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ABSTRACT

Using stochastic gradient descent (SGD) with large batch-sizes to train deep neu-
ral networks is an increasingly popular technique. By doing so, one can improve
parallelization by scaling to multiple workers (GPUs) and hence leading to sig-
nificant reductions in training time. Unfortunately, a major drawback is the so-
called “generalization gap”: large-batch training typically leads to a degradation
in generalization performance of the model as compared to small-batch training.
In this paper, we propose to correct this generalization gap by adding diagonal
Fisher curvature noise to large-batch gradient updates. We provide a theoretical
analysis of our method in the convex quadratic setting. Our empirical study with
state-of-the-art deep learning models shows that our method not only improves
the generalization performance in large-batch training, but furthermore, does so
in a way where the training convergence remains desirable and the training dura-
tion is not elongated. We additionally connect our method to recent works on loss
surface landscape in the experimental section.

1 INTRODUCTION

Modern datasets and network architectures in deep learning are becoming increasingly larger which
results in longer training time. An ongoing challenge for both researchers and practitioners is how to
scale up deep learning while keeping training time manageable. Using stochastic gradient descent
(SGD) with large batch-sizes offers a potential avenue to address scalability issues. Increasing
the batch-size used during training improves data parallelization (Goyal et al., 2017; You et al.,
2018); it ensures multiple processors (GPUs) have sufficiently useful workload at each iteration
hence reducing communication-to-cost ratio.

Unfortunately, a severe limitation to employing large-batch training in practice is the so-called “gen-
eralization gap”. While large-batch yields considerable advantages over small-batch on training loss
and error per parameter update, it has been verified empirically in LeCun et al. (2012); Keskar et al.
(2016) that we have the opposite effect for test loss and error. To fully realize the benefits of using
large-batches in the distributed synchronous setup, it is necessary to engineer large-batch training
in a way such that this generalization gap can be closed without sacrificing too much the training
performance. This is precisely the central objective of our paper.

In this paper, we propose to add diagonal Fisher curvature noise to large-batch gradient updates. We
discuss the motivations behind our approach. Under the typical log-likelihood loss assumption, the
difference of large-batch and small-batch gradients can be modeled as a Fisher noise. We can expect
that adding this noise directly to large-batch gradients gives small-batch performance. While this
remedies the generalization issues associated with large-batch training, the resulting convergence
performance will be undesirable. To attain our end goal of designing a method which enjoys both
desirable convergence and generalization performance, we reduce the amplitude of the noise by
changing the covariance structure from full Fisher to diagonal Fisher. We find that in practice, this
improves convergence considerably while maintaining good generalization.

We give a theoretical analysis of our proposed method in Section 3. This is done over the con-
vex quadratic setting which often serves as an excellent “proxy” for neural network optimiza-
tion (Martens, 2010). We additionally provide numerical experiments on standard deep-learning
tasks in Section 4 to demonstrate the efficacy of our proposed method. There are two primary
takeaways from our empirical analysis. First, we show adding diagonal Fisher noise to large-batch
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Figure 1: Noise structure in a simple two-dimensional regression problem. a) One-step SGD update. b) One-
step SGD update with isotropic Gaussian (σ = 0.1) noise. c) One-step SGD update with full Fisher noise.
d) One-step SGD update with diagonal Fisher noise. The full Fisher noise almost recovers the SGD noise.
Observe that the full Fisher noise direction is perpendicular to the contours of the loss surface. Moreover, full
Fisher exhibits slower convergence than diagonal Fisher; we refer to Section 3.2 for a more detailed analysis.

gradients does not hinder much the training performance; while at the same time giving a validation
accuracy comparable to small-batch training, thereby correcting the “generalization gap”. Second,
this validation accuracy was attained in the same number of epochs used for small-batch training.
This indicates that our method is data-efficient and does not require any lengthening of the optimiza-
tion process.

2 PRELIMINARIES

2.1 BACKGROUND

Excess risk decomposition. Let S = {(x1, y1), . . . , (xN , yN )} be a training set of N input-target
samples drawn i.i.d. from an unknown joint probability distribution D. The family of classifiers of
interest to us are neural network outputs f(xi, θ), where θ ∈ Θ ⊂ Rd are parameters of the network
and Θ here denotes the parameter space of the network. Let `(f(xi, θ), yi) be the loss function
measuring the disagreement between outputs f(xi, θ) and targets yi. For convenience, we use the
notation `i(θk) to denote `(f(xi, θ), yi). The expected risk and empirical risk functions are defined
to be

L (θ) ≡ E(x,y)∼D[`(f(x, θ), y)], L(θ) ≡ 1

N

N∑
i=1

`i(θ).

The standard technique to analyze the interplay between optimization and generalization in statisti-
cal learning theory is through excess risk decomposition. After k iterations, the excess risk is defined
as

L̂(θk) ≡ L (θk)− inf
θ∈Θ

L (θ).

From Bottou & Bousquet (2008); Chen et al. (2018), the expected excess risk is upper-bounded by

ES [L̂(θk)] ≤ ES [L (θk)− L(θk)]︸ ︷︷ ︸
Egen

+ES [L(θk)− L(θ∗)]︸ ︷︷ ︸
Eopt

, (1)

where θ∗ = argminθL(θ) here is the empirical risk minimizer. The terms Egen and Eopt are the
expected generalization and optimization errors respectively. In the machine learning literature, op-
timization algorithms are often studied from one perspective: either optimization or generalization.
The excess risk decomposition suggests that both aspects should be analyzed together (Chen et al.,
2018; Bottou & Bousquet, 2008) since the goal of a good optimization-generalization algorithm in
machine learning is to minimize the excess risk in the least amount of iterations.

