
Published as a conference paper at ICLR 2020

THE INTRIGUING ROLE OF MODULE CRITICALITY IN
THE GENERALIZATION OF DEEP NETWORKS

Niladri S. Chatterji
University of California, Berkeley
chatterji@berkeley.edu

Behnam Neyshabur
Google
neyshabur@google.com

Hanie Sedghi
Google
hsedghi@google.com

ABSTRACT

We study the phenomenon that some modules of deep neural networks (DNNs)
are more critical than others. Meaning that rewinding their parameter values back
to initialization, while keeping other modules fixed at the trained parameters, re-
sults in a large drop in the network’s performance. Our analysis reveals interesting
properties of the loss landscape which leads us to propose a complexity measure,
called module criticality, based on the shape of the valleys that connect the ini-
tial and final values of the module parameters. We formulate how generalization
relates to the module criticality, and show that this measure is able to explain the
superior generalization performance of some architectures over others, whereas,
earlier measures fail to do so.

1 INTRODUCTION

Neural networks have had tremendous practical impact in various domains such as revolutionizing
many tasks in computer vision, speech and natural language processing. However, many aspects
of their design and analysis have remained mysterious to this date. One of the most important
questions is “what makes an architecture work better than others given a specific task?” Extensive
research in this area has led to many potential explanations on why some types of architectures
have better performance; however, we lack a unified view that provides a complete and satisfactory
answer. In order to attain a unified view on superiority of one architecture over another in terms of
generalization performance, we need to come up with a measure that effectively captures this.

Analyzing the generalization behavior of neural networks has been an active area of research
since Baum & Haussler (1989). Many generalization bounds and complexity measures have been
proposed so far. Bartlett (1998) emphasized the importance of the norm of the weights in predicting
the generalization error. Since then various analysis have been proposed. These results are either
based on covering number and Rademacher complexity (Neyshabur et al., 2015; Bartlett et al., 2017;
Neyshabur et al., 2019; Long & Sedghi, 2019; Wei & Ma, 2019), or they use approaches similar to
PAC-Bayes (McAllester, 1999; Dziugaite & Roy, 2017; Neyshabur et al., 2017; 2018; Arora et al.,
2018; Nagarajan & Kolter, 2019a; Zhou et al., 2019). Recently authors have emphasized on the
role of distance to initialization rather than norm of the weights in generalization (Dziugaite & Roy,
2017; Nagarajan & Kolter, 2019b; Neyshabur et al., 2019; Long & Sedghi, 2019). Earlier results
have an exponential dependency on the depth and focus on fully connected networks. More re-
cently, Long & Sedghi (2019) provided generalization bounds for convolutional neural networks
(CNNs) and fully connected networks used in practice and their bounds have linear dependency on
the depth.

Despite the success of earlier works in capturing the dependency of generalization performance of
a model on different parameters, they fail at the following task: Rank the generalization perfor-
mance of candidate architectures for a specific task such that the ranking aligns well with the ground
truth. Moreover, majority of these bounds are proposed for fully connected modules and it is not
straightforward to evaluate them for different architectures such as ResNets.

1

Published as a conference paper at ICLR 2020

Figure 1: Module Criticality: Loss values in the valleys that connect the initial weights θ0 to the
final weights θF of a non-critical (left) and a critical (right) module in the ResNet18 architecture.
Given a ball with radius r (length of the red line), module criticality can be defined as how far one
can push the ball in the valley towards initialization (length of the white dashed line) divided by the
radius r. Hence, non-critical modules are the ones with a wide valley connecting the initial weight
vector to the final one whereas in critical modules, the valley either becomes too sharp or the loss
values start to increase when the ball comes too close to the initial weight. The x axis is simply
chosen to be parallel to θF − θ0 and the y axis is a compact representation of all other dimensions
generated by adding Gaussian noise to the points on the convex combination of θ0 and θF and
evaluating the loss. The sign on the y axis is decided based on the sign of the inner product of the
noise to θ0.

Every DNN architecture is a computation graph where each node is a module1. We are interested
in understanding how different modules in the network interact with each other and influence gen-
eralization performance as a whole. To do so, we delve deeper into the phenomenon of “module
criticality” which was reported by Zhang et al. (2019a). They observed that modules of the network
present different robustness characteristics to parameter perturbation. Specifically, they look into
the following perturbation: Rewind one module back to its initialization value while keeping all
other modules fixed (at the final trained value). They note that the impact of this perturbation on
network performance varies between modules and depends on which module was rewound. Some
modules are “critical” meaning that rewinding their value to the initialization harms the network
performance, while for others the impact of this perturbation on performance is negligible. They
show that various conventional DNN architectures exhibit this phenomenon.

Let us now informally define what we mean by the measure “module criticality” (see Figure 1).
For each module, we move on a line from its final trained value to its initialization value (convex
combination2 path) while keeping all other modules fixed at their trained value. Then we measure
the performance drop. Let θαi = (1 − α)θ0

i + αθFi , α ∈ [0, 1] be the convex combination between
initial weights θ0

i and the final weights θFi at module i, where αi is the minimum value between 0
and 1 when performance (train error) of the network drops by at most a threshold value ε. If αi is
small we can move a long way back to initialization without hurting performance and the “module
criticality” of this module would be low. Further, we also wish to incorporate the robustness to noise
(that is, the valley width) for the module along this path. If the module is robust to noise along this
path (that is, the valley is wide) then the module criticality would again be low (see Definition 3.1
for a formal definition).

In this paper, we seek to study this phenomenon in depth and shed some light on it by showing that
conventional complexity measures cannot capture criticality (see Section 2). Next, we theoretically
formulate this phenomenon and analyze its role in generalization. Through this analysis, we provide

1A module is a node in the computation graph that has incoming edges from other modules and outgoing
edges to other nodes and performs a linear transformation on its inputs. For layered model such as VGG,
module definition is equivalent to definition of a layer.

2A convex combination of two points is a linear combination of them where the coefficients are non-negative
and sum to 1. Every convex combination of two points lies on the line segment between the two.

2

Published as a conference paper at ICLR 2020

Figure 2: Analysis of rewinding modules to initialization for the ResNet-18 architecture. Each row
represents a module in ResNet18-v1 and each column represents a particular training epoch to which
this module is rewound to. The difference from analysis of Zhang et al. (2019a) is that we rewind
each module, whereas Zhang et al. (2019a) rewind the entire ResNet blocks.

a new generalization measure that captures the dissimilarity of different modules and depicts how
it influences the generalization of the corresponding DNN. Intuitively, the closer we can get to
initialization for each module, the better the generalization.

