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ABSTRACT

In this paper, we propose an end-to-end deep learning model, called E2Efold, for
RNA secondary structure prediction which can effectively take into account the
inherent constraints in the problem. The key idea of E2Efold is to directly pre-
dict the RNA base-pairing matrix, and use an unrolled algorithm for constrained
programming as the template for deep architectures to enforce constraints. With
comprehensive experiments on benchmark datasets, we demonstrate the superior
performance of E2Efold: it predicts significantly better structures compared to
previous SOTA (especially for pseudoknotted structures), while being as efficient
as the fastest algorithms in terms of inference time.

1 INTRODUCTION
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Figure 1: Graph and matrix represen-
tations of RNA secondary structure.

Ribonucleic acid (RNA) is a molecule playing essential roles
in numerous cellular processes and regulating expression of
genes (Crick, 1970). It consists of an ordered sequence of nu-
cleotides, with each nucleotide containing one of four bases:
Adenine (A), Guanine (G), Cytosine (C) and Uracile (U). This
sequence of bases can be represented as

x := (x1, . . . , xL) where xi ∈ {A,G,C,U},
which is known as the primary structure of RNA. The bases
can bond with one another to form a set of base-pairs, which
defines the secondary structure. A secondary structure can be
represented by a binary matrix A∗ where A∗ij = 1 if the i, j-th
bases are paired (Fig 1). Discovering the secondary structure of RNA is important for understanding
functions of RNA since the structure essentially affects the interaction and reaction between RNA
and other cellular components. Although secondary structure can be determined by experimental
assays (e.g. X-ray diffraction), it is slow, expensive and technically challenging. Therefore, compu-
tational prediction of RNA secondary structure becomes an important task in RNA research and is
useful in many applications such as drug design (Iorns et al., 2007).

(ii) Pseudo-knot(i) Nested Structure

Figure 2: Nested and non-nested structures.

Research on computational prediction of RNA secondary
structure from knowledge of primary structure has been
carried out for decades. Most existing methods assume
the secondary structure is a result of energy minimiza-
tion, i.e., A∗ = argminAEx(A). The energy function
is either estimated by physics-based thermodynamic ex-
periments (Lorenz et al., 2011; Bellaousov et al., 2013;
Markham & Zuker, 2008) or learned from data (Do et al.,
2006). These approaches are faced with a common problem that the search space of all valid sec-
ondary structures is exponentially-large with respect to the length L of the sequence. To make the
minimization tractable, it is often assumed the base-pairing has a nested structure (Fig 2 left), and
∗Equal contribution. †Co-corresponding.
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the energy function factorizes pairwisely. With this assumption, dynamic programming (DP) based
algorithms can iteratively find the optimal structure for subsequences and thus consider an enormous
number of structures in time O(L3).

Although DP-based algorithms have dominated RNA structure prediction, it is notable that they
restrict the search space to nested structures, which excludes some valid yet biologically important
RNA secondary structures that contain ‘pseudoknots’, i.e., elements with at least two non-nested
base-pairs (Fig 2 right). Pseudoknots make up roughly 1.4% of base-pairs (Mathews & Turner,
2006), and are overrepresented in functionally important regions (Hajdin et al., 2013; Staple &
Butcher, 2005). Furthermore, pseudoknots are present in around 40% of the RNAs. They also assist
folding into 3D structures (Fechter et al., 2001) and thus should not be ignored. To predict RNA
structures with pseudoknots, energy-based methods need to run more computationally intensive
algorithms to decode the structures.

In summary, in the presence of more complex structured output (i.e., pseudoknots), it is challenging
for energy-based approaches to simultaneously take into account the complex constraints while be-
ing efficient. In this paper, we adopt a different viewpoint by assuming that the secondary structure
is the output of a feed-forward function, i.e., A∗ = Fθ(x), and propose to learn θ from data in
an end-to-end fashion. It avoids the second minimization step needed in energy function based ap-
proach, and does not require the output structure to be nested. Furthermore, the feed-forward model
can be fitted by directly optimizing the loss that one is interested in.

Despite the above advantages of using a feed-forward model, the architecture design is challenging.
To be more concrete, in the RNA case, Fθ is difficult to design for the following reasons:

(i) RNA secondary structure needs to obey certain hard constraints (see details in Section 3),
which means certain kinds of pairings cannot occur at all (Steeg, 1993). Ideally, the output of
Fθ needs to satisfy these constraints.

(ii) The number of RNA data points is limited, so we cannot expect that a naive fully connected
network can learn the predictive information and constraints directly from data. Thus, inductive
biases need to be encoded into the network architecture.

(iii) One may take a two-step approach, where a post-processing step can be carried out to enforce
the constraints whenFθ predicts an invalid structure. However, in this design, the deep network
trained in the first stage is unaware of the post-processing stage, making less effective use of
the potential prior knowledge encoded in the constraints.

All Binary Structures

Output Space of E2Efold

*All Valid Structures*

Nested Structures

with constraints

(DP applicable)

Figure 3: Output space of E2Efold.

In this paper, we present an end-to-end deep learning solution
which integrates the two stages. The first part of the archi-
tecture is a transformer-based deep model called Deep Score
Network which represents sequence information useful for
structure prediction. The second part is a multilayer network
called Post-Processing Network which gradually enforces the
constraints and restrict the output space. It is designed based
on an unrolled algorithm for solving a constrained optimiza-
tion. These two networks are coupled together and learned
jointly in an end-to-end fashion. Therefore, we call our model E2Efold.

By using an unrolled algorithm as the inductive bias to design Post-Processing Network, the output
space of E2Efold is constrained (illustrated in Fig 3), which makes it easier to learn a good model
in the case of limited data and also reduces the overfitting issue. Yet, the constraints encoded in
E2Efold are flexible enough such that pseudoknots are not excluded. In summary, E2Efold strikes a
nice balance between model biases for learning and expressiveness for valid RNA structures.

