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ABSTRACT

That machine learning algorithms can demonstrate bias is well-documented by
now. This work confronts the challenge of bias mitigation in fully-connected
feedforward neural nets through the lens of multiobjective optimisation. Specif-
ically, recognising that fairness and accuracy are competing objectives, the pro-
posed methodology uses techniques from multiobjective optimisation to ascertain
the fairness-accuracy landscape of a neural net classifier. Along the way, a new
causal notion of fairness is introduced that is particularly suited to giving a nu-
anced treatment when data is collected under unfair practices. In particular, special
attention is paid to subjects whose covariates could appear with substantial prob-
ability in either value of the sensitive attribute. Experimental results suggest that
the proposed method produces neural net classifiers that distribute evenly across
the Pareto front of the fairness-accuracy space and is more efficient at finding
non-dominated points than an adversarial approach.

1 INTRODUCTION

There is increasing concern over the ethics of machine learning algorithms. The issue of machine
bias was prominently featured in ProPublica’s 2016 eponymous article (Angwin et al., 2016) where
the investigation uncovered prejudice against African-Americans in COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions), a recidivism prediction tool developed by
Northpointe. Efforts to mitigate machine bias has received steadily increasing attention from stake-
holders in a wide array of arenas including academia, industry research labs, and advocacy groups.

The question of fairness has a long history (Sen & McMurrin, 1980) and its definition continues to be
debated (Dwork et al., 2012; Chouldechova, 2016; Joseph et al., 2016). For instance, Corbett-Davies
et al. (2017) and Dieterich et al. (2016) argue that COMPAS can be regarded as fair with respect to
certain fairness notions. Works such as Hardt et al. (2016) and Kleinberg (2018) have investigated
this type of ambiguity by showing that certain fairness criteria cannot be simultaneously satisfied.

Having fixed a definition of fairness, most works in algorithmic fairness proceed by imposing con-
straints during the training process in an attempt to enforce fairness (Hardt et al., 2016; Joseph
et al., 2016; Zafar et al., 2017a;b). Recent works can handle very complex learning algorithms such
as neural networks (Beutel et al., 2017; Wadsworth et al., 2018; Madras et al., 2018; Manisha &
Gujar, 2018). However none of the works in the literature seek to provide a holistic view of the
fairness-accuracy landscape of the algorithm.

What we mean is this – though it is desirable that the neural network maintain high predictive accu-
racy while simultaneously remaining fair with regards to a sensitive variable such as race or gender,
these two objectives often compete. Given this, it is helpful to cast the balancing act between fair-
ness and accuracy as a multiobjective optimisation task and look at the fairness-accuracy Pareto
front. This can give a bird’s eye view of the algorithm and can be useful for comparing two algo-
rithms based on, say, the “volume” of the Pareto front (Li et al., 2015). In this work, we propose
a methodlogy for estimating the fairness-accuracy Pareto front of a fully-connected feedforward
network.

Contributions This is the first work in algorithmic fairness that specifically addresses estimation
of the fairness-accuracy Pareto front of a fully-connected feedforward network. The framework
presented is flexible enough to allow for user-supplied accuracy and fairness measures. Along the
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way, we introduce a causal measure of fairness which emphasises fairness amongst subjects with
the most overlap in observed covariates across the different values of a sensitive attribute. Finally,
the methodology can be used to enforce fairness in all intermediate representations of the neural
network. This has potential benefits for downstream transfer learning tasks.

2 RELATED WORK

In this section, we review the broad categories of existing methods in algorithmic fairness. The
major discernible classes of fair learning methods can be trifurcated according to the stage in which
action is taken. The first class of methods attempts to remove bias from the input data itself. These
methods rest on the premise that once proper preprocessing is accomplished, any classifier can be
used to subsequently produce fair predictions (Kamiran & Calders, 2012; Feldman et al., 2015;
Calmon et al., 2017; Johndrow & Lum, 2019).

On the other hand, post-processing techniques directly operate on the classifier output and are
amenable to any classifier. The technique in Hardt et al. (2016) for instance seeks to learn a mono-
tone transformation of the classifier’s output to remove unfairness with regard to either demographic
parity or equalised odds.