Related Work. In the context of large-scale learning, stochastic algorithms are very popular com-
pared to full-batch methods due to lower computational overhead (Bottou et al., 2018; Bottou,
1991). Despite a decay in optimization performance (slower rate of convergence in the convex
case (Moulines & Bach, 2011; Bottou et al., 2018)), stochastic algorithms possess good general-
ization properties due to the inherent noise of their gradients. There are vast bodies of research
literature devoted to understanding the connection between inherent noise and generalization; for
example, scaling the learning rate or batch-size (Smith & Le, 2017; Goyal et al., 2017; Hoffer et al.,
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2017) or studying the covariance structure of mini-batch gradients (Jastrzebski et al., 2017; Xing
et al., 2018; Zhu et al., 2018; Li et al., 2015). In the non-convex setting, the inherent noise allows
SGD to efficiently escape from saddle points or shallow local minima which tends to give poor
generalization (Zhu et al., 2018; Daneshmand et al., 2018; Jin et al., 2017). The trade-off between
optimization and generalization was also observed for large-batch versus small-batch training in
deep learning: both large-batch and small-batch training can reach similar training loss after suffi-
cient number of iterations. Since large-batch gradients have smaller variance, large-batch typically
requires less iterations to reach an optimum. However, large-batch training usually has worse test
performance compared to small-batch (Hoffer et al., 2017; Masters & Luschi, 2018; Keskar et al.,
2016). It was recently observed that generalization and optimization should not be decoupled in
deep learning (Neyshabur et al., 2014; 2017a;b). The choice of the batch-size has a direct impact on
the trade-off between optimization and generalization.

In this paper, we aim to design a novel algorithm for large-batch training by increasing the variance
of its gradients such that the resulting generalization performance matches small-batch gradient
descent. Moreover, we require that this generalization performance be achieved within a number of
iterations comparable to original large-batch.

2.2 MOTIVATION

We tackle the large-batch generalization problem through gradient noise injection. Let BL denote
large-batch and ML = |BL| denote size of the large-batch. Consider the following modification of
large-batch SGD updates

θk+1 = θk − αk∇LML
(θk) + αkD(θk)ξk+1, ξk+1 ∼ N (0, Id). (2)

where αk is the learning rate, ∇LML
(θk) = 1

ML

∑ML

i=1 `i(θk) is the large-batch gradient and
N (0, Id) is the multivariate Gaussian distribution with mean zero and identity convariance. We
can interpret this modification as injecting a Gaussian noise with mean zero and covariance
D(θk)D(θk)> to the gradients. We now focus our attention on finding a suitable matrix D(θk)
such that the algorithm in Eqn. 2 has desirable convergence and generalization performance.

Intrinsic SGD noise. Let B ⊂ S be a mini-batch drawn uniformly and without replacement from
S and M = |B| be the size of this chosen mini-batch. We can write the SGD update rule here as

θk+1 = θk − αk∇LM (θk)

= θk − αk∇L(θk) + αk(∇L(θk)−∇LM (θk)︸ ︷︷ ︸
δk

)

where ∇L(θk) = 1
N

∑N
i=1∇`i(θk) is the full-batch gradient. The difference δk = ∇L(θk) −

∇LM (θk) is the intrinsic noise stemming from mini-batch gradients. The covariance of δk is

Cov(δk, δk) =

(
N −M
NM

)
· 1

N

N∑
i=1

(∇`i(θk)−∇L(θk))(∇`i(θk)−∇L(θk))>, (3)

This result can be found in Hu et al. (2017); Hoffer et al. (2017). Suppose that the loss function here
is the negative log-likelihood, `i(θk) = − log p(yi|xi, θk), where p(y|x, θ) is the density function
for the model’s predictive distribution.

Fisher information matrix. Given an input-target pair (x, y), the Fisher information matrix is
defined as the expectation of the outer product of log-likelihood gradients,

EPx,Py|x [∇ log p(y|x, θ)∇ log p(y|x, θ)>]. (4)
The expectation here is taken with respect to the data distribution Px for inputs x and the model’s
predictive distribution Py|x for targets y. The Fisher matrix can be realized as the second-order Tay-
lor expansion of the KL-divergence on the space of predictive distributions, hence defining a Rie-
mannian metric on this space (Amari, 1998; Martens, 2014). The Fisher matrix for neural networks
captures the local curvature information of the parameter space. We give a detailed description of
Fisher matrices for feed-forward and convolutional network architectures in Appendix C.

In practical situations, we often sample y from the empirical training distribution rather than the
predictive distribution. Therefore, we have the empirical Fisher (Martens, 2014)

1

N

∑
(xi,yi)∈S

∇ log p(yi|xi, θ)∇ log p(yi|xi, θ)>.
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For the rest of this paper, unless otherwise specified, all mentions of “Fisher matrix” or F (θ) refers
to the empirical Fisher.

Naive method to close “generalization gap”. Having modeled the covariance of the mini-batch
SGD noise as a Fisher matrix, we now consider a naive approach to close “generalization gap” in
large-batch training. Let BS denote small-batch and MS = |BS | denote the size of small-batch. Let
us choose D(θk) in Eqn. 2 to be

D(θk) =

√
ML −MS

MLMS

√
F (θk), (5)

where
√
F (θk) is the square-root of Fisher,

√
F (θk)

√
F (θk)

>
= F (θk). The motivation here is

that the difference between large-batch and small-batch gradients can be approximated as a Gaussian
noise with mean zero and covariance ML−MS

MLMS
F (θk) (Jastrzebski et al., 2017; Xing et al., 2018; Zhu

et al., 2018; Li et al., 2015). However, there is an immediate issue with this naive approach: if the
Gaussian approximation is reasonable, then this algorithm should have similar behavior as small-
batch training which implies poor convergence performance. Indeed, as shown in the 2D convex
example in Fig. 1c, adding full Fisher noise recovers SGD behavior. Furthermore, on the CIFAR-10
image classification task trained using ResNet44, we see in Fig. 3c that the training performance is
almost identical to small-batch during the entire optimization process. Thus, this choice of D(θk)
does not satisfy our requirement of maintaining desirable convergence.

