variance later in training.
Again, these results illustrate the benefit of a deterministic implementation in that even with identical
initial networks, uncontrolled exploration can cause remarkably different results.

5.4.4 GPU

The results for the GPU group are shown in Figure 1(e) and Figure 1(h). Initially, all networks in
the GPU group have identical starting conditions. If the GPU performs operations deterministically,
then the agents will have identical results throughout training. Given that the starting conditions
are identical, we expect the GPU computations to differ only slightly across runs. While we still
expect to observe a cascading effect from these small differences, we anticipated that it would be
minimal. Since the agents share early experiences and have identical initial policies, we would expect
the learned policies to be similar, again resulting in similar performance. However, Figure 1(e) shows
that this is not the case. While the variance in game score is low for the first two million frames, it
quickly increases and the variance in the learning curve looks similar to the curves for exploration
and weight initialization. A similar effect is observed in Figure 1(h), where the variance is near zero
for the first two million frames, but then subsequently grows. This experiment best demonstrates the
cascading effect. All agents have identical starting conditions, but small deviations during training
compound and lead to substantial differences as training progresses.

The GPU is of special interest since it is the only source of nondeterminism that exists outside of
the algorithm itself. As a consequence, the GPU nondeterminism best underscores the benefit of
deterministic implementations. Even if implementation details are successfully reproduced, sources
of nondeterminism outside of the algorithm can considerably impact results.

6 Conclusion

In this paper, we quantified the benefit of a deterministic implementation by studying the impact of
individual sources of nondeterminism. For all sources of nondeterminism studied, we found that
the variance in performance is low early in training and grows larger as training progresses. Our
core result is that, even with a fixed implementation run under identical experimental conditions
using a standard style of evaluation, a single source of nondeterminism can substantially impact
results. This illustrates the benefit of deterministic implementations. Under the general notion
of reproducibility, a typical nondeterministic implementation may not reproduce results of similar
quality to published results, solely due to the large variance between runs. We hope that our results
spur the DRL community to provide deterministic implementations of algorithms when possible.

8

Acknowledgments

The authors would like to thank Darshan Thaker, Ewin Tang, Naren Manoj, Kapil Krishnakumar, and
Brahma Pavse for their useful comments, suggestions, and reviews of earlier drafts.

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), Intel, Raytheon, and
Lockheed Martin. Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

References
[1] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and

stabilization for deep reinforcement learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 176–185, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[3] Fabio Bonsignorio. A new kind of article for reproducible research in intelligent robotics [from
the field]. IEEE Robotics & Automation Magazine, 24(3):178–182, 2017.

[4] Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a
powerful parameter for learning to play atari. Space, 1600:1800, 2000.

[5] Chris Drummond. Replicability is not reproducibility: nor is it good science. 2009.

[6] Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. What does research reproducibility
mean? Science translational medicine, 8(341):341ps12–341ps12, 2016.

[7] Eugenio Guglielmelli. Research reproducibility and performance evaluation for dependable
robots [from the editor’s desk]. IEEE Robotics & Automation Magazine, 22(3):4–4, 2015.

[8] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the art: Reproducibility in artificial
intelligence. 2017.

[9] Matthew J Hausknecht and Peter Stone. The impact of determinism on learning atari 2600
games. In AAAI Workshop: Learning for General Competency in Video Games, 2015.

[10] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In AAAI, pages 3207–3214, 2018.

[11] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility
of benchmarked deep reinforcement learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

[12] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

9

[15] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296,
2015.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[17] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In AAAI, volume 16, pages 2094–2100, 2016.

[18] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

10

	Introduction
	Related Work
	Background
	Markov Decision Processes
	Deep Q-learning

	Nondeterminism in Deep Reinforcement Learning
	Sources of Nondeterminism
	Implementation: Eliminating Nondeterminism

	Experiments
	Training
	Evaluation Protocol: Average Score
	Evaluation Protocol: Average Maximum Q-Values
	Results
	Determinism
	Random Initialization
	Exploration
	GPU

	Conclusion