The third type of algorithmic fairness method directly intervenes in the stage of training. Many of
these methods are specific to certain classifiers and certain notions of fairness. Generally speaking,
train-time methods minimise predictive error while enforcing some fairness constraint (Calders &
Verwer, 2010; Kamishima et al., 2011; Zafar et al., 2017a;b;c; Bechavod & Ligett, 2017; Agarwal
et al., 2018; Narasimhan, 2018).

The proposed methodology falls into this category. However, rather than placing fairness constraints
on the output of the classifier, our method nudge internal representations in the neural network to be
less biased. It is akin to performing a sequence of supervised pre-processing to the input data, one
in each layer of the neural net.

We will later implement in Section 6 an adversarial alternative to estimating the fairness-accuracy
Pareto front. This is also a train-time algorithmic fairness method which employs concepts from
adversarial learning. The main classifier is engaged in a game with an adversary adversary that tries
to predict the sensitive attribute from the output of the predictor (Ganin et al., 2016; Beutel et al.,
2017; Wadsworth et al., 2018; Zhang et al., 2018).

3 THE FAIRNESS-ACCURACY PARETO FRONT

This section introduces the fairness-accuracy Pareto front of a general learning algorithm. Suppose
the inputs live in some space X, the sensitive attribute (e.g. race or gender) in A, and the response
in Y. Let (X,A,Y) be a measurable space and P be a probability measure on it. Let F be a
class of functions from X to Y. Given a loss function L : Y × Y → R, we may define the risk,
R(f ;P ) = E(x,a,y)∼PL(f(x),y).

Suppose F is chosen to be the family of functions fθ : X → Y parametrised by a fully-connected
feedforward neural network with parameter θ ∈ Θ. For a probability measure P on (X,A,Y), define
R(θ;P ) = R(fθ;P ). Let U(θ;P ) be a measure of the unfairness of fθ, in a manner to be made
precise in Section 4. Since we wish for the learning algorithm fθ to be both accurate and fair, we
wish to minimise, over θ, the vector objective function[

R(θ;P )
U(θ;P )

]
. (1)

The optimisation is made difficult by the competing nature of the individual components. Take for
instance as one extreme of the spectrum – performing classification completely at random. Then the
resulting classifier will certainly be fair with respect to the sensitive attribute, by almost all measures
of fairness. The other extreme might be to obtain a perfect classifier. But for datasets collected in
a biased way, this will result in the classifier being unfair. For instance, a recidivism dataset would
contain a disproportionate number of re-offenses amongst some group if police routinely target that
group.
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When the individual components of a vector objective compete, as they do in equation 1, it is un-
likely that a parameter value exists which simultaneously minimises the individual objectives. This
lack of total ordering necessitates optimisation according to a partial order. For a, b ∈ Rp, we say
a ≤ b if and only if every component of a is less than or equal to the corresponding component of
b. Suppose we have p objective functions J1, . . . , Jp where each is a function from the parameter
space Θ to R. Then θ ∈ Θ is Pareto optimal if and only if there does not exist any θ̃ ∈ Θ such that
(J1(θ̃), . . . , Jp(θ̃)) ≤ (J1(θ), . . . , Jp(θ)) with at least one strict inequality. The Pareto front is the
set of all Pareto optimal points.

A basic technique for approximating the Pareto front is to scalarise the vector objective function.
Let λ ∈ [0, 1]. One possible scalarisation scheme for equation 1 forms the convex combination
(1 − λ)R(θ;P ) + λU(θ;P ). An important caveat is that scalarisation in this manner only allows
for recovery of points on the convex hull of the Pareto front (Das & Dennis, 1997). A scalarisa-
tion scheme that avoids this issue is the so-called Chebyshev method (Ehrgott, 2000; Giagkiozis &
Fleming, 2015) in which we take

θλ = arg min
θ

max{(1− λ)R(θ;P ), λU(θ;P )}. (2)

The Chebyshev scalarisation enjoys several desirable properties. It guarantees solutions that are
at least weakly Pareto optimal for any λ ∈ [0, 1]. The term weakly refers to replacing the non-
strict inequality in the Pareto optimal definition with a strict inequality. A further property of the
Chebyshev scalarisation is that any Pareto optimal solution can be obtained for some λ.