We conduct extensive experiments to compare E2Efold with state-of-the-art (SOTA) methods on
several RNA benchmark datasets, showing superior performance of E2Efold including:

• being able to predict valid RNA secondary structures including pseudoknots;
• running as efficient as the fastest algorithm in terms of inference time;
• producing structures that are visually close to the true structure;
• better than previous SOTA in terms of F1 score, precision and recall.

Although in this paper we focus on RNA secondary structure prediction, which presents an impor-
tant and concrete problem where E2Efold leads to significant improvements, our method is generic
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and can be applied to other problems where constraints need to be enforced or prior knowledge is
provided. We imagine that our design idea of learning unrolled algorithm to enforce constraints can
also be transferred to problems such as protein folding and natural language understanding problems
(e.g., building correspondence structure between different parts in a document).

2 RELATED WORK

Classical RNA folding methods identify candidate structures for an RNA sequence energy min-
imization through DP and rely on thousands of experimentally-measured thermodynamic parame-
ters. A few widely used methods such as RNAstructure (Bellaousov et al., 2013), Vienna RNAfold
(Lorenz et al., 2011) and UNAFold (Markham & Zuker, 2008) adpoted this approach. These meth-
ods typically scale as O(L3) in time and O(L2) in storage (Mathews, 2006), making them slow for
long sequences. A recent advance called LinearFold (Huang et al., 2019) achieved linear run time
O(L) by applying beam search, but it can not handle pseudoknots in RNA structures. The prediction
of lowest free energy structures with pseudoknots is NP-complete (Lyngsø & Pedersen, 2000), so
pseudoknots are not considered in most algorithms. Heuristic algorithms such as HotKnots (An-
dronescu et al., 2010) and Probknots (Bellaousov & Mathews, 2010) have been made to predict
structures with pseudoknots, but the predictive accuracy and efficiency still need to be improved.

Learning-based RNA folding methods such as ContraFold (Do et al., 2006) and ContextFold (Za-
kov et al., 2011) have been proposed for energy parameters estimation due to the increasing avail-
ability of known RNA structures, resulting in higher prediction accuracies, but these methods still
rely on the above DP-based algorithms for energy minimization. A recent deep learning model,
CDPfold (Zhang et al., 2019), applied convolutional neural networks to predict base-pairings, but it
adopts the dot-bracket representation for RNA secondary structure, which can not represent pseu-
doknotted structures. Moreover, it requires a DP-based post-processing step whose computational
complexity is prohibitive for sequences longer than a few hundreds.

Learning with differentiable algorithms is a useful idea that inspires a series of works (Hershey
et al., 2014; Belanger et al., 2017; Ingraham et al., 2018; Chen et al., 2018; Shrivastava et al., 2019),
which shared similar idea of using differentiable unrolled algorithms as a building block in neural
architectures. Some models are also applied to structured prediction problems (Hershey et al., 2014;
Pillutla et al., 2018; Ingraham et al., 2018), but they did not consider the challenging RNA sec-
ondary structure problem or discuss how to properly incorporating constraints into the architecture.
OptNet (Amos & Kolter, 2017) integrates constraints by differentiating KKT conditions, but it has
cubic complexity in the number of variables and constraints, which is prohibitive for the RNA case.

Dependency parsing in NLP is a different but related problem to RNA folding. It predicts the de-
pendency between the words in a sentence. Similar to nested/non-nested structures, the correspond-
ing terms in NLP are projective/non-projective parsing, where most works focus on the former and
DP-based inference algorithms are commonly used (McDonald et al., 2005). Deep learning mod-
els (Dozat & Manning, 2016; Kiperwasser & Goldberg, 2016) are proposed to proposed to score the
dependency between words, which has a similar flavor to the Deep Score Network in our work.

3 RNA SECONDARY STRUCTURE PREDICTION PROBLEM

In the RNA secondary structure prediction problem, the input is the ordered sequence of bases
x = (x1, . . . , xL) and the output is the RNA secondary structure represented by a matrix A∗ ∈
{0, 1}L×L. Hard constraints on the forming of an RNA secondary structure dictate that certain
kinds of pairings cannot occur at all (Steeg, 1993). Formally, these constraints are:

(i) Only three types of nucleotides combinations, B := {AU,UA}∪
{GC,CG} ∪ {GU,UG}, can form base-pairs.

∀i, j, if xixj /∈ B,
then Aij = 0.

(ii) No sharp loops are allowed. ∀|i− j| < 4, Aij = 0.

(iii) There is no overlap of pairs, i.e., it is a matching. ∀i,
∑L
j=1Aij ≤ 1.

(i) and (ii) prevent pairing of certain base-pairs based on their types and relative locations. Incorpo-
rating these two constraints can help the model exclude lots of illegal pairs. (iii) is a global constraint
among the entries of A∗.
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The space of all valid secondary structures contains all symmetric matrices A ∈ {0, 1}L×L that
satisfy the above three constraints. This space is much smaller than the space of all binary matrices
{0, 1}L×L. Therefore, if we could incorporate these constraints in our deep model, the reduced
output space could help us train a better predictive model with less training data. We do this by
using an unrolled algorithm as the inductive bias to design deep architecture.

4 E2EFOLD: DEEP LEARNING MODEL BASED ON UNROLLED ALGORITHM

In the literature on feed-forward networks for structured prediction, most models are designed using
traditional deep learning architectures. However, for RNA secondary structure prediction, directly
using these architectures does not work well due to the limited amount of RNA data points and the
hard constraints on forming an RNA secondary structure. These challenges motivate the design of
our E2Efold deep model, which combines a Deep Score Network with a Post-Processing Network
based on an unrolled algorithm for solving a constrained optimization problem.