We analyze the relation between generalization and module criticality through a PAC-Bayesian anal-
ysis. In Section 3 we show that it is the overall network criticality measure and not the number of
critical modules that controls generalization. If the network criticality measure is smaller for an
architecture, it has better generalization performance. In Section 4, we demonstrate through various
experiments that our proposed measure is able to distinguish between different network architec-
tures in terms of their generalization performance. Moreover, the network criticality measure is able
to correctly rank the generalization performance of different architectures better than the measures
proposed earlier.

Notation: We use upper case letters for matrices. The operator norm and Frobenius norm of M
are denoted by ‖M‖2, ‖M‖Fr respectively. For n ∈ N, we use [n] to denote the set {1, . . . , n}. Let
LS(f) be the loss of function f on the training set S with m samples. We are mainly interested in
the classification task where LS(f) = 1

m

∑
(x,y)∈S 1[f(x)[y] ≤ maxj 6=y f(x)[j]]. For any γ > 0,

we also define margin loss LS,γ(f) = 1
m

∑
(x,y)∈S 1[f(x)[y] ≤ γ + maxj 6=y f(x)[j]]. Let LD(f)

be the loss of function f on population data distribution D defined similar to LS(f). We will denote
the function parameterized by Θ by fΘ.

2 TOWARDS UNDERSTANDING MODULE CRITICALITY

2.1 SETTING

A DNN architecture is a directed acyclic computation graph which may or may not be layered. In
order to have a unifying definition between different architectures, we use the notion of a “module”.
A module is a node in the computation graph that has incoming edges from other modules and
outgoing edges to other nodes, and performs a linear transformation on its inputs. For a layered
model such as a VGG, a module is equivalent to a layer. On the other hand, in a ResNet some
modules are parallel to each other. For example, a downsample module and the concatenation of two
convolutional modules in a ResNet18-v1 architecture. Note that, similar to conventional definitions
the non-linearity (such as a ReLU) is not part of the module.

Let Θ = (θ1, . . . , θd) correspond to all parameters of a DNN with d modules, where θi refers to the
weight matrix (or operator matrix in case of convolution) at module i and θ0

i , θ
F
i refer to the value

3

Published as a conference paper at ICLR 2020

(a) A non-critical module (b) A critical module

Figure 3: Spectrum of a non-critical and a critical module during different epochs of training.

of weight matrix at initialization and the end of training, respectively. For sequential architectures,
d is equal to the depth of the network but that is not necessarily true for a general architectures such
as a ResNet.

2.2 ROBUSTNESS TO REWINDING

Consider the following perturbation to a trained network at some training epoch as considered
by Zhang et al. (2019a). For each module in the network, rewind its value back to its value at
this training epoch while keeping the values of all other modules fixed (at their final trained value).
Next, measure the change in performance of the model before and after this manipulation. We repeat
a similar analysis that differs from that of Zhang et al. (2019a) in one detail. Zhang et al. (2019a)
rewind the whole ResNet block at once, whereas, we rewind each module (each convolutional mod-
ule) separately. This rewind analysis is shown in Figure 2 for ResNet18-v1. Each column represents
a module in ResNet18-v1 and each row represents a particular training epoch to which this module
is rewound to. Similar to earlier analysis, we observe that for many modules of the network, this
manipulation does not influence the network performance drastically, while, for some others the
impact is more pronounced. For example, in Figure 2 we look at the effect of rewinding on train
error. The “Stage2.block1.conv2” module is critical, whereas, most other modules, once rewound,
do not affect the performance. In Figure 6 in Appendix E we plot the effect of rewinding on differ-
ent performance criteria (train loss, train error and test error) and observe that they exhibit a similar
trend.

A stable phenomena: The plots in Figure 2 capture a network trained with SGD with weights
initialized using the standard Kaiming initialization (He et al., 2015). To ensure that the observed
phenomenon is not an artifact of the training method and the initialization scheme, we repeated
the experiments with different initialization and optimization methods. We saw a similar pattern.
For example, Figures 7a, 7b in the appendix illustrate the pattern when we changed the initializa-
tion to Fixup (Zhang et al., 2019b), and when we replace SGD with Adam (Kingma & Ba, 2014)
respectively.

2.3 WHAT MEASURES FAIL TO DISTINGUISH CRITICAL LAYERS

Spectrum of weight matrices: We explore the change in the spectrum of different weight matrices
on rewinding and note that the spectrum for a critical and non-critical module look similar. This is
shown in Figure 3. We calculate the spectrum of convolutional layers using the algorithm by Sedghi
et al. (2019).

Distance to initialization: Next, we analyze the operator norm of difference from initialization
for each module. Figure 8 in the appendix depicts this and reveals no difference between critical and
non-critical modules. A similar plot was explored by Zhang et al. (2019a), where they find that the
Frobenius norm and the infinity norm also fail to capture criticality.

4

Published as a conference paper at ICLR 2020

Change in the activation patterns: We investigated the change in the activation patterns of a
network when we rewind a module. To do this, we study the similarity between two networks: 1.
The original trained network and 2. The network with a rewound module. We use CKA (Kornblith
et al., 2019) as the measure of similarity. For a non-critical module, the original and rewound
networks are similar and in case of a critical module, the similarity between the activation patterns
between the two networks degrades gradually rather than abruptly. See Figure 9 in Appendix E.

3 GENERALIZATION BOUNDS BASED ON MODULE CRITICALITY

Our goal is to understand criticality and how it affects the generalization performance of a DNN.
Inspired by the rewind to initialization experiments of Zhang et al. (2019a), we take one step further
and consider changing the value of each module, to the convex combination of its initial and final
value. That is, for each module i, we replace θi with θαi = (1−α)θ0

i +αθFi , α ∈ [0, 1], and keep all
other layers fixed. Then we look at the effect of this perturbation on the performance of the network.

Figure 4 depicts how the train error, test error and train loss change as we decrease the value of α
in θαi when i refers to a critical module (yellow dashdot curve), a non-critical module (red dashed
curve) and all modules (blue solid curve). We find that along this convex combination path all these
performance measures degrade monotonically (increase in error and loss), as we move from the final
weights to the initial weights.