Estimation of the Pareto front Now we describe a general technique for estimating the set
{θλ : λ ∈ [0, 1]} where θλ is given by equation 2. Let (x1,a1,y1), . . . , (xn,an,yn) be inde-
pendent copies of (x,a,y) drawn from (unknown) distribution Pmodel. Define the empirical mea-
sure as P̂data = 1

n

∑n
i=1 δ(xi,ai,yi). Let R(θ; P̂data) be the plug-in estimator of R(θ;Pmodel), i.e.

R(θ; P̂data) = E(x,a,y)∼P̂data
L(f(x),y) = 1

n

∑n
i=1 L(f(xi),yi). Let U(θ; P̂data) be an estimate

of U(θ;Pmodel), but not necessarily a plug-in estimator. Then we consider the empirical version of
equation 2 given by

θ̂λn = arg min
θ

max{(1− λ)R(θ; P̂data), λU(θ; P̂data)}. (3)

Evaluation To assess the quality of our Pareto front approximation, it will be helpful to
have unbiased estimators of R(θ̂λn;Pmodel) and U(θ̂λn;Pmodel). Suppose we have a test set
V = {(x∗

i ,a
∗
i ,y

∗
i )} where (x∗

1,a
∗
1y

∗
1), . . . , (x∗

m,a
∗
m,y

∗
m) are another set of independent copies

of (x,a,y) drawn from distribution Pmodel. Define the corresponding empirical measure as
P̂test = 1

m

∑m
i=1 δ(x∗

i ,a
∗
i ,y

∗
i )

. The risk of θ̂λn can be assessed using the out-of-sample average loss
R(θ̂λn; P̂test) = E(x,a,y)∼P̂test

L(f(x; θ̂λn),y) = 1
m

∑m
i=1 L(f(x∗

i ; θ̂
λ
n),y∗

i ). The unfairness can be

also assessed on the test set, let’s denote it U(θ̂λn; P̂test).

The appropriate loss function involved in R(θ;Pmodel) will be context-specific. Since we will be
interested in binary classification, we will limit future discussion to the cross-entropy loss. How
fairness should be defined is much more controversial. We will discuss various existing notions of
fairness in the next section and advocate for a new causal measure of fairness that is especially adept
at handling inherent biases in the dataset.

4 A NEW CAUSAL FAIRNESS MEASURE

Definitions of fairness can be largely divided into two camps. On one hand, we have non-causal
fairness notions which typically operate by conditioning on the levels of the sensitive variable. For
instance, enforcing equalised odds (Hardt et al., 2016) on a classifier fθ amounts to enforcing two
conditional distributions are the same, e.g. p(fθ(x) | a = a,x = x).

In the non-causal category, two fundamental definitions of fairness are demographic parity and con-
ditional parity. The classifier fθ(x) is said to exhibit demographic parity with the sensitive attribute
a if fθ(x) ⊥⊥ a, where the shorthand ⊥⊥ means independence. Intuitively, demographic parity as-
sesses if the predicted score does not depend on the sensitive variable. For example, a classifier
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predicting if a convicted criminal will re-offend exhibits demographic parity with respect to race
if the distribution of fθ(x) is the same irrespective of race. The drawbacks to demographic parity
are well-documented (Hardt et al., 2016; Kleinberg, 2018). Essentially, when the base rates dif-
fer across values of the sensitive attribute, satisfying demographic parity can come at the cost of
discrimination.

A more flexible framework of fairness is given by conditional parity, a term coined in Ritov et al.
(2017). Let u be a random vector. The prediction score fθ(x) is said to exhibit conditional parity
with sensitive attribute a conditional on u if fθ(x) ⊥⊥ a | u. Under the umbrella of conditional
parity, Ritov et al. (2017) unified various fairness definitions. For instance, the notion of equalized
odds, introduced in Hardt et al. (2016), is recovered by setting u to the true target class membership
itself.

Intuitively, conditional parity asks for class predictions that are independent of the sensitive variable
a conditioned on u. For example, one could consider a classifier predicting if an applicant should
be admitted to graduate school. Here, one may desire admission decisions to be independent of
sex (demographic parity), or, for conditional parity, independent of sex conditional on a particular
university department. That the notions of demographic and conditional parity can strongly differ
and may lead seemingly paradoxical results was strikingly illustrated in Bickel et al. (1975) for
graduate admissions at UC Berkeley.