3 METHOD

3.1 PROPOSED ALGORITHM

Using diagonal Fisher. We consider replacing
√
F (θk) with

√
diag (F (θk)) in Eqn. 5 for D(θk).

Our proposed algorithm to correct the “generalization gap” in large-batch training is to inject diag-
onal Fisher noise to large-batch gradients,

θk+1 = θk − αk∇LML
(θk) + αk

√
ML −MS

MLMS

√
diag (F (θk))ξk+1, ξk+1 ∼ N (0, Id).

The formal statement is given in Algorithm 1. Most of the empirical analysis of Algorithm 1 in
Section 4 later uses feed-forward and convolutional networks. For completeness, we provide explicit
expressions of diagonal Fisher for these architectures in Appendix C.

Changing the covariance structure in this way has important implications with regards to conver-
gence and generalization performance. In the next subsection, we analyze our algorithm in a simple
quadratic setting and compare it to the case where the covariance is given by the Fisher matrix.
Even in this simple case, it is not obvious to compare the generalization performance between the
two algorithms. In Appendix B, we provide an extensive theoretical discussion regarding how the
choice of covariance structure influences generalization performance of Eqn. 2.

Working with the assumption that the generalization error is comparable between diagonal Fisher
and full Fisher, the excess risk in Eqn. 1 can be minimized by focusing only on the optimization
error. We prove in Theorem 3.1 that the discrepancy in convergence behavior can be measured by
the difference of their respective Frobenius norms. In Fig. 2, we illustrate this behavior on a 2D toy
problem where we compare the training trajectory of adding full Fisher noise versus diagonal full
Fisher noise to the true gradient. As shown in the figure, diagonal Fisher converges faster than full
Fisher with respect to the same number of iterations. In our experiments in Section 4, we observe
that this phenomena carries over to the deep learning setting.

3.2 CASE-STUDY: CONVEX QUADRATIC EXAMPLE

In this subsection, we restrict our setting and take the loss function L(θ) to be the convex quadratic,

L(θ) ≡ 1

2
θ>Aθ,

where A is a symmetric and positive-definite matrix. Observe that in this setting the Fisher and
Hessian coincide, which is simply the matrix A.
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Algorithm 1 Adding diagonal Fisher noise to large-batch SGD. Differences from standard SGD are
highlighted in blue

Require: Number of iterations K, initial step-size α0, large-batch BL of size ML, small-batch BS
of size MS , initial condition θ0 ∈ Θ ⊂ Rd
for k = 1 to K do
Zk ∼ N (0, Id)

εk = αk

√
ML−MS

MLMS

√
diag (F (θk))Zk

θk+1 = θk − αk∇LML
(θk) + εk

end for

2 0 2
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Figure 2: Trajectory using full Fisher noise
versus diagonal Fisher noise for the algorithm
in Eqn. 2 used to minimize a two-dimensional
quadratic function. Blue dot indicates the initial
parameter value and the green dot shows the final
parameter value. We used a learning rate of 0.1 for
500 iterations (plotting every 10 iterations). Ob-
serve that adding diagonal Fisher to the true gra-
dient achieves faster convergence than full Fisher.

We stress here that approximating the loss surface
of a neural network with a quadratic often serves
as a fertile “testing ground” when introducing new
methodologies in deep learning. Analyzing the toy
quadratic problem has led to important advances;
for example, in learning rate scheduling (Schaul
et al., 2013) and formulating SGD as approximate
Bayesian inference (Mandt et al., 2017). With re-
gards to optimization, Martens (2010) observed that
much of the difficulty in neural network optimization
can be captured using quadratic models.

We focus now on the algorithm in Eqn. 2 and choose
a constant d×d covariance matrix C. The following
theorem, adapted from Bottou et al. (2018), analyzes
the convergence of this optimization method. The
proof is relegated to Appendix A.

Theorem 3.1. Let λmax and λmin denote the maximum and minimum eigenvalue of A respectively.
For a chosen α0 ≤ λ−1

max, suppose that we run the algorithm in Eqn. 2 according to the decaying
step-size sequence

αk =
2

(k + γ)λmin
,

for all k ∈ N>0 and where γ is chosen such that αk ≤ α0. Then for all k ∈ N,

E[L(θk)] ≤ ν

k + γ
where ν = max

(
2 Tr(C>AC)

λ2
min

, γL(θ0)

)
.

We make a few observations regarding this bound. First, the convergence rate is optimal when
C = 0. However, in this case, there is no noise and so we obtain no regularization benefits which
leads to poor generalization. A more formal discussion is given at the end of Appendix B where if
we use a scaling factor Cλ := λC; as λ→ 0, the expected generalization error becomes worse.

The second observation to note is that the term of importance in this theorem is Tr(C>AC). While
the overall convergence rate of the algorithm isO(1/k), the discrepancy in convergence performance
for different choices of the matrix C rests entirely on this term. We analyze two specific cases which
are relevant for us: the first case where C is square-root of A, C =

√
A, and the second case where

C is the square-root of the diagonal of A, C =
√

diag (A). For the first, we have

Tr(C>AC) = Tr(A2) = ‖A‖2Frob .