The above experiment shows the effect of moving along a convex combination between module’s
initial and trained value. To capture the relation between criticality and generalization, we are in-
terested in also accounting for the width of the valley as we move from the final value to the initial
value. In particular, we are interested in analyzing what happens if we are moving inside a ball of
some radius σi around each point in this path. PAC-Bayesian analysis, looks for a ball around final
value of parameters such that the loss does not change if we move in this ball. Bringing this idea
together with the one mentioned above, we are interested in moving from the final value to the initial
value in a valley of some radius, and want to find out how far we can move on this path. Intuitively,
being able to move closer to initialization values indicate that the effective function class is smaller
and hence the network should generalize better. For example, in the extreme case where none of
the weights change from their initialization value the function class would be a single function (the
initial function) and the generalization error would be very low (∼0%) as both the train and test
error would be very high (but equal). In this paper, we consider the case of trained models where
train error is very low and hence low generalization error means good performance on test data.
Definition 3.1 (Module and Network Criticality). Given an ε > 0 and network fΘ, we define the
module criticality for module i as follows:

µi,ε(fΘ) = min
0≤αi,σi≤1

{
α2
i

∥∥θFi − θ0
i

∥∥2

Fr

σ2
i

: Eu∼N (0,σ2
i)[LS(fθαi +u,ΘF−i

)] ≤ ε

}
, (1)

We also define the network criticality as the sum of the module criticality over modules of the net-
work:

µε(fΘ) =

d∑
i=1

µi,ε(fΘ). (2)

Here, LS denotes the empirical zero-one loss over the training set, fθαi ,ΘF−i is the DNN’s function
value where weight matrix corresponding to ith module is replaced by θαi and all other modules are
fixed at their values in the end of training, ΘF

−i. θ
α
i = (1−α)θ0

i +αθFi , where θ0
i is the value of the

weight matrix at initialization and θFi is the trained value.

Intuitively, network criticality measure is sum of module criticalities. This is also theoretically
derived using the analysis below.

3.1 A PAC-BAYESIAN GENERALIZATION BOUND

We attempt to understand the relationship between module criticality, and generalization by deriv-
ing a generalization bound using the PAC-Bayesian framework (McAllester, 1999). Given a prior

5

Published as a conference paper at ICLR 2020

Figure 4: Performance degradation as we move on convex combination path from final to initial
value of modules. We find that along this path the training error (as well as test error and train loss)
increases monotonically from the final weights to initial weights. The blue (solid) curve is when we
replace all the parameters in the network by the convex combination between their initial and final
value simultaneously, the red (dashed) curve corresponds to moving on the convex path for a single
(non-critical) layer and the yellow (dashdot) curve corresponds to moving on the convex path for a
critical layer in ResNet-18 architecture.

distribution over the parameters that is picked in advance before observing a training set, a posterior
distribution over the parameters that could depend on the training set and a learning algorithm, the
PAC-Bayesian framework bounds the generalization error in terms of the Kullback-Leibler (KL)
divergence (Kullback & Leibler, 1951) between the posterior and the prior distribution. We use
PAC-Bayesian bounds as they hold for any architecture.

The intuition from Figure 4 suggests moving the parameters of each module as close as possible
to the initialization value before harming the performance. For such αi, we can then define the
posterior Qi for module i to be a Gaussian distribution centered at θαi with covariance matrix σ2

i I ,
that is, as if we have additive noise ui ∼ N (0, σiI). We use Θα to refer to the case where all the
parameters θi are replaced with θαii and matrix U includes all the noise ui. Then the following
theorem holds.
Theorem 3.2. For any data distribution D, number of samples m ∈ N , for any 0 < δ < 1, for any
0 < σi ≤ 1 and any 0 ≤ αi ≤ 1, with probability 1− δ over the choice of the training set Sm ∼ D
the following generalization bound holds:

EU [LD(fΘα+U)] ≤ EU [LS(fΘα+U)] +

√√√√√ 1
4

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2Fr

kiσ2
i

)
+ log

(
m
δ

)
+ Õ(1)

m− 1
,

where ki is the number of parameters in module i. For example, for a convolution module with
kernel size qi × qi and number of output channels ci, ki = q2

i ci−1ci.

The exact bound including the constants and the proof of the theorem above is given in Appendix A.
Theorem 3.2 already gives us some insight into generalization of the original network. However, it
is not exactly a generalization bound on the original network but rather on a perturbed network. We
conjecture that for almost any realistic distribution D, any random Θ0, any ΘF achieved by known
gradient based optimization algorithms, any 0 ≤ α ≤ 1 and any σ ≥ 0, the test error does not
improve by taking a convex combination of parameters and their initial values followed by Gaussian
perturbation. Therefore, we have that LD(fΘF) ≤ EU [LD(fΘα+U)]. The following corollary
restates Theorem 3.2 by using this assumption and optimizing over α and σ in the bound.
Corollary 3.3. For any data distribution D, number of samples m ∈ N. For any ε > 0, for any
0 < δ, if LD(fΘF) ≤ EU [LD(fΘα+U)] where ui ∼ N (0, σiI) , then with probability 1 − δ over
the choice of the training set Sm ∼ D, the following generalization bound holds

LD(fΘ) ≤ ε+

√
1
4µ
′
ε(fΘ) + log

(
m
δ

)
+ Õ(1)

m− 1
,

where µ′ε(fΘ) is calculated as follows:

µ′ε(fΘ) = min
0≤α,σ≤1

{∑
i

α2
i

∥∥θFi − θ0
i

∥∥2

Fr

σ2
i

: EU [LS(fΘα+U)] ≤ ε

}
.

6

Published as a conference paper at ICLR 2020

Note that the above bound uses a slightly different notion of network criticality compared to Def-
inition 3.1, as the bound requires finding α and σ values simultaneously for all modules, whereas,
Definition 3.1 allows us to decouple the search over α and σ.

Deterministic generalization bound for convolutional networks Although PAC-Bayesian
bounds are data-dependent and hence numerically superior, they provide less insight about the un-
derlying reason that results in generalization. For example, the flatness of the solution after adding
Gaussian perturbation can be computed numerically. But computing this value does not reveal what
properties of the network enforce the loss surface around a point to be flat. On the other hand, de-
terministic norm-based generalization bounds are numerically much looser yet they provide better
insights into the dependence of generalization on different network parameters. In Appendix B,
we build on the results of Theorem 3.2 to present a norm-based deterministic bound using module
criticality.