4.1 CAUSAL FAIRNESS IN THE OVERLAP POPULATION

Taking the causal approach to defining fairness means replacing the question “Is the learning algo-
rithm (conditionally) dependent on the sensitive attribute?” with the question “Does the sensitive
attribute have a causal effect on the algorithm’s predictions?” In an ideal world, we could intervene
on the sensitive attribute by manipulating their values in an experiment and recording the outcomes.
However, we usually only have access to observational data. Fortunately, causal inference tools can
be used to glean causal effects from observational data. The tools are based on posing hypothetical
questions about counterfactuals or potential outcomes: “What would have been the prediction out-
come in a parallel universe where the only thing that changed about this subject was the value of the
sensitive attribute?”

Our approach differs from previous works in causal fairness (Kusner et al., 2017; Kilbertus et al.,
2017; Khademi et al., 2019) mainly in the causal estimand we use. Also, notably, we do not make
use of structural equation models. A good review on causal approaches to algorithmic fairness can
be found in Loftus et al. (2018).

Our new causal fairness notion is based on a special case of the weighted average treatment effect
(WATE) (Hirano et al., 2003) whose development is motivated by the fact that in many situations
due to selection bias, the study population may be different from the target population. To make
valid causal statements, samples are weighed according to the covariate distributions of some target
population.

We will use a special case of the WATE to measure and then penalise the causal link between the
sensitive attribute and the intermediate representation in some layer of the neural network. Sup-
pressing the dependence on the layer, let h denote values in the hidden layer. Adopting the potential
outcome framework of Imbens & Rubin (2015) where we assume the Stable Unit Treatment Value
Assumption, each intermediate representation h takes on one of two potential outcomes, h(0),h(1)
depending on whether a = 0 or a = 1. Note that h = ah(1) + (1 − a)h(0), i.e. we can only ever
observe one of the two potential outcomes.

Note that there are subtleties entailed by immutable variable such as race or gender. Kilbertus et al.
(2017) argue for a workaround based on the idea of potential proxies. For instance the immutable
characteristic of race has proxies such as name, visual features, languages spoken at home that can
be conceivably manipulated.

Under unconfoundedness, i.e. a is independent of {h(0),h(1)} conditional on x, WATE is a class
of causal estimands τg : Rm → Rm parametrised by a function g : Rp → R given by

τg(h) =
E(x,a,y)∼Pmodel

[g(x)(µ1(x)− µ0(x))]

E(x,a,y)∼Pmodel
[g(x)]

(4)
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where µ1(x) = E(h(1) | x = x) and µ0(x) = E(h(0) | x = x). This form reveals WATE is indeed
a measure of the causal effect in the target population specified by g(x). Note when g(x) = 1
for all values of x, WATE reduces to the standard conditional average treatment effect (CATE),
τCATE = E(x,a,y)∼Pmodel

(h(1)− h(0) | x = x).

Henceforth, we focus our discussion on the case when g(x) = e(x)(1− e(x)) where e(x) = P (a =
1 | x = x) is also known as the propensity score. The propensity score is typically understood to be
the probability of treatment given the covariate x. (Recall in our case, the sensitive variable a plays
the role of treatment.) The WATE corresponding to g(x) = e(x)(1 − e(x)) was called the average
treatment effect for the overlap population (ATO) in Li et al. (2018a). The term overlap refers to
the fact that the ATO articulates the causal effect among the overlap population which consists of
subjects whose covariates could appear with substantial probability in either value of the sensitive
attribute.

Let ê(x) be the estimated propensity score function. In our experiments, we used a neural network to
estimate the propensity score function. We actually also calibrated the predicted probabilties using
the temperature scaling procedure of Guo et al. (2017).This neural net for learning the propensity
score is trained once and for all on the training set.

A consistent estimator of the ATO (Li et al., 2018b) based on data {(xi,ai,hi)}ni=1 is

τ̂ATO(h) =

∑n
i=1 aihiwi∑n
i=1 aiwi

−
∑n
i=1(1− ai)hiwi∑n
i=1(1− ai)wi

(5)

where wi are the so-called overlap weights (Li et al., 2018a) given by

wi =

{
1− ê(xi) if ai = 1

ê(xi) if ai = 0.