4.1 DEEP SCORE NETWORK

The first part of E2Efold is a Deep Score Network Uθ(x) whose output is an L × L symmetric
matrix. Each entry of this matrix, i.e., Uθ(x)ij , indicates the score of nucleotides xi and xj being
paired. The x input to the network here is the L × 4 dimensional one-hot embedding. The specific
architecture of Uθ is shown in Fig 4. It mainly consists of

• a position embedding matrix P which distinguishes {xi}Li=1 by their exact and relative positions:
Pi = MLP

(
ψ1(i), . . . , ψ`(i), ψ`+1(i/L), . . . , ψn(i/L)

)
, where {ψj} is a set of n feature maps

such as sin(·), poly(·), sigmoid(·), etc, and MLP(·) denotes multi-layer perceptions. Such posi-
tion embedding idea has been used in natural language modeling such as BERT (Devlin et al.,
2018), but we adapted for RNA sequence representation;

• a stack of Transformer Encoders (Vaswani et al., 2017) which encode the sequence information
and the global dependency between nucleotides;

• a 2D Convolution layers (Wang et al., 2017) for outputting the pairwise scores.
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Figure 4: Architecture of Deep Score Network.

With the representation power of neural networks, the
hope is that we can learn an informative Uθ such that
higher scoring entries inUθ(x) correspond well to ac-
tual paired bases in RNA structure. Once the score
matrix Uθ(x) is computed, a naive approach to use
it is to choose an offset term s ∈ R (e.g., s = 0)
and let Aij = 1 if Uθ(x)ij > s. However, such
entry-wise independent predictions of Aij may re-
sult in a matrix A that violates the constraints for a
valid RNA secondary structure. Therefore, a post-
processing step is needed to make sure the predicted
A is valid. This step could be carried out separately
after Uθ is learned. But such decoupling of base-pair
scoring and post-processing for constraints may lead
to sub-optimal results, where the errors in these two
stages can not be considered together and tuned to-
gether. Instead, we will introduce a Post-Processing
Network which can be trained end-to-end together
with Uθ to enforce the constraints.

4.2 POST-PROCESSING NETWORK

The second part of E2Efold is a Post-Processing Net-
work PPφ which is an unrolled and parameterized al-
gorithm for solving a constrained optimization prob-
lem. We first present how we formulate the post-processing step as a constrained optimization prob-
lem and the algorithm for solving it. After that, we show how we use the algorithm as a template to
design deep architecture PPφ.
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4.2.1 POST-PROCESSING WITH CONSTRAINED OPTIMIZATION

Formulation of constrained optimization. Given the scores predicted by Uθ(x), we define the
total score 1

2

∑
i,j(Uθ(x)ij − s)Aij as the objective to maximize, where s is an offset term. Clearly,

without structure constraints, the optimal solution is to take Aij = 1 when Uθ(x)ij > s. Intu-
itively, the objective measures the covariation between the entries in the scoring matrix and the
A matrix. With constraints, the exact maximization becomes intractable. To make it tractable,
we consider a convex relaxation of this discrete optimization to a continuous one by allowing
Aij ∈ [0, 1]. Consequently, the solution space that we consider to optimize over is A(x) :={
A ∈ [0, 1]L×L | A is symmetric and satisfies constraints (i)-(iii) in Section 3

}
.

To further simplify the search space, we define a nonlinear transformation T on RL×L as T (Â) :=
1
2

(
Â◦ Â+(Â◦ Â)>

)
◦M(x), where ◦ denotes element-wise multiplication. MatrixM is defined as

M(x)ij := 1 if xixj ∈ B and also |i− j| ≥ 4, and M(x)ij := 0 otherwise. From this definition we
can see that M(x) encodes both constraint (i) and (ii). With transformation T , the resulting matrix
is non-negative, symmetric, and satisfies constraint (i) and (ii). Hence, by defining A := T (Â), the
solution space is simplified as A(x) = {A = T (Â) | Â ∈ RL×L, A1 ≤ 1}.

Finally, we introduce a `1 penalty term ‖Â‖1 :=
∑
i,j |Âij | to make A sparse and formulate the

post-processing step as: (〈·, ·〉 denotes matrix inner product, i.e., sum of entry-wise multiplication)

maxÂ∈RL×L
1
2

〈
Uθ(x)− s,A := T (Â)

〉
− ρ‖Â‖1 s.t. A1 ≤ 1 (1)

The advantages of this formulation are that the variables Âij are free variables in R and there are
only L inequality constraints A1 ≤ 1. This system of linear inequalities can be replaced by a set
of nonlinear equalities relu(A1− 1) = 0 so that the constrained problem can be easily transformed
into an unconstrained problem by introducing a Lagrange multiplier λ ∈ RL+:

min
λ≥0

max
Â∈RL×L

1
2 〈Uθ(x)− s,A〉 − 〈λ, relu(A1− 1)〉︸ ︷︷ ︸

f

−ρ‖Â‖1. (2)

Algorithm for solving it. We use a primal-dual method for solving Eq. 2 (derived in Appendix B).
In each iteration, Â and λ are updated alternatively by:

(primal) gradient step: Ȧt+1 ← Ât + α · γtα · Ât ◦M(x) ◦
(
∂f/∂At + (∂f/∂At)

>
)
, (3)

where
{
∂f/∂At =

1
2 (Uθ(x)− s)− (λ ◦ sign(At1− 1))1>,

sign(c) := 1 when c > 0 and 0 otherwise,
(4)

(primal) soft threshold: Ât+1 ← relu(|Ȧt+1| − ρ · α · γtα), At+1 ← T (Ât+1), (5)

(dual) gradient step: λt+1 ← λt+1 + β · γtβ · relu(At+11− 1), (6)

where α, β are step sizes and γα, γβ are decaying coefficients. When it converges at T , an approx-
imate solution Round

(
AT = T (ÂT )

)
is obtained. With this algorithm operated on the learned

Uθ(x), even if this step is disconnected to the training phase of Uθ(x), the final prediction works
much better than many other existing methods (as reported in Section 6). Next, we introduce how
to couple this post-processing step with the training of Uθ(x) to further improve the performance.