In this section, we intuitively justified network criticality measure and related the generalization
of a DNN to the network criticality measure in Corollary 3.3. In the next section, we empirically
show that the network criticality measure is able to correctly rank the generalization performance of
different architectures better than measures proposed earlier.

4 EXPERIMENTS

We perform several experiments to compare our network criticality measure to earlier complexity
measures in the literature. Our experiments are performed on the CIFAR10 and CIFAR100 datasets.
For all experiments, implementation and architecture details are presented in Appendix C.

Table 1 summaries the quantities that are calculated in this section. The quantity SoSP was proposed
by Long & Sedghi (2019). For the last two measures, we calculate σi and αi as per Definition 3.1.
In our experiments, each module is a single convolutional or linear layer. This represents a natural
choice where each module is a linear transformation (with respect to the parameters). This choice
also leads to the lowest number of modules such that each module is a linear transformation.

Table 1: Quantities of Interest

Generalization Error (GE) LD(fΘ)− LS(fΘ)
Product of Frobenius Norms (PFN) Πi‖θFi ‖Fr

Product of Spectral Norms (PSN) Πi‖θFi ‖2
Distance to Initialization (DtI)

∑
i‖θ0

i − θFi ‖2Fr
Number of Parameters (NoP) Total number of parameters in the network

Sum of Spectral Norms (SoSP) Total number of parameters ×(
∑
i‖θ0

i − θFi ‖2)
PAC Bayes (at error threshold 0.1)

∑
i‖θ0

i − θFi ‖2Fr/σ
2
i

Network Criticality Measure
(at error threshold 0.1)

∑
i α

2
i ‖θ0

i − θFi ‖2Fr/σ
2
i

First, as a sanity check we use our complexity measure (lower is better) to compare between a
ResNet18 trained on true labels and a ResNet18 trained on data where 20% of the labels are ran-
domly corrupted. As seen in Figure 5a, our measure is able to correctly capture that the network
trained with true label generalizes better than the one trained on corrupted labels (4.62% error vs.
35% error).

Next, in Table 2 we compare the generalization performance of several conventional DNN architec-
tures trained on the CIFAR10 dataset. There is a particular ranking of the networks based on their
generalization error and it is desirable for a complexity measure to capture this ranking. Therefore,
we compare the rankings proposed by network criticality measure and complexity measures from
the literature with the empirical rankings obtained in the experiment. To do this, we calculate the
Kendall’s τ correlation coefficient (Kendall, 1938) which is defined as follows:

Kendall’s τ =
of pairs where the rankings agree−# of pairs where the rankings disagree

pairs
.

7

Published as a conference paper at ICLR 2020

(a) Comparing ResNet18 on trained true la-
bels vs. corrupted labels

(b) Comparing ResNet18, ResNet34, VGG16
and FCN (I).

Figure 5: Network criticality as a function of error threshold for networks trained on CIFAR10.

This coefficient lies between −1 and 1, where 1 denotes a high correlation between the two set of
rankings. Table 2 shows that the Kendall’s τ coefficient between our network criticality measure
and the generalization error is higher than all other complexity measures that we compared to.

We find that our measure correctly ranks the generalization performance of the networks –
ResNet18, ResNet101, VGG16 and FCN (I). It fails to correctly identify the correct rank of
ResNet34, ResNet50, DenseNet121, VGG11 and FCN (II).

We also repeat the above experiment for the same networks trained on the CIFAR100 dataset (see
Table 3). We note that network criticality measure correctly predicts the ranking of generalization
performance for ResNet101, ResNet34, ResNet18, ResNet50, VGG16 and the 3-layer fully con-
nected networks (FCN). We find that the generalization error of ResNet101 is the lowest which
is correctly captured only by our complexity measure and not by any other measure. Further, the
Kendall’s τ correlation coefficient between the ranking based of the generalization error and our net-
work criticality measure is 0.55 which is again higher than this coefficient for any other complexity
measure. Our measure only fails to capture the ranking of VGG11 and DenseNet121 relative to the
other DNN architectures and the relative ranking between FCN (I) and FCN (II).

Table 2: Measuring complexity of different architectures trained on CIFAR10.

Network GE PFN PSN DtI NoP SoSP PAC Bayes Net. Criticality
ResNet18 4.61% 1e22 4e14 3430 1.1e7 1.3e9 6.9e5 2.2e5
ResNet34 6.3% 2e37 3e24 4768 2.1e7 3.7e9 9.1e5 1.7e5
ResNet50 6.6% 4e56 4e20 10018 2.3e7 3.3e9 1.6e6 1.8e5

ResNet101 6.4% 8e110 3e32 18730 4.2e7 9.8e9 2.8e6 6.3e5
DenseNet121 7.8% 2e129 7e42 21359 6.8e6 2.0e9 1.2e6 4.1e5

VGG11 8.51% 1e11 1e6 2106 2.8e7 1.3e9 1.0e6 2.8e5
VGG16 7.47% 5e15 2e8 2341 3.4e7 2.1e9 1.2e6 2.70e5
FCN (I) 29.83% 3e20 2e7 75221 2.0e7 4.6e8 9.0e6 5.7e6
FCN (II) 26.45% 3e21 1e7 81258 5.0e7 2.0e9 9.5e6 6.2e6

Kendall’s τ - -0.22 -0.33 0.38 0.16 -0.53 0.42 0.55

We also perform an additional set of experiments in Appendix D where we calculate these complex-
ity measures on four ResNet18 networks with changing channel widths.

5 CONCLUSION

In this paper, we studied the module criticality phenomenon and proposed a complexity measure
based on module criticality that is able to correctly predict the superior performance of some DNN

8

Published as a conference paper at ICLR 2020

Table 3: Measuring complexity of different architectures trained on CIFAR100.