Overlap weights derive their name from an emphasis on subjects with the most overlap in observed
covariates x across the treatments (in our case the treatment is the sensitive attribute). Besides the
nice interpretation of the ATO, there is also an important practical reason to adopt it as our causal
estimand of choice. The overlap weights smoothly down-weigh subjects in the tails of the propensity
score distribution, thereby mitigating the common problem of extreme propensity scores.

For precise conditions under which the estimator τ̂ATO is consistent, we refer the reader the set
of regularity assumptions (called Assumption 1 to 5) in Hirano et al. (2003). These conditions are
regulated to the distribution of x and distribution of h(0) and h(1). There is also a condition on the
smoothness of the propensity score e(x).

5 METHODOLOGY

In this section, we present a methodology for approximating the fairness-accuracy Pareto front of
a fully-connected feedforward neural net classifier for the cross-entropy loss and the ATO fairness
measure. The available data include a single binary sensitive variable a, input variables x ∈ Rp, and
binary response y indicating class membership. The input x is further standardised to mean 0 and
variance 1. All discrete variables are dummy encoded.

Let w(l) ∈ Rml×ml−1 and b(l) ∈ Rml , l = 1, . . . , L be the parameters in the l-th layer of a fully-
connected feedforward neural network with L layers. Let h(l) : Rml−1 → Rml be the affine trans-
formation

h(l) = w(l)v(l−1) + b(l), l = 1, . . . , L

where v(0) = id is the identity function and m0 = p. The activation function σ(l) : Rml → Rml is
applied to obtain

v(l) = σ(l) ◦ h(l), l = 1, . . . , L.

The activation function in the final layer, σ(L), is restricted to the sigmoid function since we wish the
classifier to output scores between 0 and 1. We use the ReLU activation function in all other layers
for our experiments. Let h(l)

i be shorthand for the application of the function h(l) to input feature xi,
i.e. h(l)

i = h(l)(xi). Collect all parameters w(l) and b(l) for l = 1, . . . , L into the parameter vector
θ. The neural network is simply the function fθ : Rp → [0, 1] given by fθ(x) = v(L)(x).
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We will employ the binary cross-entropy loss L : [0, 1]× {0, 1} → R given by L(ŷ, y) = y log ŷ +
(1 − y) log(1 − ŷ). Our interest is to determine, for the network fθ, the fairness-accuracy Pareto
front associated to the (unknown) vector objective function(

R(θ;Pmodel)
U(θ;Pmodel)

)
=

(
−E(x,a,y)∼Pmodel

(y log fθ(x)) + (1− y) log(1− fθ(x)))
|τATO(fθ(x))|

)
. (6)

The first component measures classification error while the second component determines unfairness
with respect to the ATO measure. (We would like both components to have low values.) To estimate
the Pareto front of equation 6, we will use the strategy laid out in Section 3. Namely, we estimate
each component of equation 6, scalarise the vector objective function using the Chebyshev method,
and finally optimise the scalarised objective.

Estimation of R(θ;Pmodel) is straightforward; we simply use the plug-in estimator R(θ; P̂data) =
− 1
n

∑n
i=1 [yi log fθ(xi) + (1− yi) log(1− fθ(xi))] . Now we turn our attention to estimating

τATO((fθ(x)), the average effect of the sensitive attribute on the prediction for the overlap pop-
ulation. To achieve a low value for τATO((fθ(x)), we could directly constrain the network to learn
final predictions with low ATO. However, it may be preferable to penalise the ATO in the hidden
layers of the network. This way, downstream analyses that involve transfer learning are also safe-
guarded against bias. See the exposition in Madras et al. (2018) for further benefits of learning fair
internal representations. To keep the notation simple, let’s say we penalise the hidden units in the
some layer l. We then calculate the ATO in that layer to obtain

U(θ; P̂data) =
∣∣∣τ̂ATO(h(l))

∣∣∣ =

∣∣∣∣∣
∑n
i=1 aih

(l)
i (1− ê(xi))∑n

i=1 ai(1− ê(xi))
−
∑n
i=1(1− ai)h

(l)
i ê(xi)∑n

i=1(1− ai)ê(xi)

∣∣∣∣∣
We can generalise U to penalise all layers in the neural network by summing over l. We will report
on this experiment in Section 6.