4.2.2 POST-PROCESSING NETWORK VIA AN UNROLLED ALGORITHM

We design a Post-Processing Network, denoted by PPφ, based on the above algorithm. After it is
defined, we can connect it with the deep score network Uθ and train them jointly in an end-to-end
fashion, so that the training phase of Uθ(x) is aware of the post-processing step.
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Algorithm 1: Post-Processing Network PPφ(U,M)

Parameters φ := {w, s, α, β, γα, γβ , ρ}
U ← softsign(U − s) ◦ U
Â0 ← softsign(U − s) ◦ sigmoid(U)

A0 ← T (Â0); λ0 ← w · relu(A01− 1)
For t = 0, . . . , T − 1 do

λt+1, At+1, Ât+1 = PPcellφ(U,M,λt, At, Ât, t)

return {At}Tt=1

Algorithm 2: Neural Cell PPcellφ
Function PPcellφ(U,M,λ, A, Â, t):

G← 1
2U − (λ ◦ softsign(A1− 1))1>

Ȧ← Â+ α · γαt · Â ◦M ◦ (G+G>)

Â← relu(|Ȧ| − ρ · α · γαt)
Â← 1− relu(1− Â) [i.e.,min(Â, 1)]
A← T (Â); λ← λ+β·γβt·relu(A1−1)
return λ, A, Â

The specific computation graph of PPφ is given in Algorithm 1, whose main component is a recurrent
cell which we call PPcellφ. The computation graph is almost the same as the iterative update from
Eq. 3 to Eq. 6, except for several modifications:

• (learnable hyperparameters) The hyperparameters including step sizes α, β, decaying rate γα, γβ ,
sparsity coefficient ρ and the offset term s are treated as learnable parameters in φ, so that there
is no need to tune the hyperparameters by hand but automatically learn them from data instead.

• (fixed # iterations) Instead of running the iterative updates until convergence, PPcellφ is applied
recursively for T iterations where T is a manually fixed number. This is why in Fig 3 the output
space of E2Efold is slightly larger than the true solution space.

• (smoothed sign function) Resulted from the gradient of relu(·), the update step in Eq. 4 contains a
sign(·) function. However, to push gradient through PPφ, we require a differentiable update step.
Therefore, we use a smoothed sign function defined as softsign(c) := 1/(1 + exp(−kc)), where
k is a temperature.

• (clip Â) An additional step, Â ← min(Â, 1), is included to make the output At at each itera-
tion stay in the range [0, 1]L×L. This is useful for computing the loss over intermediate results
{At}Tt=1, for which we will explain more in Section 5.

With these modifications, the Post-Processing Network PPφ is a tuning-free and differentiable un-
rolled algorithm with meaningful intermediate outputs. Combining it with the deep score network,
the final deep model is

E2Efold : {At}Tt=1 =

Post-Process Network︷ ︸︸ ︷
PPφ( Uθ(x)︸ ︷︷ ︸

Deep Score Network

,M(x)) . (7)

5 END-TO-END TRAINING ALGORITHM

Given a dataset D containing examples of input-output pairs (x, A∗), the training procedure of
E2Efold is similar to standard gradient-based supervised learning. However, for RNA secondary
structure prediction problems, commonly used metrics for evaluating predictive performances are
F1 score, precision and recall, which are non-differentiable.

Differentiable F1 Loss. To directly optimize these metrics, we mimic true positive (TP), false posi-
tive (FP), true negative (TN) and false negative (FN) by defining continuous functions on [0, 1]L×L:

TP = 〈A,A∗〉, FP = 〈A, 1−A∗〉, FN = 〈1−A,A∗〉, TN = 〈1−A, 1−A∗〉.

Since F1 = 2TP/(2TP + FP + FN), we define a loss function to mimic the negative of F1 score as:

L−F1(A,A
∗) := −2〈A,A∗〉/ (2〈A,A∗〉+ 〈A, 1−A∗〉+ 〈1−A,A∗〉) . (8)

Assuming that
∑
ij A

∗
ij 6= 0, this loss is well-defined and differentiable on [0, 1]L×L. Precision and

recall losses can be defined in a similar way, but we optimize F1 score in this paper.

It is notable that this F1 loss takes advantages over other differentiable losses including `2 and
cross-entropy losses, because there are much more negative samples (i.e. Aij = 0) than positive
samples (i.e. Aij = 1). A hand-tuned weight is needed to balance them while using `2 or cross-
entropy losses, but F1 loss handles this issue automatically, which can be useful for a number of
problems (Wang et al., 2016; Li et al., 2017).
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Overall Loss Function. As noted earlier, E2Efold outputs a matrix At ∈ [0, 1]L×L in each itera-
tion. This allows us to add auxiliary losses to regularize the intermediate results, guiding it to learn
parameters which can generate a smooth solution trajectory. More specifically, we use an objective
that depends on the entire trajectory of optimization:

min
θ,φ

1

|D|
∑

(x,A∗)∈D

1

T

T∑
t=1

γT−tL−F1(At, A
∗), (9)

where {At}Tt=1 = PPφ(Uθ(x),M(x)) and γ ≤ 1 is a discounting factor. Empirically, we find it
very useful to pre-train Uθ using logistic regression loss. Also, it is helpful to add this additional
loss to Eq. 9 as a regularization.