For the latter case, we have

Tr(C>AC) = Tr(diag (A)
2
) = ‖diag (A)‖2Frob .

Thus, the difference in training performance between the two cases can be measured by the differ-
ence of their respective Frobenius norms.
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3.3 SAMPLING RANDOM VECTOR WITH FISHER COVARIANCE

We describe a method to sample a random vector with mean zero and approximately Fisher co-
variance to avoid computing directly the square root of the empirical Fisher. Let M be the size
of the mini-batch and from the M -forward passes, we obtain prediction f(x, θ) and then from
the backward passes, we obtain the back-propagated gradients ∇`1, . . . ,∇`M for each data-point.
Consider independent random variables σ1, . . . , σM drawn from Rademacher distribution, i.e.,
P(σi = 1) = P(σi = −1) = 1/2. Then, the mean Eσ[

∑M
i=1 σi∇`i] = 0. The covariance is

empirical Fisher.

4 EXPERIMENTS

We first empirically compute the Frobenius norm of full Fisher and diagonal Fisher, followed by the
marginal variance of the gradients for a variety of training regimes. We also compare the conver-
gence speed of diagonal Fisher noise and full Fisher noise; the convergence speed here is measured
with respect to the number of parameter updates. In Section 4.2, we compute the maximum eigenlue
of the Hessian with respect to the final model parameters of different training regimes. The purpose
of this is to empirically relate our methodology with the curvature of the loss surface landscape. In
Section 4.3, we give the generalization performance of each method discussed previously.

Throughout our experiments, large-batch size LB is set to 4096 and small-batch size SB is set to 128
by default. The network architectures we use are fully-connected networks, shallow convolutional
networks (LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012)), and deep convolutional
networks (VGG16 (Simonyan & Zisserman, 2014), ResNet44 (He et al., 2016)). These models are
evaluated on the standard deep-learning datasets: MNIST, Fashion-MNIST (LeCun et al., 1998;
Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009).

4.1 CONVERGENCE EXPERIMENTS

In the convex quadratic setting in Section 3.2, we observed that full-batch gradient descent with
diagonal Fisher noise enjoyed faster convergence than full Fisher noise. This was characterized by
the difference of their Frobenius norms. We now give an empirical verification of this phenomena
in the non-convex setting of deep neural networks. We compute the Frobenius norms during the
training of a ResNet44 network on CIFAR-10. Fig. 3a shows that the full Fisher matrix has much
larger Frobenius norm than the diagonal Fisher matrix, which suggests that using diagonal Fisher
noise should have faster convergence than full Fisher noise in the deep neural network setting. To
justify this intuition, we analyze the training loss (per parameter update) of ResNet44 (CIFAR-10)
on the following four regimes: LB, SB, LB with diagonal Fisher noise and LB with full Fisher noise.
For a fair comparison, we use the same learning rate schedule for all four regimes. Fig. 3c shows that
LB with diagonal Fisher noise trains much faster than LB with full Fisher. More interestingly, LB
with full Fisher matches the convergence performance of SB, indicating that the intrinsic noise of
SB is accurately modeled by the Fisher. In contrast, LB with diagonal Fisher attains a convergence
similar to LB, showing that our approach preserves the desired convergence behavior of LB.

Next, we give an estimation of the marginal variance of gradients for the four regimes mentioned
above as well as LB with K-FAC noise. K-FAC (Martens & Grosse, 2015) is a block-diagonal
approximation of the Fisher matrix used as a second-order optimization method in deep learning.
The purpose of this experiment is to show despite the fact that LB with diagonal Fisher trains much
faster than LB with full Fisher, they share roughly the same marginal variance of the gradients. This
suggests that the off-diagonal elements of the Fisher matrix is the key reason for slow convergence.
The experiment is performed as follows: we freeze a partially-trained network and compute Monte-
Carlo estimates of gradient variance with respect to each parameter over different mini-batches. This
variance is then averaged over the parameters within each layer. The results are presented in Fig. 3b.
We find that LB with diagonal Fisher noise and LB with full Fisher noise give roughly the same
scale of marginal gradients variance.

4.2 MAXIMUM EIGENVALUE COMPARISON

While the relationship between loss surface curvature and generalization is not completely explicit,
numerous works have suggested that the maximum eigenvalue of Hessian is possibly correlated
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Figure 3: a) Frobenius norm of full Fisher matrix and diagonal Fisher matrix. The model is trained on
ResNet44 with CIFAR-10. b) Estimation of gradient variances for randomly selected convolutional layers
on ResNet44 (CIFAR-10). fullF: LB with full Fisher noise. diagF: LB with diagonal Fisher noise. KfacF: LB
with K-FAC noise. c) Training error with respect to iterations between SB, LB, LB with full Fisher noise and
diagonal Fisher noise on ResNet44 (CIFAR-10). All of the above are trained with the same learning rate. d)
The maximum eigenvalue of the Hessian matrix at the end of training. 4Kgbn: LB with Ghost-BN. 4KdiagF:
LB with diagonal Fisher noise.

with generalization performance (Keskar et al., 2016; Chaudhari et al., 2016; Chaudhari & Soatto,
2017; Yoshida & Miyato, 2017; Xing et al., 2018). To situate our method with this line of research,
we compute the maximum eigenvalue of the Hessian of the final model for the following three
regimes: LB with diagonal Fisher noise, LB with ghost batch-normalization, and SB. Ghost batch-
normalization (GBN) is an adaptation of usual batch-normalization introduced in Hoffer et al. (2017)
to close generalization gap. In Fig. 3b, we find that LB with diagonal Fisher gives smaller maximum
eigenvalue than LB with GBN.