Ideally, we would finely sample λ in [0, 1] to find the set {θ̂λn : λ ∈ [0, 1]} where θ̂λn is given by
equation 3. But realistically, it might only be possible to perform the optimisation in equation 3 over
a coarse grid of λ’s. It turns out that evenly distributed λ’s in the interval [0, 1] can often produce
solutions that form clumps on the Pareto front, i.e. evenly distributed λ’s in [0, 1] do not produce
evenly distributed points in the multi-objective space. Future work might seek to adaptively select
the λ’s by implementing methods such as the Normal-Boundary-Interactive (Das & Dennis, 2000).

We also found it necessary to ensure the two terms in equation 6 are comparable in scale, so we
standardised each term as follows. First, we ran the optimisation for λ = 0 and recorded the
minimum Rmin and maximum Rmax of R(θ; P̂data). Similarly we then ran the optimisation for
λ = 1 to obtain Umin and Umax. Then we standardised by (R − Rmin)/(Rmax − Rmin) for the
expected loss and analogously for the unfairness measure.

Suppose we have available to us a testing set {(x∗
i ,a

∗
i ,y

∗
i )}mi=1. We note that for evaluation, we

assess
[
R(θ̂λn, P̂test)

U(θ̂λn, P̂test)

]
on the final prediction fθ̂λn(x∗

i ) where

U(θ̂λn, P̂test) =

∣∣∣∣∣
∑m
i=1 a

∗
i fθ̂λn

(x∗
i )(1− ê(x∗

i ))∑m
i=1 a

∗
i (1− ê(x∗

i ))
−
∑m
i=1(1− a∗i )fθ̂λn

(x∗
i )ê(x

∗
i )∑n

i=1(1− a∗i )ê(x
∗
i )

∣∣∣∣∣ .
6 EXPERIMENTS

In this section, we will apply the proposed methodology to two benchmarking datasets in the algo-
rithmic fairness literature – the UCI adult income dataset and the ProPublica recidivism dataset. The
two datasets are briefly summarised in Table 1 in Appendix A. Missing values were pre-processed
according to the accompanying code. Our goals are as follows. In the UCI dataset, we wish to
predict whether an individual has income above 50, 000 USD while remaining fair with respect to
gender. Separately, we wish to perform the same prediction task while remaining fair with respect
to race. In the recidivism dataset, we wish to predict whether an individual will recommit a crime
in two years while remaining fair with respect to race.

6



Under review as a conference paper at ICLR 2020

R(θ̂λn, P̂test)

0.0

0.1

0.2

U
(θ̂
λ n
,P̂

te
st

)

UCI (gender)

Pareto frontier

Chebyshev θ̂λn

0.4 0.5 0.6 0.7

R(θ̃λn, P̂test)

0.0

0.1

0.2

U
(θ̃
λ n
,P̂

te
st

) Pareto frontier

adversarial θ̃λn

R(θ̂λn, P̂test)

0.00

0.05

U
(θ̂
λ n
,P̂

te
st

)

Recidivism (race)

Pareto frontier

Chebyshev θ̂λn

0.600 0.625 0.650 0.675 0.700 0.725 0.750

R(θ̃λn, P̂test)

0.00

0.05

U
(θ̃
λ n
,P̂

te
st

) Pareto frontier

adversarial θ̃λn

Figure 1: Each column of plots corresponds to a dataset and a sensitive attribute of interest. In all
panels, we repeatedly split the data into training and testing sets, creating in total 100 sets of each.
Then in each of the 100 training sets, for a collection of 15 λ’s in the interval [0, 1], we find θ̂λn
according to the Chebyshev scalarisation scheme (left panel) and θ̃λn according to the adversarial
approach (right panel). Thus there are a total of 1500 learned θ’s in each plot and the magenta
boundary is the Pareto frontier culled from these 1500 candidates. We can see the estimated Pareto
front by the proposed methodology spans the fairness-accuracy space more than the adversarial
approach.

We will achieve these goals by estimating the fairness-accuracy Pareto front of a binary classifier
given by a fully-connected feedforward neural network. Note that we are conducting the analysis for
the UCI dataset separately for race and gender. Future work should address fairness with respect to
multiple sensitive attributes simultaneously; this would require an extension of the ATO to multiple
“treatments” which was suggested as feasible future work in Li et al. (2018a).