Network GE PFN PSN DtI NoP SoSP PAC Bayes Net. Criticality
ResNet18 30.6% 2e22 9e14 4855 1.1e7 1.4e9 3.4e6 1.6e6
ResNet34 29.3% 1e37 1e22 6017 2.1e7 3.6e9 6.7e6 1.4e6
ResNet50 31.1% 7e57 9e23 12715 2.3e7 4.1e9 5.8e6 1.9e6

ResNet101 25.5% 2e112 5e36 21233 4.2e7 1.1e10 6.4e6 1.3e6
DenseNet121 35.3% 1e131 1e49 23702 6.9e6 2.4e9 4.5e6 2.6e6

VGG11 43.5% 6e13 1e8 5059 2.8e7 1.7e9 3.6e6 2.4e5
VGG16 32.69% 8e19 4e12 7010 3.4e7 3.6e9 8.1e6 4.6e6
FCN (I) 57.59% 8e27 1e10 246636 2.0e7 8.3e8 2.4e7 1.2e7
FCN (II) 53.17% 1e29 1e10 329296 5.0e7 3.7e9 3.3e7 2.3e7

Kendall’s τ - -0.27 -0.47 0.33 0 -0.42 0.22 0.55

architectures over others, for a specific task. We believe module criticality can be used as a road-map
for designing new task-specific architectures. Proposing new regularizers that improve generaliza-
tion performance by bounding criticality or spreading it among various modules of the network is an
exciting direction for future work. Our measure could also be potentially used in architecture search
where we could calculate this score over the training set to select architectures that generalize well
on the unseen test set.

ACKNOWLEDGEMENTS

We would like to thank Samy Bengio and Chiyuan Zhang for valuable conversations, and Yann
Dauphin for his help with the implementation of Fixup initialization. We would also like to thank
Chiyuan Zhang for sharing the code for the paper “Are all layers created equal?” Part of this work
was performed while the author NC was an intern at Google AI, Brain team.

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Proceedings of the International Conference on Ma-
chine Learning, 2018.

Peter Bartlett. The sample complexity of pattern classification with neural networks: the size of
the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44(2):525–536, 1998.

Peter Bartlett, Dylan Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, 2017.

Eric Baum and David Haussler. What size net gives valid generalization? In Proceedings of the
Advances in Neural Information Processing Systems. 1989.

Gintare Karolina Dziugaite and Daniel Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Proceedings of
Uncertainity in Artificial Intelligence, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

9

Published as a conference paper at ICLR 2020

Maurice Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Proceedings of the International Conference on Machine
Learning, 2019.

Solomon Kullback and Richard Leibler. On information and sufficiency. The Annals of Mathemati-
cal Statistics, 22(1):79–86, 1951.

John Langford and Rich Caruana. (not) bounding the true error. In Proceedings of the Advances in
Neural Information Processing Systems, 2002.

Philip Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks. arXiv
preprint arXiv:1905.12600, 2019.

David McAllester. PAC-bayesian model averaging. In Proceedings of the Conference on Computa-
tional Learning Theory, 1999.

Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-Bayesian generalization bounds for deep
networks via generalizing noise-resilience. In Proceedings of the International Conference on
Learning Representations, 2019a.

Vaishnavh Nagarajan and Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019b.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Proceedings of the Conference on Learning Theory, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring gen-
eralization in deep learning. In Proceedings of the Advances in Neural Information Processing
Systems, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach to
spectrally-normalized margin bounds for neural networks. In Proceedings of the International
Conference on Learning Representations, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. In Proceed-
ings of the International Conference on Learning Representations, 2019.

Konstantinos Pitas, Mike Davies, and Pierre Vandergheynst. PAC-Bayesian margin bounds for con-
volutional neural networks. arXiv preprint arXiv:1801.00171, 2017.

Hanie Sedghi, Vineet Gupta, and Philip Long. The singular values of convolutional layers. In
Proceedings of the International Conference on Learning Representations, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations, 2015.

Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. arXiv preprint arXiv:1905.03684, 2019.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019a.

Hongyi Zhang, Yann Dauphin, and Tengyu Ma. Residual learning without normalization via bet-
ter initialization. In Proceedings of the International Conference on Learning Representations,
2019b.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan Adams, and Peter Orbanz. Non-vacuous gen-
eralization bounds at the imagenet scale: a PAC-Bayesian compression approach. In Proceedings
of the International Conference on Learning Representations, 2019.

10

Published as a conference paper at ICLR 2020

A PROOF OF THEREORM 3.2

We start by stating the PAC-Bayes theorem which bounds the generalization error of any posterior
distribution Q on parameters Θ that can be reached using the training set given a prior distribution
P on parameters that should be chosen in advance and before observing the training set. Through-
out this section given two scalar p, q ∈ [0, 1] let KL(p||q) denote the KL divergence between two
Bernoulli distributions with success probabilities p and q respectively.
Theorem A.1 (McAllester (1999)). For any data distribution D, number of samples m ∈ N, train-
ing set Sm ∼ D, and prior distribution P on parameters Θ, posterior distribution Q, for any 0 < δ,
with probability 1− δ over the draw of training data we have that

KL
(
EΘ∼Q[LS(fΘ)]

∣∣∣∣∣∣∣∣EΘ∼Q[LD(fΘ)]

)
≤

KL(Q||P) + log m
δ

m− 1

where KL is the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951).

Following Dziugaite & Roy (2017), we use the inequality KL−1(q|c) =

sup {p ∈ [0, 1] : KL(q||p) ≤ c} ≤ q +
√
c/2 to achieve a simple bound on the test error:

EΘ∼Q[LD(fΘ)] ≤ KL−1

(
EΘ∼Q[LS(fΘ)]

∣∣∣∣KL(Q||P) + log m
δ

m− 1

)

≤ EΘ∼Q[LS(fΘ)] +

√
KL(Q||P) + log m

δ

2(m− 1)
.

The intuition from Figure 4 suggests that moving the parameters of each module as close as possible
to the initialization value before harming performance. For such αi, we can then define the posterior
Qi for module i to be a Gaussian distribution centered at θαi with covariance matrix σ2

i I , that is, as
if we have additive noise ui ∼ N (0, σiI). We use Θα to refer to the case where all θi are replaced
with θαii and matrix U includes all ui. Then the training loss term can be decomposed as

EΘ∼Q[LS(fΘ)] = Eui∼N (0,σiI)[LS(fΘα+U)]

≤ LS(fΘF) +

∣∣∣∣Eui∼N (0,σiI)[LS(fΘα+U)]− LS(fΘF)

∣∣∣∣,
where the second term on the right hand side of the inequality captures the flatness of the point
Θα by adding Gaussian noise and measuring the change in the loss. Therefore, searching over the
posterior corresponds to finding a flat solution in the valley that connects the initial and final points.
Next, we use this intuition to prove a generalization bound based on module criticality.