6 EXPERIMENTS

We compare E2Efold with the SOTA and also the most commonly used methods in the RNA sec-
ondary structure prediction field on two benchmark datasets. It is revealed from the experimental
results that E2Efold achieves 29.7% improvement in terms of F1 score on RNAstralign dataset and
it infers the RNA secondary structure as fast as the most efficient algorithm (LinearFold) among ex-
isting ones. An ablation study is also conducted to show the necessity of pushing gradient through
the post-processing step. The codes for reproducing the experimental results are released.1

Table 1: Dataset Statistics

Type ArchiveII RNAStralign

length #samples length #samples
All 28∼2968 3975 30∼1851 30451
16SrRNA 73∼1995 110 54∼1851 11620
5SrRNA 102∼135 1283 104∼132 9385
tRNA 54∼93 557 59∼95 6443
grp1 210∼736 98 163∼615 1502
SRP 28∼533 928 30∼553 468
tmRNA 102∼437 462 102∼437 572
RNaseP 120∼486 454 189∼486 434
telomerase 382∼559 37 382∼559 37
23SrRNA 242∼2968 35 - -
grp2 619∼780 11 - -

Dataset. We use two benchmark datasets: (i) ArchiveII
(Sloma & Mathews, 2016), containing 3975 RNA struc-
tures from 10 RNA types, is a widely used benchmark
dataset for classical RNA folding methods. (ii) RNAS-
tralign (Tan et al., 2017), composed of 37149 structures
from 8 RNA types, is one of the most comprehensive col-
lections of RNA structures in the market. After removing
redundant sequences and structures, 30451 structures re-
main. See Table 1 for statistics about these two datasets.

Experiments On RNAStralign. We divide RNAStralign
dataset into training, testing and validation sets by strat-
ified sampling (see details in Table 7 and Fig 6), so that
each set contains all RNA types. We compare the performance of E2Efold to six methods includ-
ing CDPfold, LinearFold, Mfold, RNAstructure (ProbKnot), RNAfold and CONTRAfold. Both
E2Efold and CDPfold are learned from the same training/validation sets. For other methods, we
directly use the provided packages or web-servers to generate predicted structures. We evaluate the
F1 score, Precision and Recall for each sequence in the test set. Averaged values are reported in
Table 2. As suggested by Mathews (2019), for a base pair (i, j), the following predictions are also
considered as correct: (i+1, j), (i− 1, j), (i, j+1), (i, j− 1), so we also reported the metrics when
one-position shift is allowed.

Table 2: Results on RNAStralign test set. “(S)” indi-
cates the results when one-position shift is allowed.

Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.866 0.788 0.821 0.880 0.798 0.833
CDPfold 0.633 0.597 0.614 0.720 0.677 0.697

LinearFold 0.620 0.606 0.609 0.635 0.622 0.624
Mfold 0.450 0.398 0.420 0.463 0.409 0.433

RNAstructure 0.537 0.568 0.550 0.559 0.592 0.573
RNAfold 0.516 0.568 0.540 0.533 0.587 0.558

CONTRAfold 0.608 0.663 0.633 0.624 0.681 0.650 Figure 5: Distribution of F1 score.

As shown in Table 2, traditional methods can achieve a F1 score ranging from 0.433 to 0.624,
which is consistent with the performance reported with their original papers. The two learning-based
methods, CONTRAfold and CDPfold, can outperform classical methods with reasonable margin on

1The codes for reproducing the experimental results are released at https://github.com/ml4bio/e2efold.
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some criteria. E2Efold, on the other hand, significantly outperforms all previous methods across all
criteria, with at least 20% improvement. Notice that, for almost all the other methods, the recall is
usually higher than precision, while for E2Efold, the precision is higher than recall. That can be the
result of incorporating constraints during neural network training. Fig 5 shows the distributions of
F1 scores for each method. It suggests that E2Efold has consistently good performance.

To estimate the performance of E2Efold on long sequences, we also compute the F1 scores weighted
by the length of sequences, such that the results are more dominated by longer sequences. Detailed
results are given in Appendix D.3.

Table 3: Performance comparison on ArchiveII
Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.734 0.66 0.686 0.758 0.676 0.704
CDPfold 0.557 0.535 0.545 0.612 0.585 0.597

LinearFold 0.641 0.617 0.621 0.668 0.644 0.647
Mfold 0.428 0.383 0.401 0.450 0.403 0.421

RNAstructure 0.563 0.615 0.585 0.590 0.645 0.613
RNAfold 0.565 0.627 0.592 0.586 0.652 0.615

CONTRAfold 0.607 0.679 0.638 0.629 0.705 0.662

Table 4: Inference time on RNAStralign
Method total run time time per seq

E2Efold (Pytorch) 19m (GPU) 0.40s
CDPfold (Pytorch) 440m*32 threads 300.107s
LinearFold (C) 20m 0.43s
Mfold (C) 360m 7.65s
RNAstructure (C) 3 days 142.02s
RNAfold (C) 26m 0.55s
CONTRAfold (C) 1 day 30.58s

Test On ArchiveII Without Re-training. To mimic the real world scenario where the users want to
predict newly discovered RNA’s structures which may have a distribution different from the training
dataset, we directly test the model learned from RNAStralign training set on the ArchiveII dataset,
without re-training the model. To make the comparison fair, we exclude sequences that are over-
lapped with the RNAStralign dataset. We then test the model on sequences in ArchiveII that have
overlapping RNA types (5SrRNA, 16SrRNA, etc) with the RNAStralign dataset. Results are shown
in Table 3. It is understandable that the performances of classical methods which are not learning-
based are consistent with that on RNAStralign. The performance of E2Efold, though is not as good
as that on RNAStralign, is still better than all the other methods across different evaluation crite-
ria. In addition, since the original ArchiveII dataset contains domain sequences (subsequences), we
remove the domains and report the results in Appendix D.4, which are similar to results in Table 3.