Each dataset is split into a training set and a held-out test set, with the split reported in Table 1.
First, the propensity scores are estimated using a neural net. Details of the propensity score network
are given in Appendix A. For the neural net architecture defining fθ, the number of fully-connected
layers and number of hidden nodes in each layer (held constant over the layers) were tuned for
each dataset with the goal of not incurring over-fitting in the held-out test set. Each fully-connected
layer is interspersed with a dropout layer with dropout probability 0.2. The resulting architecture
is reported in Table 2. The ReLU activation function is used in all intermediate layers while the
sigmoid function is used in the output layer.

To learn the network, we use the ADAM optimisation algorithm (Kingma & Ba, 2014). The initial
learning is fixed at 0.001. We reduce the learning rate when the training loss has stopped decreasing
by using the ReduceLROnPlateau scheduler in PyTorch, setting the factor and patience variables
to 0.9 and 10, respectively. All training took place over 500 epochs. Mini-batch size was chosen to
be around 5% of the training set size; 150 and 1000 minibatch sizes were used in the recidivism and
UCI datasets, respectively.

For a given dataset and a sensitive attribute of interest, we repeatedly split the data into training
and testing sets, creating in total 100 sets of each. Then, in each of the 100 training sets, we find
θ̂λn, according to equation 3, for a collection of 15 λ’s in the interval [0, 1]. The quality of the
approximation is assessed using the corresponding test set. Thus we produce a total of 1500 learned
network parameters and each one can be plotted in the fairness-accuracy space. Each column of
Figure 1 shows 1500 θ̂λn’s as well as the Pareto front culled from these 1500 Pareto candidates. The
culling simply checks which of the 1500 points are non-dominated points. As we sweep from the
top-left corner to the bottom-right corner, we move from neural networks exhibiting high-accuracy-
low-fairness to those exhibiting low-accuracy-high-fairness.

Next, we investigate the visual effect of dialling λ between 0 and 1. In Figure 2, we display the
distribution of the classifier’s prediction in the recidivism dataset broken down by class label and
sensitive attribute. Each panel of Figure 2 is a different λ value. In addition to reporting the ATO
measure of fairness, we also indicate other non-causal fairness metrics including Equalised Odds,
Equal Opportunity, and Demographic Parity. Similar visualisation for the UCI (gender) and UCI
(race) dataset can be found in Figures 3 and 4 in the Appendix, respectively.
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Figure 2: Distributions of the predicted probabilities in the test set of the recidivism dataset are
plotted for λ = 0 (left) and λ = 0.712 (right). The distributions are broken down by different
values of the true target label y and value of the sensitive attribute z. Besides the causal fairness
notion we introduced in this work, we also indicate equalised odds (mv EO), equality of opportunity
(mv EOpp) and demographic parity (mv DP).

We also repeated this experiment by modifying the fairness measure to penalise intermediate repre-
sentations in all layers, i.e. set U(θ; P̂data) =

∑L
i=1

∣∣τ̂ATO(h(l))
∣∣, for which the results are reported

in Figure 6 in Appendix A. It seems that penalising all layers makes training the neural network more
difficult as we encounter many iterations where we end up in a local optimum. For simplicity, we
had used the same network architecture as in the case of penalising one internal layer which may
have prompted the performance issue.

Comparison to alternatives We did not find other works in the algorithmic fairness literature that
address the specific task of finding the fairness-accuracy Pareto front of a neural network. Given
this, we instead looked for methods where there was some type of tuning parameter that controls the
trade-off between fairness and accuracy. By dialling this tuning parameter, one could hope to sweep
out a set of classifiers that live in different parts of the fairness-accuracy landscape.

Given the diversity of fairness methods, due in part to the fairness definition used, we decided to
implement the adversarial training technique proposed in Louppe et al. (2017) which is not based
on a specific fairness criterion. The idea is intuitive; the classifier and adversarial are engaged in a
zero-sum game. The classifier network, call its parameters θclf , attempts to make the best binary
classification. The adversary, on the other hand, attempts to make the best prediction of the binary
sensitive attribute based on the classifier’s prediction. Let θadv denote the parameters of the ad-
versarial network. The overall objective is θ̃λn = arg minθclf [Lossy(θclf )− λLossa(θclf , θadv)] .
where the first loss measures the prediction of y and the second loss measures the prediction of the
sensitive attribute a. Both losses were chosen to be the binary cross-entropy loss.