Computing maximum eigenvalue without any modification to the model gives inconsistent estimates
even between different runs of the same training configuration. To make the maximum eigenvalue
of the Hessian matrix comparable over different training trajectories, the Hessian needs to be invari-
ant under typical weight reparameterizations such as affine transformations (Liao et al., 2018). To
achieve this, we make the following modification to the trained model: (1) For the layer with batch
normalization, we can just push the batch-norm layer parameters and running statistics into the lay-
erwise parameter space so that the the layer is invariant under affine transformation; and (2) For
the layer without batch normalization, reparameterization changes the prediction confidence while
the prediction remains the same. So we train a temperature parameter on the cross-entropy loss on
the test data set, this encourages the model to make a calibrated prediction (prevent it from being
over-confident). In Fig. 3d, we give the error bar of the maximum eigenvalue of the Hessian over
different runs, which indicates the modification gives a roughly consistent estimate.
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4.3 RESULTS

In this subsection, we provide the validation accuracy for a number of training regimes. We point out
that we do not experiment LB with full Fisher due to its exceedingly long training time. This can be
seen from Fig. 3c where on ResNet44 (CIFAR-10), full Fisher does not achieve good convergence
even after 8000 iterations. We use the baseline in Hoffer et al. (2017), where LB is trained using
GBN with learning rate adaptation. However, instead of using square-root scaling of the learning
rate in Hoffer et al. (2017), we use linear scaling in conjunction with a warmup scheme suggested
by Goyal et al. (2017). We found that this improves the baseline reported in Hoffer et al. (2017).

We experimented with the following regimes: LB with GBN (our baseline), LB with GBN and
trace Fisher noise (where D(θk) in Eqn. 2 is taken to be the square-root of the trace of Fisher√

Tr(F (θk))), LB with GBN and diagonal Fisher noise, and SB. All regimes were trained for the
same number of epochs. For the first three regimes involving LB, we terminate the noise at epoch
50 and use standard LB for the remainder of training. The reasoning behind this comes from the
work of Smith et al. (2017) which suggests that using noise only matters in the early stages of the
optimization procedure. We give further explanation in Appendix E.

The final validation accuracies of each method are reported in Table 1. While it is true that adding
diagonal Fisher noise cannot completely close the “generalization gap” in some cases, we can see
from Table 1 that doing so yields definite improvements. We point out that we explored other
regimes such as injecting multiplicative Guassian noise with constant diagonal covariance (Hoffer
et al., 2017), but found that they all perform no better than our baseline (LB with GBN). In addition,
we experimented with K-FAC noise but this did not give additional benefits over diagonal Fisher
noise. We defer to Appendix E for exact details of these supplemental experiments.

Table 1: Validation accuracy results on classification tasks. GBN stands for Ghost-BN. Fisher Trace+GBN
stands for LB + Ghost-BN with isotropic Gaussian noise scaled by square-root of trace of Fisher. Diag-F+GBN
stands for LB + Ghost-BN with diagonal Fisher noise. All methods in each row are trained with the same
number of epochs. Confidence interval is computed over 3 random seeds. LB with full Fisher requires same
number of updates as SB, which renders it impractical for most of the models for which we work with. While
this is indeed infeasible to compute for all the models, we note that LB with full Fisher reaches roughly the
same validation accuracy (93.22) as SB in the case of ResNet44 (CIFAR-10).

Dataset Network SB LB+GBN Fisher Trace+GBN Diag-F+GBN

MNIST MLP 98.10 97.94 98.08 98.08
MNIST LeNet 99.10 98.85 99.02 99.10
FASHION-MNIST LeNet 91.10 88.89 90.29 90.77
CIFAR-10 Alexnet 87.80 86.41 ± 0.18 N/A 87.30 ± 0.28
CIFAR-100 Alexnet 59.21 56.75 ± 0.18 N/A 58.68 ± 0.40
CIFAR-10 VGG16 93.25 91.78 ± 0.29 92.81 ± 0.10 93.15 ± 0.05
CIFAR-100 VGG16 72.83 69.44 ± 0.27 71.26 ± 0.09 71.94 ± 0.14
CIFAR-10 ResNet44 93.42 91.92 ± 0.29 92.31 ± 0.02 92.72 ± 0.15
CIFAR-100 ResNet44x2 75.55 73.11 ± 0.22 73.62 ± 0.15 74.10 ± 0.18

5 CONCLUSION

In this paper, we explored in depth the relationship between curvature noise and stochastic optimiza-
tion. We proposed a method to engineer large-batch training such that we retain fast convergence
performance while achieving significant gains in generalization. In addition, we highlighted the
importance of noise covariance structure on optimization and generalization. An interesting future
direction would be to further understand both empirically and theoretically how different noise co-
variance structures impact optimization and generalization performance of a learning algorithm.
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Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Lon Bottou. Stochastic gradient learning in neural networks. In In Proceedings of Neuro-Nmes.
EC2, 1991.
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A PROOF OF THEOREM 3.1

The proof of this theorem follows the spirit of Bottou et al. (2018). The algorithm

θk+1 = θk − αkAθk + αkCξk+1, ξk+1 ∼ N (0, Id).

falls into the Robbins-Monro setting where the true gradient is perturbed by random noise. This
perturbation can be considered as a martingale difference in the sense that

E[Cξk+1|Fk] = 0

where (Fk)k∈N is a increasing filtration generated by the sequence of parameters (θk)k∈N. When
the step size is constant αk = α for all k, it corresponds to the Euler discretization of a gradient flow
with random perturbation. We begin the proof by considering the equality,

L(θk+1) = L(θk) + 〈L(θk), θk+1 − θk〉+
1

2
(θk+1 − θk)>∇2L(θk)(θk+1 − θk).