First, we express the value of the Õ(1) term in Theorem 3.2 , which is equal to ε as follows:

ε =
∑
i

log

(
7m+ 2 log

(
ki

kiσ2
i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

))
. (3)

Now we proceed with the proof.

The KL-divergence between two k-dimensional Gaussian distributions is given by the formula:

KL(N (µ1,Σ1)||N (µP ,ΣP)) =
1

2

[
tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

>
Σ−1

2 (µ2 − µ1)− k + ln(
det Σ2

det Σ1
)

]
.

The above equation can be further simplified for Gaussian distributions with diagonal covariance
matrices. Let the prior P be a Gaussian distribution such that for each module i, the distribution
is N (θ0

i , σ
2
P,iI) and let the posterior Q be a Gaussian distribution such that for each module i, the

distribution is N ((1− α)θ0
i + αθFi), σ2

Q,iI). We can then write the KL-divergence KL(Q||P) as

KL(Q||P) =
1

2

∑
i

[
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

σ2
P,i

− ki + ki log

(
σ2
P,i

σ2
Q,i

)]
. (4)

11

Published as a conference paper at ICLR 2020

Since prior should be decided before observing the training set, we are not allowed to optimize for
σP,i directly. However, one can optimize for σP,i over a pre-defined set of values and use a union
bound argument to get the generalization bound for the best σP,i in that set. We use a covering
approach suggested by Langford & Caruana (2002). For b, ε > 0, if one chooses the variance of
prior to be exp(−εj + b) for j ∈ N such that for each j the bound holds with probability1 − 6

π2j2 ,
then all bounds hold with probability 1−

∑
j∈N

6
π2j2 = 1− δ. We can apply the same idea to every

module such that the bound holds with probability 1− δ
∏d
i=1

6
π2j2i

.

If we choose σ2
Q,i ≤ 1 then we have σP,i ≤ exp

(
4m
ki

+ 1
)

. Otherwise, the bound holds since the

right hand side is greater than one. Given (from Equation 3) ε ≥ 0, if we choose σ2
P,i to have the

form exp
(

4m−ji
ki

+ 1
)

, for some integer ji, we can always find choose ji such that

kiσ
2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr ≤ kiσ
2
P,i ≤ exp(1/ki)

(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

)
. (5)

Therefore, the KL-divergence can be bounded as

KL(Q||P) ≤ 1

2

∑
i

[
ki
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

− ki + ki log

(
σ2
P,i

σ2
Q,i

)]

=
1

2

∑
i

[
ki log

(
σ2
P,i

σ2
Q,i

)]

≤ 1

2

∑
i

ki log

exp(1/ki)
(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

)
kiσ2

Q,i


≤ 1

2

∑
i

ki log

exp(1/ki)
(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

)
kiσ2

Q,i


≤ 1

2

∑
i

1 + ki log

(
1 +

α2
i

∥∥θFi − θ0
i

∥∥2

Fr

kiσ2
Q,i

)
.

Note that in order to achieve the inequality in Equation 5, ji should be chosen as

ji =

⌊
4m

ki
+ 1 + log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

)⌋
≤ 5m+ log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

)
.

Given that each such bound should hold with probability 1− δ
∏d
i=1

6
π2j2i

, the log term in the bound
can be written as

log
m

δ
+
∑
i

log(π2j2
i /6) ≤ log

m

δ
+ 2

∑
i

log

(
7m+ 2 log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

))
.

Putting everything together proves the theorem statement.

B A DETERMINISTIC GENERALIZATION BOUND FOR CONVOLUTIONAL
NETWORKS

We start by stating a generalization bound given by Neyshabur et al. (2018) with a slight improve-
ment in the constants.

Lemma B.1 (Neyshabur et al. (2018)). Let fΘ : X → RC be any predictor function with parameters
Θ and P be a prior distribution on parameters Θ. Then for any γ,m, δ > 0, with probability 1− δ

12

Published as a conference paper at ICLR 2020

over the training set S of size m, for any parameter Θ and any perturbation distribution Q over
parameters such that PU∼Q

[
maxx∈X |fΘ+U (x)− fΘ(x)| ≤ γ

4

]
≥ 1

2 , we have

LD(fΘ) ≤ LS,γ(fΘ) +

√
2KL(Θ + U ||P) + 1 + log m

δ

2(m− 1)
.

The lemma above gives a data-independent deterministic bound which depends on the maximum
change of the output function over the domain after a perturbation. We combine Lemma B.1 with
Theorem 3.2 and prove a bound on the perturbation which leads to the following theorem.
Theorem B.2. Let input x be an N × N image whose norm is bounded by B, fΘ : X → RC be
the predictor function with parameters Θ which is a DNN of depth d made of convolutional blocks.
Then for any margin γ, sample size m, δ > 0, with probability 1 − δ over the training set S, any
parameter Θ and any αi > 0 such that maxx∈X |fΘ(x)− fΘα(x)| ≤ γ

8 , we have

LD(fΘ) ≤ LS,γ(fΘ)+

√√√√√∑d
i=1 ki log

(
1 +

[32edBαi‖θFi −θ0i‖Fr

∏
i6=j‖θαi ‖2

√
log(4dN2)]2

ciγ2

)
+ log

(
m
δ

)
+ Õ(1)

m− 1
,

(6)
where ki is the number of parameters in module i. For example, for a convolution module with
kernel size qi × qi and number of output channels ci, ki = q2

i ci−1ci.

Proof. First, we express the value of the Õ(1) term in Theorem B.2 , which is equal to ε2 as follows:

ε2 = 1 +
∑
i

log

7m+ 2 log

 ki

kiγ2/
(

16e
∏
j 6=i ‖θαi ‖2 log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

Fr


 .

(7)

We note that for any Θ,Θ′, if maxx∈X ‖fΘ(X)− fΘ‖∞ ≤ γ/2 then L(fΘ) ≤ Lγ(f ′Θ). The reason
is that the output for each class can change by at most γ/2 and therefore the label can only change
for the data points that are within γ of the margin.

We start using the assumptions on the perturbation bound. Combining the results from Theorem B.1
and Theorem 3.2, we can get the following bound.