Inference Time Comparison. We record the running time of all algorithms for predicting RNA
secondary structures on the RNAStralign test set, which is summarized in Table 4. LinearFold is the
most efficient among baselines because it uses beam pruning heuristic to accelerate DP. CDPfold,
which achieves higher F1 score than other baselines, however, is extremely slow due to its DP
post-processing step. Since we use a gradient-based algorithm which is simple to design the Post-
Processing Network, E2Efold is fast. On GPU, E2Efold has similar inference time as LinearFold.

Table 5: Evaluation of pseudoknot prediction

Method Set F1 TP FP TN FN

E2Efold 0.710 1312 242 1271 0
RNAstructure 0.472 1248 307 983 286

Pseudoknot Prediction. Even though E2Efold does
not exclude pseudoknots, it is not sure whether it ac-
tually generates pseudoknotted structures. Therefore,
we pick all sequences containing pseudoknots and com-
pute the averaged F1 score only on this set. Besides, we
count the number of pseudoknotted sequences that are
predicted as pseudoknotted and report this count as true positive (TP). Similarly we report TN, FP
and FN in Table 5 along with the F1 score. Most tools exclude pseudoknots while RNAstructure is
the most famous one that can predict pseudoknots, so we choose it for comparison.

E2Efold RNAstructure CONTRAfold true structure RNAstructure CONTRAfoldE2Efoldtrue structure

true structure E2Efoldtrue structure E2Efold

Visualization. We visualize predicted structures of three
RNA sequences in the main text. More examples are
provided in appendix (Fig 8 to 14). In these figures,
purple lines indicate edges of pseudoknotted elements.
Although CDPfold has higher F1 score than other base-
lines, its predictions are visually far from the ground-
truth. Instead, RNAstructure and CONTRAfold produce
comparatively more reasonable visualizations among all baselines, so we compare with them. These
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two methods can capture a rough sketch of the structure, but not good enough. For most cases,
E2Efold produces structures most similar to the ground-truths. Moreover, it works surprisingly well
for some RNA sequences that are long and very difficult to predict.

Table 6: Ablation study (RNAStralign test set)
Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.866 0.788 0.821 0.880 0.798 0.833
Uθ+PP 0.755 0.712 0.721 0.782 0.737 0.752

Ablation Study. To exam whether integrating the
two stages by pushing gradient through the post-
process is necessary for performance of E2Efold, we
conduct an ablation study (Table 6). We test the per-
formance when the post-processing step is discon-
nected with the training of Deep Score Network Uθ. We apply the post-processing step (i.e., for
solving augmented Lagrangian) after Uθ is learned (thus the notation “Uθ + PP” in Table 6). Al-
though “Uθ + PP” performs decently well, with constraints incorporated into training, E2Efold still
has significant advantages over it.

Discussion. To better estimate the performance of E2Efold on different RNA types, we include the
per-family F1 scores in Appendix D.5. E2Efold performs significantly better than other methods
in 16S rRNA, tRNA, 5S RNA, tmRNA, and telomerase. These results are from a single model. In
the future, we can view it as multi-task learning and further improve the performance by learning
multiple models for different RNA families and learning an additional classifier to predict which
model to use for the input sequence.

7 CONCLUSION

We propose a novel DL model, E2Efold, for RNA secondary structure prediction, which incorpo-
rates hard constraints in its architecture design. Comprehensive experiments are conducted to show
the superior performance of E2Efold, no matter on quantitative criteria, running time, or visualiza-
tion. Further studies need to be conducted to deal with the RNA types with less samples. Finally, we
believe the idea of unrolling constrained programming and pushing gradient through post-processing
can be generic and useful for other constrained structured prediction problems.
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A MORE DISCUSSION ON RELATED WORKS

Here we explain the difference between our approach and other works on unrolling optimization
problems.

First, our view of incorporating constraints to reduce output space and to reduce sample complexity
is novel. Previous works (Hershey et al., 2014; Belanger et al., 2017; Ingraham et al., 2018) did not
discuss these aspects. The most related work which also integrates constraints is OptNet (Amos &
Kolter, 2017), but its very expensive and can not scale to the RNA problem. Therefore, our proposed
approach is a simple and effective one.

Second, compared to (Chen et al., 2018; Shrivastava et al., 2019), our approach has a different
purpose of using the algorithm. Their goal is to learn a better algorithm, so they commonly make
their architecture more flexible than the original algorithm for the room of improvement. However,
we aim at enforcing constraints. To ensure that constraints are nicely incorporated, we keep the
original structure of the algorithm and only make the hyperparameters learnable.

Finally, although all works consider end-to-end training, none of them can directly optimize the F1
score. We proposed a differentiable loss function to mimic the F1 score/precision/recall, which is
effective and also very useful when negative samples are much fewer than positive samples (or the
inverse).