Using the fact that ∇L(θk) = Aθk, ∇2L(θk) = A, and from the definition of θk+1, we can rewrite
the above equation as

L(θk+1) = L(θk) + 〈Aθk,−αkAθk + αkCξk+1〉+
1

2
‖αkAθk − αkCξk+1‖2A .

Now, taking the conditional expectation E[·|Fk] on both sides of the equality, we obtain by indepen-
dence of the noise ξk+1 to Fk

E[L(θk+1)|Fk] = L(θk)− αk ‖Aθk‖22 +
α2
k

2
‖Aθk‖2A +

α2
k

2
E[‖Cξk+1‖2A] (6)

A simple computation shows

E[‖Cξk+1‖2A] = E[(Cξk+1)>A(Cξk+1)]

= E[ξ>k+1C
>ACξk+1]

= Tr(C>AC)

(7)

11
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Moreover, we have
‖Aθk‖2A = (θ>k A)A(Aθk)

= A ‖Aθk‖22
≤ λmax ‖Aθk‖22 .

(8)

Using the results in Eqns. 7 and 8 as well as the assumption on the step-size schedule for all k:
αk < α0 <

1
λmax

, we rewrite Eqn. 6 as

E[L(θk+1)|Fk] ≤ L(θk) +
(αk

2
λmax − 1

)
αk ‖Aθk‖22 +

α2
k

2
Tr(C>AC)

≤ L(θk)− αk
2
‖Aθk‖22 +

α2
k

2
Tr(C>AC).

(9)

Furthermore,
‖Aθk‖22 = A(θ>k Aθk) ≥ λmin ‖θk‖2A = 2λminL(θk)

Using this above fact and then taking the expectation of Eqn. 9 leads to

E[L(θk+1)] ≤ (1− αkλmin)E[L(θk)] +
α2
k

2
Tr(C>AC).

We proceed by induction to prove the final result. By definition of ν, the result is obvious for k = 0.
For the inductive step, suppose that the induction hypothesis holds for k, i.e.,

αk =
2

(k + γ)λmin
, E[L(θk)] ≤ ν

k + γ
.

We prove the k + 1 case.

E[L(θk+1)] ≤
(

1− 2

k + γ

)
ν

k + γ
+

2

(k + γ)2λ2
min

Tr(C>AC)

≤ ν

(k + γ + 1)

This comes from the definition of ν and also the inequality (k+γ− 1)(k+γ+ 1) ≤ (k+γ)2. This
conclude the proof.

B RELATIONSHIP BETWEEN CHOICE OF COVARIANCE STRUCTURE AND
GENERALIZATION

As in Section 3.2, we work entirely in the convex quadratic setting. Consider the algorithm

θk+1 = θk − αk∇L(θk) + αkCξk+1, ξk+1 ∼ N (0, Id). (10)

Our aim in this section is to provide some theoretical discussions on how the choice of covariance
structure C influences the generalization behavior of the above algorithm.

Uniform stability. Uniform stability (Bousquet & Elisseeff, 2002) is one of the most common tech-
niques used in statistical learning theory to study generalization of a learning algorithm. Intuitively
speaking, uniform stability measures how sensitive an algorithm is to perturbations of the sampling
data. The more stable an algorithm is, the better its generalization will be. Recently, the uniform
stability of several algorithms has been investigated for stochastic gradient methods (Hardt et al.,
2015) or stochastic gradient Langevin dynamics algorithm (Mou et al., 2017; Raginsky et al., 2017).
We present the precise definition.
Definition B.1 (Uniform stability). A randomized algorithm A is ε-stable if for all data sets S and
S ′ where S and S ′ differ in at most one sample, we have

sup
(x,y)

|EA[L(θS)− L(θS′)]| ≤ ε,

where L(θS) and L(θS′) highlight the dependence of parameters on sampling datasets. The supre-
mum is taken over input-target pairs (x, y) belonging to the sample domain.

12
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The following theorem from Bousquet & Elisseeff (2002) shows that uniform stability implies gen-
eralization.
Theorem B.2 (Generalization in expectation). Let A be a randomized algorithm which is ε-
uniformly stable, then

|EA[Egen]| ≤ ε,
where Egen is the expected generalization error as defined in Eqn. 1.

Continuous-time dynamics. We like to use the uniform stability framework to analyze general-
ization properties of Eqn. 10. To do this, we borrow ideas from the recent work of Mou et al.
(2017) which give uniform stability bounds for Stochastic Gradient Langevin Dynamics (SGLD)
in non-convex learning. While the authors in that work give uniform stability bounds in both the
discrete-time and continuous-time setting, we work with the continuous setting since this conveys
relevant ideas while minimizing technical complications. The key takeaway from Mou et al. (2017)
is that uniform stability of SGLD may be bounded in the following way

εSGLD ≤ sup
S,S′

√
H2(πt, π′t). (11)

Here, πt and π′t are the distributions on parameters θ trained on the datasets S and S ′. TheH2 refers
to the Hellinger distance.

We now proceed to mirror the approach of Mou et al. (2017) for Eqn. 10. Our usage of stochastic
differential equations will be very soft but we refer to reader to Gardiner (2009); Pavliotis (2014)
for necessary backgrounds. For the two datasets S and S ′, the continuous-time analogue of Eqn. 10
are Ornstein-Uhlenbeck processes (Uhlenbeck & Ornstein, 1930):

dθS(t) = −ASθS(t) +
√
αCSdW (t)

dθS′(t) = −AS′θS′(t) +
√
αCS′dW (t).