LD(fΘF) ≤ LD, γ4 (fΘα) (8)

≤ LS, 3γ4 (fΘα) +

√√√√√ 1
2

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2Fr

kiσ2
i

)
+ log m

δ + ε2

m− 1

≤ LS,γ(fΘα) +

√√√√√ 1
2

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2Fr

kiσ2
i

)
+ log m

δ + ε2

m− 1

where ε2 is given above in Equation 7.

Therefore, it suffices to find the value of σi under which the assumption on norm of perturbation in
function space holds and then simplify the following upper bound given the desired value of σi.

In order to find the desired value of σi we use the following two lemmas. First we adopt the pertur-
bation lemma by Neyshabur et al. (2018) to bound the change in the output a network based on the
magnitude of the perturbation:

Lemma B.3 (Neyshabur et al. (2018)). Let norm of input x be bounded by B. For any B > 0, let
fΘ : X → RC be a neural network with ReLU activations and depth d. Then for any Θ, x ∈ X ,
and any perturbation U s.t. ‖ui‖2 ≤ ‖θi‖2, the change in the output of the network can be bounded
as follows

‖fΘ+U − fΘ‖2 ≤ eB
d∏
i=1

‖θi‖2
d∑
j=1

‖ui‖2
‖θi‖2

. (9)

13

Published as a conference paper at ICLR 2020

We next use the following lemma by Pitas et al. (2017) that bounds the magnitude of the Gaussian
perturbation ui for each convolutional module based on the standard deviation of the perturbation.

Lemma B.4 (Pitas et al. (2017)). Let ui be a Gaussian perturbation for each module i of a convo-
lutional model. Let N be the image size, qi , ci be the kernel size and the number of output channels
at module i respectively. We have that

P
[
‖ui‖2 ≥ σi

(
qi(2
√
ci) + t

)]
≤ 2N2e

− t2

2q2
i .

The lemma above suggests that by taking union bounds over all modules, we can ensure that with
probability 1/2 we have that for any module i, the following upper bound on the spectral norm of
the perturbation holds.

‖ui‖2 ≤ σiqi(2
√
ci +

√
2 log(4dN2)) ≤ 2σiqi(

√
ci +

√
log(4dN2)) ≤ 4σiqi

√
ci log(4dN2).

Combining this with perturbation bound in Equation 9, we have that

‖fΘα+U − fΘα‖2 ≤ eB
d∑
i=1

‖ui‖2
d∏
j 6=i

∥∥θαj ∥∥2
≤ 4eB

d∑
i=1

σiqi
√
ci log(4dN2)

d∏
j 6=i

‖θαi ‖2 ≤
γ

8
,

where the last inequality can be achieved with

σi =
γ

32edB
∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)

. (10)

Therefore, this value for σi ensures the assumption on norm of perturbation in function space in
Theorem B.2 holds and hence completes the proof.

Moreover, we show how we get the value of ε2, by showing the simplification from inserting the
value for σi from Equation 10 as follows.

log

(
1 +

α2
i

∥∥θFi − θ0
i

∥∥2

Fr

kiσ2
i

)
≤ log

(
1 +

[
αi
∥∥θFi − θ0

i

∥∥
Fr

]2
q2
i c

2
iσ

2
i

)

≤ log

(
1 +

[32edBαi
∥∥θFi − θ0

i

∥∥
Fr

∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)]2

q2
i c

2
i γ

2

)

= log

(
1 +

[32edBαi
∥∥θFi − θ0

i

∥∥
Fr

∏d
i=1 ‖θαi ‖2

√
log(4dN2)]2

ciγ2

)
.

Then, ε2 can also be simplified as follows.

ε2 = 1 +
∑
i

log

(
7m+ 2 log

(
ki

kiσ2
i + α2

i

∥∥θFi − θ0
i

∥∥2

Fr

))

≤ 1 +
∑
i

log

7m+ 2 log

 ki

kiγ2/
(

32edB
∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

Fr




≤ 1 +
∑
i

log

7m+ 2 log

 ki

γ2/
(

32edB
∏d
i=1 ‖θαi ‖2

√
log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

Fr




≤ 1 +
∑
i

log

(
7m+ 2 log(ki)− 4 log

(
αi
∥∥θFi − θ0

i

∥∥
Fr + γ/32edB

d∏
i=1

‖θαi ‖2
√

log(4dN2)

))
.

14

Published as a conference paper at ICLR 2020

C DETAILS ON EXPERIMENTAL SET-UP

For all our experiments, we use the CIFAR10 and CIFAR100 datasets. To train our networks we used
Stochastic Gradient Descent (SGD) with momentum 0.9 to minimize multi-class cross-entropy loss.
On CIFAR10 each model is trained until the cross-entropy loss on the training dataset falls below
0.19. While on CIFAR100 each model is trained until the cross-entropy loss on the training dataset
falls below 0.25. The ResNets, DenseNets and VGGs were trained using a stage-wise constant
learning rate scheduling with a starting learning rate of 0.1 and with a decrease by a multiplicative
factor of 0.2 every 60 epochs. FCN was trained with an initial learning rate of 0.1 with a decrease
by a multiplicative factor of 0.2 every 200 epochs. Batch size of 128 was used for all models and
weight decay with factor 5e-4 was used to train all networks.

We mainly study three types of neural network architectures:

• Fully Connected Networks (FCNs): The FCNs consist of 2 fully connected layers. FCN (I)
contains 5000 and 1000 hidden units respectively while FCN (II) contains 10000 and 2000
hidden units respectively. Each of these hidden layers is followed by a batch normalization
layer and a ReLU activation. The final output layer (that follows the ReLU activation in the
second layer) has an output dimension of 10 or 100 (number of classes).

• VGGs: Architectures by Simonyan & Zisserman (2015) that consists of multiple convolu-
tional layers, followed by multiple fully connected layers and a final classifier layer (with
output dimension 10 or 100). We study the VGG with 11 and 16 layers.

• DenseNets: Architectures by Huang et al. (2017) that consists of multiple convolutional
layers, followed by a final classifier layer (with output dimension 10 or 100). We study the
DenseNet with 121 layers.