B DERIVATION OF THE PROXIMAL GRADIENT STEP

The maximization step in Eq. 1 can be written as the following minimization:

min
Â∈RL×L

− 1
2 〈Uθ(x)− s,A〉+ 〈λ, relu(A1− 1)〉︸ ︷︷ ︸

−f(Â)

+ρ‖Â‖1. (10)

Consider the quadratic approximation of −f(Â) centered at Ât:

−f̃α(Â) :=− f(Ât) + 〈−
∂f

∂Ât
, Â− Ât〉+

1

2α
‖Â− Ât‖2F (11)

=− f(Ât) +
1

2α

∥∥∥Â− (Ât + α
∂f

∂Ât

)∥∥∥2
F
, (12)

and rewrite the optimization in Eq. 10 as

min
Â∈RL×L

− f(Ât) +
1

2α

∥∥∥Â− Ȧt+1

∥∥∥2
F
+ ρ‖Â‖1 (13)

≡ min
Â∈RL×L

1

2α

∥∥∥Â− Ȧt+1

∥∥∥2
F
+ ρ‖Â‖1, (14)

where

Ȧt+1 := Ât + α
∂f

∂Ât
. (15)

Next, we define proximal mapping as a function depending on α as follows:

proxα(Ȧt+1) = argmin
Â∈RL×L

1

2α

∥∥∥Â− Ȧt+1

∥∥∥2
F
+ ρ‖Â‖1 (16)

= argmin
Â∈RL×L

1

2

∥∥∥Â− Ȧt+1

∥∥∥2
F
+ αρ‖Â‖1 (17)

= sign(Ȧt+1)max(|Ȧt+1| − αρ, 0) (18)

= sign(Ȧt+1)relu(|Ȧt+1| − αρ). (19)

Since we always use Â ◦ Â instead of Â in our problem, we can take the absolute value
|proxα(Ȧt+1)| = relu(|Ȧt+1| − αρ) without loss of generality. Therefore, the proximal gradient
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step is

Ȧt+1 ← Ât + α
∂f

∂Ât
(correspond to Eq. 3) (20)

Ât+1 ← relu(|Ȧt+1| − αρ) (correspond to Eq. 5). (21)

More specifically, in the main text, we write ∂f

∂Ât
as

∂f

∂Ât
=

1

2

(
∂f

∂At
+

∂f

∂At

>
)
◦ ∂At
∂Ât

(22)

=

(
1

2

∂At

∂Ât

)
◦

(
∂f

∂At
+

∂f

∂At

>
)

(23)

=

(
1

22
◦M ◦ (2Ât + 2Â>t )

)
◦

(
∂f

∂At
+

∂f

∂At

>
)

(24)

=

(
1

22
◦M ◦ (2Ât + 2Â>t )

)
◦

(
∂f

∂At
+

∂f

∂At

>
)

(25)

=M ◦ Ât ◦

(
∂f

∂At
+

∂f

∂At

>
)
. (26)

The last equation holds since Ât will remain symmetric in our algorithm if the initial Â0 is symmet-
ric. Moreover, in the main text, α is replaced by α · γtα.

C IMPLEMENTATION AND TRAINING DETAILS

We used Pytorch to implement the whole package of E2Efold.

Deep Score Network. In the deep score network, we used a hyper-parameter, d, which was set as
10 in the final model, to control the model capacity. In the transformer encoder layers, we set the
number of heads as 2, the dimension of the feed-forward network as 2048, the dropout rate as 0.1.
As for the position encoding, we used 58 base functions to form the position feature map, which
goes through a 3-layer fully-connected neural network (the number of hidden neurons is 5 ∗ d) to
generate the final position embedding, whose dimension is L by d. In the final output layer, the
pairwise concatenation is carried out in the following way: Let X ∈ RL×3d be the input to the
final output layers in Figure 4 (which is the concatenation of the sequence embedding and position
embedding). The pairwise concatenation results in a tensor Y ∈ RL×L×6d defined as

Y (i, j, :) = [X(i, :), X(j, :)], (27)

where Y (i, j, :) ∈ R6d, X(i, :) ∈ R3d, and X(j, :) ∈ R3d.

In the 2D convolution layers, the the channel of the feature map gradually change from 6∗d to d , and
finally to 1. We set the kernel size as 1 to translate the feature map into the final score matrix. Each
2D convolution layer is followed by a batch normalization layer. We used ReLU as the activation
function within the whole score network.

Post-Processing Network. In the PP network, we initialized w as 1, s as log(9), α as 0.01, β as 0.1,
γα as 0.99, γβ as 0.99, and ρ as 1. We set T as 20.

Training details. During training, we first pre-trained a deep score network and then fine-tuned the
score network and the PP network together. To pre-train the score network, we used binary cross-
entropy loss and Adam optimizer. Since, in the contact map, most entries are 0, we used weighted
loss and set the positive sample weight as 300. The batch size was set to fully use the GPU memory,
which was 20 for the Titan Xp card. We pre-train the score network for 100 epochs. As for the
fine-tuning, we used binary cross-entropy loss for the score network and F1 loss for the PP network
and summed up these two losses as the final loss. The user can also choose to only use the F1 loss or
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use another coefficient to weight the loss estimated on the score network Uθ. Due to the limitation of
the GPU memory, we set the batch size as 8. However, we updated the model’s parameters every 30
steps to stabilize the training process. We fine-tuned the whole model for 20 epochs. Also, since the
data for different RNA families are imbalanced, we up-sampled the data in the small RNA families
based on their size. For the training of the score network Uθ in the ablation study, it is exactly the
same as the training of the above mentioned process. Except that during the fine-tune process, there
is the unrolled number of iterations is set to be 0.

D MORE EXPERIMENTAL DETAILS

D.1 DATASET STATISTICS

Figure 6: The RNAStralign length distribution.

Table 7: RNAStralign dataset splits statistics

RNA type All Training Validation Testing
16SrRNA 11620 9325 1145 1150
5SrRNA 9385 7687 819 879

tRNA 6443 5412 527 504
grp1 1502 1243 123 136
SRP 468 379 36 53

tmRNA 572 461 50 61
RNaseP 434 360 37 37

telomerase 37 28 4 5
RNAStralign 30451 24895 2702 2854

D.2 TWO-SAMPLE HYPOTHESIS TESTING

To better understand the data distribution in different datasets, we provide statistical hypothesis test
results in this section.