The solution is given by

θS(t) = e−AStθS(0) +
√
α

∫ t

0

e−AS(t−u)CSdW (u),

In fact, this yields the Gaussian distribution

θS(t) ∼ N (µS(t),ΣS(t)),

where
µS(t) = e−AStθS(0)

and ΣS(t) satisfies the Ricatti equation,

d

dt
ΣS(t) = −(ASΣS(t) + ΣS(t)AS) + αCSC

>
S .

Observe that AS is symmetric and positive-definite which means that it admits a diagonalization
AS = PSDSP

−1
S . Solving the equation for the covariance matrix gives

ΣS(t) = αPS

(∫ t

0

e−DS(t−u)P−1
S CSC

>
S PSe

−DS(t−u)du

)
P−1
S . (12)

We are in the position to directly apply the framework of (Mou et al., 2017). Choosing πt and πt′
in Eqn. 11 to be the Gaussians N (µS(t),ΣS(t)) and N (µS′(t),ΣS′(t)) respectively, we obtain a
uniform stability bound for Eqn. 10. We compute the right-hand side of the bound to get derive in-
sights on generalization. Using the standard formula for Hellinger distance between two Gaussians,
we have

H2(πt, π
′
t) = 1− det(ΣS)

1
4 det(ΣS′)

1
4

det(ΣS+ΣS′
2 )

1
2

exp

{
−1

8
(µS − µS′)>

(
ΣS + ΣS′

2

)−1

(µS − µS′)

}
(13)

Choosing the noise covariance. From Eqn. 13 above, it is evident that to ensure good general-
ization error for Eqn. 10, we want to choose a covariance CS such that the Hellinger distance H
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is minimized. Since we are working within the uniform stability framework, a good choice of CS
should be one where Eqn. 10 becomes less data-dependent. This is intuitive after all – the less
data-dependent an algorithm is; the better suited it should be for generalization.

We study Eqn. 13. Note that as time t → ∞, the exponential term goes to 1. Hence, we focus
our attention on the ratio of the determinants. Suppose that we choose CS =

√
AS . Since AS

is the Fisher for this convex quadratic example, Eqn. 10 is essentially the naive method given in
Section 2.2. Simplifying the determinant of ΣS(t) in this case,

det(ΣS(t)) =
(α

2

)d
det(Id − e−2DSt)

Suppose that we choose C = Id. Proceeding analogously,

det(ΣS(t)) =
(α

2

)d det(Id − e−2DSt)

det(DS)

We can think of choosing C = Id or C =
√
A to be extreme cases and it is interesting to observe

that the Hellinger distance is more sensitive to dataset perturbation when C = Id. Our proposed
method of this paper was to choose C =

√
diag (A) and experiments in Section 4 seem to suggest

that choosing the square-root of diagonal captures much of the generalization behavior of full Fisher.
Understanding precisely why this is the case poses an interesting research direction to pursue in the
future.

A simple scaling argument also highlights the importance of the trade-off between optimization
and generalization. Consider Cλ = λC. Then Theorem 3.1 suggests to take λ small to reduce
the variance and improve convergence. However, in that case Σλ = λ2Σ where Σ is given by the
Eqn. 12 for C and

H2(πt, π
′
t) = 1− det(ΣS)

1
4 det(ΣS′)

1
4

det(ΣS+ΣS′
2 )

1
2

exp

{
− 1

8λ2
(µS − µS′)>

(
ΣS + ΣS′

2

)−1

(µS − µS′)

}
and the Hellinger distance get close to one in the limit of small λ (which intuitively corresponds to
the large batch situation).

C FISHER INFORMATION MATRIX FOR DEEP NEURAL NETWORKS

In this section, we give a formal description of the true Fisher information matrix, rather than the
empirical version, for both feed-forward networks and convolutional networks. In addition, we give
the diagonal expression for both networks.

C.1 FEED-FORWARD NETWORKS

Consider a feed-forward network with L layers. At each layer i ∈ {1, . . . , L}, the network compu-
tation is given by

zi = Wiai−1

ai = φi(zi),

where ai−1 is an activation vector, zi is a pre-activation vector, Wi is the weight matrix, and φi :
R→ R is a nonlinear activation function applied coordinate-wise. Let w be the parameter vector of
network obtained by vectorizing and then concatenating all the weight matrices Wi,

w = [vec(W1)> vec(W2)> . . . vec(WL)>]>.

Furthermore, letDv = ∇v log p(y|x,w) denote the log-likelihood gradient. Using backpropagation,
we have a decomposition of the log-likelihood gradient DWi into the outer product:

DWi = gia
>
i−1,

where gi = Dzi are pre-activation derivatives. The Fisher matrix F (w) of this feed-forward network
is a L× L matrix where each (i, j) block is given by

Fi,j(w) = E[vec(DWi) vec(DWj)
>] = E[ai−1a

>
j−1 ⊗ gig>j ]. (14)
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Diagonal version. We give an expression for the diagonal of Fi,i(w) here. The diagonal of F (w)
follows immediately afterwards. Let a2

i−1 and g2
i be the element-wise product of ai−1 and gi re-

spectively. Then, in vectorized form,

diag (Fi,i(w)) = E[vec((a2
i−1)(g2

i )>)],

where (a2
i−1)(g2

i )> is the outer product of a2
i−1 and g2

i .

C.2 CONVOLUTIONAL NETWORKS

In order to write down the Fisher matrix for convolutional networks, it suffices to only consider
convolution layers as the pooling and response normalization layers typically do not contain (many)
trainable weights. We focus our analysis on a single layer. Much of the presentation here fol-
lows (Grosse & Martens, 2016; Luk & Grosse, 2018).