• ResNets: Architectures used are ResNets V1 (He et al., 2016). All convolutional layers
(except downsample convolutional layers) have kernel size 3×3 with stride 1. Downsample
convolutions have stride 2. All the ResNets have five stages (0-4) where each stage has
multiple residual/downsample blocks. These stages are followed by a maxpool layer and a
final linear layer. Here are further details about the ResNets used in the paper:

– ResNet18: ResNet18 architechtures studied in the paper have 1 convolutional layer in
Stage 0 (64 ouput channels), Stage 1 has 2 residual blocks (64 output channels), Stage
2 has one downsample block and one residual block (128 output channels), Stage 3
has one downsample block and one residual block (256 output channels) and Stage 4
again has one downsample block and a residual block (512 output channels).

– ResNet34: ResNet34 architectures in this paper have 5 stages. Stage 0 has 1 convo-
lutional layer with 64 output channels followed by a ReLU activation. Stage 1 has 3
residual blocks (64 output channels), Stage 2 has 1 downsample block and 3 residual
blocks (128 output channels), Stage 3 has 1 downsample block and 5 residual blocks
(256 output channels) and, Stage 4 has 1 downsample block and 2 residual blocks
(512 output channels).

– ResNet50: ResNet50 architectures in this paper again have 5 stages. Stage 0 has 1 con-
volutional layer with 64 output channels followed by a ReLU activation. Stage 1 has
1 downsample block and 2 residual blocks (256 output channels), Stage 2 has 1 down-
sample block and 3 residual blocks (512 output channels), Stage 3 has 1 downsample
block and 5 residual blocks (1024 output channels) and, Stage 4 has 1 downsample
block and 2 residual blocks (2048 output channels).

– ResNet101: ResNet101 architectures in this paper again have 5 stages. Stage 0 has 1
convolutional layer with 64 output channels followed by a ReLU activation. Stage 1
has 1 downsample block and 2 residual blocks (256 output channels), Stage 2 has 1
downsample block and 3 residual blocks (512 output channels), Stage 3 has 1 down-
sample block and 22 residual blocks (1024 output channels) and, Stage 4 has 1 down-
sample block and 2 residual blocks (2048 output channels).

The ResNets, DenseNets and VGGs in the paper are trained without batch normalization.

During training, images are padded with 4 pixels of zeros on all sides, then randomly flipped (hor-
izontally) and cropped. Global mean and standard deviation are computed on all training images

15

Published as a conference paper at ICLR 2020

and applied to normalize the inputs. While training a ResNet18 on the CIFAR10 dataset with 20%
of the labels randomly corrupted, we do not augment the training set with images that are randomly
flipped and cropped. We also do not use weight decay during training these networks.

D ADDITIONAL EXPERIMENTS

In these set of experiments we compare the generalization performance of four ResNet18 archi-
tectures where we vary the number of output channels in each stage. In the ResNet18 (1x width)
network the number of output channels are 16, 16, 32, 64, 128 in the five stages respectively. The
other ResNet18s have their output channels scaled by factors of 2,4 and 8 in each stage. Table 4
summarizes our results for networks trained on the CIFAR10 dataset and Table 5 summarizes are
results for networks trained on the CIFAR100 dataset.

We find that separating these networks based on a complexity measure is a much more challenging as
these four networks differ by just the channel widths at the different stages. We find that on this task
all complexity measures that we studied (including ours) does poorly. It is an interesting question
for future research to see if our complexity measure can be refined to separate these networks as
well.

Table 4: Measuring complexity of different architectures trained on CIFAR10. The ResNet18 ar-
chitectures have different channel widths. The network ResNet18 (1x width) has 16,16,32,64,128
channels in the five stages.

ResNet18 (x) GE PFN PSN DtI NoP SoSP PAC Bayes Net. Criticality
1x width 6.27% 4e17 1e12 1409 6.9e5 6.0e7 3.0e5 1.0e5
2x width 5.13% 8e19 4e13 2253 2.7e6 2.9e8 4.2e5 1.3e5
4x width 4.61% 1e22 4e14 3430 1.1e7 1.3e9 6.9e5 2.2e5
8x width 2.88% 1e24 2e15 5365 4.4e7 5.6e9 2.7e6 6.7e5

Kendall’s τ - -1 -1 -1 -1 -1 -1 -1

Table 5: Measuring complexity of different architectures trained on CIFAR100. The ResNet18
architectures have different channel widths. The network ResNet18 (1x width) has 16,16,32,64,128
channels in the five stages.

ResNet18 (x) GE PFN PSN DtI NoP SoSP PAC Bayes Net. Criticality
1x width 30.4% 6e18 3e12 2650 7.1e5 7.3e7 3.2e6 1.5e6
2x width 31.8% 1e21 4e13 4248 2.8e6 3.4e8 2.7e6 1.3e6
4x width 30.6% 2e22 9e14 4855 1.1e7 1.4e9 3.4e6 1.6e6
8x width 28.4% 3e25 1e18 9269 4.4e7 8.0e9 6.9e6 2.8e6

Kendall’s τ - -0.33 -0.33 -0.33 -0.33 -0.33 -0.66 -0.66

16

Published as a conference paper at ICLR 2020

E FIGURES

(a) Rewind analysis of Zhang et al. (2019a)

(b) We rewind each module, whereas, Zhang et al. (2019a) rewind
each block

(c) The effect of rewinding on train loss (d) The effect of rewinding on test error

Figure 6: Analysis of rewinding modules to initialization for the ResNet-18 architecture. Each row
represents a layer in ResNet18-v1 and each column represents a particular training epoch that the
module is rewound to.

17

Published as a conference paper at ICLR 2020

(a) Fixup initialization

(b) Adam optimizer

Figure 7: Criticality pattern of Resnet18 when trained with Fixup initialization and with the Adam
optimizer

Figure 8: Operator norm of difference from initialization

18

Published as a conference paper at ICLR 2020

(a) Rewind an ambient module (b) Rewind a critical module

Figure 9: Similarity in activation patterns when an ambient or critical module is rewound. Darker
green denotes higher similarity

Figure 10: 0/1 loss and cross-entropy loss for critical and non-critical modules, for given different
values of σ and α in Definition 3.1.

19

	Introduction
	Towards understanding module criticality
	Setting
	Robustness to rewinding
	What measures fail to distinguish critical layers

	Generalization bounds based on module criticality
	A PAC-Bayesian generalization bound

	Experiments
	Conclusion
	Proof of Thereorm 3.2
	A deterministic generalization bound for convolutional networks
	Details on experimental set-up
	Additional experiments
	Figures