We can assume that

(i) Samples in RNAStralign training set are i.i.d. from the distribution P(RNAStrtrain);

(ii) Samples in RNAStralign testing set are i.i.d. from the distribution P(RNAStrtest);

(iii) Samples in ArchiveII dataset are i.i.d. from the distribution P(ArcII).

To compare the differences among these data distributions, we can test the following hypothesis:

(a) P(RNAStrtrain) = P(RNAStrtest)

(b) P(RNAStrtrain) = P(ArchiveII)
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The approach that we adopted is the permutation test on the unbiased empirical Maximum Mean
Discrepancy (MMD) estimator:

MMDu(X,Y ) :=
( N∑
i=1

N∑
j 6=i

k(xi, xj) +

M∑
i=1

M∑
j 6=i

k(yi, yj)−
2

mn

N∑
i=1

M∑
j=1

k(xi, yj)
) 1

2

, (28)

where X = {xi}Ni=1 contains N i.i.d. samples from a distribution P1, Y = {yi}Mi=1 contains M
i.i.d. samples from a distribution P2, and k(·, ·) is a string kernel.

Since we conduct stratified sampling to split the training and testing dataset, when we perform
permutation test, we use stratified re-sampling as well (for both Hypothese (a) and (b)). The result
of the permutation test (permuted 1000 times) is reported in Figure 7.

Figure 7: Left: Distribution of MMDu under Hypothesis P(RNAStrtrain) = P(RNAStrtest). Right:
Distribution of MMDu under Hypothesis P(RNAStrtrain) = P(ArchiveII).

The result shows

(a) Hypothesis P(RNAStrtrain) = P(RNAStrtest) can be accepted with significance level 0.1.

(b) Hypothesis P(RNAStrtrain) = P(ArchiveII) is rejected since the p-value is 0.

Therefore, the data distribution in ArchiveII is very different from the RNAStralign training set. A
good performance on ArchiveII shows a significant generalization power of E2Efold.

D.3 PERFORMANCE ON LONG SEQUENCES: WEIGHTED F1 SCORE

For long sequences, E2Efold still performs better than other methods. We compute F1 scores
weighted by the length of sequences (Table 8), such that the results are more dominated by longer
sequences.

Table 8: RNAStralign: F1 after a weighted average by sequence length.

Method E2Efold CDPfold LinearFold Mfold RNAstructure RNAfold CONTRAfold

non-weighted 0.821 0.614 0.609 0.420 0.550 0.540 0.633
weighted 0.720 0.691 0.509 0.366 0.471 0.444 0.542
change -12.3% +12.5% -16.4% -12.8% -14.3% -17.7% -14.3%

The third row reports how much F1 score drops after reweighting.

D.4 ARCHIVEII RESULTS AFTER DOMAIN SEQUENCES ARE REMOVED

Since domain sequence (subsequences) in ArchiveII are explicitly labeled, we filter them out in
ArchiveII and recompute the F1 scores (Table 9).

The results do not change too much before or after filtering out subsequences.
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Table 9: ArchiveII: F1 after subsequences are filtered out.

Method E2Efold CDPfold LinearFold Mfold RNAstructure RNAfold CONTRAfold

original 0.704 0.597 0.647 0.421 0.613 0.615 0.662
filtered 0.723 0.605 0.645 0.419 0.611 0.615 0.659

D.5 PER-FAMILY PERFORMANCES

To balance the performance among different families, during the training phase we conducted
weighted sampling of the data based on their family size. With weighted sampling, the overall
F1 score (S) is 0.83, which is the same as when we did equal-weighted sampling. The per-family
results are shown in Table 10.

Table 10: RNAStralign: per-family performances

16S rRNA tRNA 5S RNA SRP
F1 F1(S) F1 F1(S) F1 F1(S) F1 F1(S)

E2Efold 0.783 0.795 0.917 0.939 0.906 0.936 0.550 0.614
LinearFold 0.493 0.504 0.734 0.739 0.713 0.738 0.618 0.648

Mfold 0.362 0.373 0.662 0.675 0.356 0.367 0.350 0.378
RNAstructure 0.464 0.485 0.709 0.736 0.578 0.597 0.579 0.617

RNAfold 0.430 0.449 0.695 0.706 0.592 0.612 0.617 0.651
CONTRAfold 0.529 0.546 0.758 0.765 0.717 0.740 0.563 0.596

tmRNA Group I intron RNaseP telomerase
F1 F1(S) F1 F1(S) F1 F1(S) F1 F1(S)

E2Efold 0.588 0.653 0.387 0.428 0.565 0.604 0.954 0.961
LinearFold 0.393 0.412 0.565 0.579 0.567 0.578 0.515 0.531

Mfold 0.290 0.308 0.483 0.498 0.562 0.579 0.403 0.531
RNAstructure 0.400 0.423 0.566 0.599 0.589 0.616 0.512 0.545

RNAfold 0.411 0.430 0.589 0.599 0.544 0.563 0.471 0.496
CONTRAfold 0.463 0.482 0.603 0.620 0.645 0.662 0.529 0.548
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D.6 MORE VISUALIZATION RESULTS

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 8: Visualization of 5S rRNA, B01865.

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 9: Visualization of 16S rRNA, DQ170870.
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E2Efold RNAstructure CDPfoldtrue structure
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Figure 10: Visualization of Group I intron, IC3, Kaf.c.trnL.
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Figure 11: Visualization of RNaseP, A.salinestris-184.
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Figure 12: Visualization of SRP, Homo.sapi. BU56690.
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Figure 13: Visualization of tmRNA, uncu.bact. AF389956.
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Figure 14: Visualization of tRNA, tdbD00012019.
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