Our implementation of Louppe et al. (2017) is based on GoDataDriven’s post on fairness in machine
learning with adversarial networks. Following their choice of epochs, we alternate the following
steps over 200 epochs: (1) train the adversarial network for a single epoch, holding the classifier
network fixed and (2) train the classifier network on a single sampled mini batch, holding the adver-
sarial network fixed. Details on the adversarial network architecture are provided in Appendix A.
For the classifier network, we employed the same network as above in our proposed methodology
and kept all training choices, such as the optimisation algorithm and mini-batch size, the same. The
classifier was pretrained for 2 epochs.

We modified GoDataDriven’s code so that we can sweep θ̃λn over the parameter λ. The result of
the adversarial approach is shown in the right column of Figure 1. Once again, using the same 100
training and testing pairs as above, we find solutions to θ̃λn for a set of 15 λ’s in [0, 1], for a total of
1500 Pareto candidates. We can immediately see that compared to the proposed methodology, the
adversarial is less capable of finding a Pareto front that spans the fairness-accuracy space. Indeed
the set of dominated (non-dominated) points in the adversarial approach is larger (smaller) relative
to the proposed approach, see Table 3.
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A APPENDIX

In this section, we provide additional details on the experiments conducted in Section 6. First, in
Table 1, we summarise the datasets on which all experiments were conducted. The feedforward
architecture used in the proposed methodology is given in Table 2 for each of the three data settings.

Next, we describe the neural net we employed to estimate the propensity scores P (a = 1 | X). We
actually used the same neural net for all three data settings in Table 1. Each of the 3 fully-connected
layer, with 32 hidden units each, is interspersed with a dropout layer with dropout probability 0.2.
The ReLU activation function is used in all intermediate layers while the sigmoid function is used
in the output layer. The cross-entropy loss is used between the estimated scores and the true labels
dictated by a. To learn the network, we use the ADAM optimisation algorithm (Kingma & Ba,
2014). The initial learning is fixed throughout at 0.001. Training took place over 100 epochs.
Mini-batch size was chosen to be around 5% of the training set size; 150 and 1000 minibatch sizes
were used in the recidivism and UCI datasets, respectively. After the propensity neural network is
trained, we apply the calibration technique proposed in Guo et al. (2017) to calibrate the probability
predictions. We used their GitHub code with no modification.

Figure 5 shows the additional output from the experiment that produced Figure 1 on the UCI dataset
with race as the sensitive attribute. We also repeated the experiment in Section 6 by penalising the
ATO in all layers. The results are shown in Figure 6. The adversarial approach we compared the
proposed methodology against used a network with 4 hidden layers with 32 hidden units in each.
ReLU activations were used throughout except in the final layer where the sigmoid function is used.
The adversarial network was pretrained for 5 epochs. Optimisation used ADAM and minibatch sizes
described in Table 1.

Table 1: Dataset descriptions

dataset features

Dataset dim(x) binary outcome y sensitive a training size testing size minibatch size

Recidivism 12 Reoffend in 2 years? binary race 3086 3086 150
UCI 93 Income above 50K? binary race 15470 15470 1000
UCI 93 Income above 50K? binary gender 15470 15470 1000
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Table 2: Network architecture

neural network features

Dataset layers L hidden nodes

Recidivism 4 4
UCI 32 10
UCI 32 10

Figure 3: Prediction probabilities in the test set of UCI (race) for varying values of λ, indicated by
p penalty in the heading of each plot.

Table 3: A comparison between the proposed methodology the adversarial technique for finding the
Pareto front in each of the three data settings of Figure 1. Reported are the number of non-dominated
points. Higher is better.

UCI (gender) UCI (race) Recidivism
Proposed 44 33 89

Adversarial 13 9 27
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Figure 4: Prediction probabilities in the test set of UCI (gender) for varying values of λ, indicated
by p penalty in the heading of each plot.
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Figure 5: This reports the result for UCI (race) in the same experiment that produced Figure 1.
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Figure 6: We repeated the experiment in Figure 1 changing only the fairness penalty to penalise
the ATO in all layers. There is a drop in the quality of the Pareto front estimation compared to
penalising just one internal layer. Namely, more of the candidate points are dominated points in this
modified experiment where we’ve penalised ATO in all layers. It seems that we should have perhaps
also tuned for a brand new architecture given this new penalty.
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