A convolution layer l takes as input a layer of activations aj,t where j ∈ {1, . . . , J} indexes the
input map and t ∈ T indexes the spatial location. T here denotes the set of spatial locations, which
we typically take to be a 2D-grid. We assume that the convolution here is performed with a stide
of 1 and padding equal to the kernel radius R, so that the set of spatial locations is shared between
the input and output feature maps. This layer is parameterized by a set of weights wi,j,δ , where
i ∈ {1, . . . , I} indexes the output map and δ ∈ ∆ indexes the spatial offset. The numbers of
spatial locations and spatial offsets are denoted by |T | and |∆| respectively. The computation of the
convolution layer is given by

zi,t =
∑
δ∈∆

wi,j,δaj,t+δ. (15)

The pre-activations zi,t are then passed through a nonlinear activation function φl. The log-
likelihood derivatives of the weights are computed through backpropagation:

Dwi,j,δ =
∑
t∈T

aj,t+δDzi,t.

Then, the Fisher matrix here is

E[Dwi,j,δDwi′,j′,δ′ ] = E

[(∑
t∈T

aj,t+δDzi,t

)(∑
t′∈T

aj′,t′+δ′Dzi′,t′
)]

.

Diagonal version. To give the diagonal version, it will be convenient for us to express the com-
putation of the convolution layer in matrix notation. First, we represent the activations aj,t as a
J × |T | matrix Al−1, the pre-activations zi,t as a I × |T | matrix Zl, and the weights wi,j,δ as a
I×J |∆|matrixWl. Furthermore, by extracting the patches surrounding each spatial location t ∈ T
and flattening these patches into column vectors, we can form a J |∆| × |T | matrix Aexp

l−1 which we
call the expanded activations. Then, the computation is Eqn. 15 can be reformulated as the matrix
multiplication

Zl = WlA
exp
l−1.

Readers familiar with convolutional networks can immediately see that this is the Conv2D operation.

At a specific spatial location t ∈ T , consider the J |∆|-dimensional column vectors of Aexp
l−1 and

I-dimensional column vectors of Zl. Denote these by a(:,t)
l−1 and z(t)

l respectively. The matrix Wl

maps a(:,t)
l−1 to z(t)

l . In this case, we find ourselves in the exact same setting as the feed-forward case
given earlier. The diagonal is simply

E
[
vec
(

(a
(:,t)
l−1 )2(Dz(t)

l )2
)]

D KRONECKER-FACTORED APPROXIMATE CURVATURE (K-FAC)

In Section 4, we compared the diagonal approximation of the Fisher matrix to the Kronecker-
factored approximate curvature (K-FAC) (Martens & Grosse, 2015) approximation of the Fisher
matrix. We give a brief overview of the K-FAC approximation in the case of feed-forward networks.
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Recall that the Fisher matrix for a feed-forward network is a L × L matrix where each of the (i, j)
blocks are given by Eqn. 14. Consider the diagonal (i, i) blocks. If we approximate the activations
ai−1 and pre-activation derivatives gi as statistically independent, we have

Fi,i(w) = E[vec(DWi) vec(DWi)
>] = E[ai−1a

>
i−1 ⊗ gig>i ] ≈ E[ai−1a

>
i−1]⊗ E[gig

>
i ].

Let Ai−1 = E[ai−1a
>
i−1] and Gi = E[gig

>
i ]. The K-FAC approximation F̂ of the Fisher matrix F

is

F̂ =


A0 ⊗G1 0

A1 ⊗G2

. . .
0 AL−1 ⊗GL

 .
The K-FAC approximation of the Fisher matrix can be summarized in the following way: (1) keep
only the diagonal blocks corresponding to individual layers, and (2) make the probabilistic modeling
assumption where the activations and pre-activation derivatives are statistically independent.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we give additional validation accuracy results to complement Table 1. The additional
regimes we experiment with are: BatchChange, Multiplicative, and K-FAC. For BatchChange, we
use SB for 50 epochs and LB for 150 epochs. We perform this experiment to verify the argument
given in Smith et al. (2017) that adapting from a small-batch regime to large-batch regime can
close generalization gap. While Table 2 shows that BatchChange attains good validation accuracy
numbers comparable to SB, this is not a preferred solution as it is not strictly LB training during the
whole process which sacrifices the benefits of LB training in the early stages of training.

The other experiments we report here are Multiplicative and K-FAC. Multiplicative stands for multi-
plying gradients with Gaussian noise with constant diagonal convariance structure. This idea comes
from (Hoffer et al., 2017). K-FAC means we use the K-FAC approximation instead of diagonal
Fisher noise in Algorithm 1.

Table 2: Validation accuracy results on classification tasks using BatchChange, Multiplicative, K-FAC. For
reader’s convenience, we report again the result of Diag-F+GBN

Dataset Network SB BatchChange Multiplicative K-FAC Diag-F+GBN

CIFAR-10 VGG16 93.25 93.18 90.98 93.06 93.15 ± 0.05
CIFAR-100 VGG16 72.83 72.44 68.77 71.86 71.94 ± 0.14
CIFAR-10 ResNet44 93.42 93.02 91.28 92.81 92.72 ± 0.15
CIFAR-100 ResNet44x2 75.55 75.16 71.98 73.84 74.10 ± 0.18

We give the training plots over epochs, the experimental results with the square root learning scaling
scheme in the following table and plots,
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Table 3: Validation accuracy results on classification tasks where Diag F+GBN uses square-root scaling learn-
ing rate.

Dataset Network SB LB+GBN Diag-F+GBN

CIFAR-10 VGG16 93.25 91.6 92.9
CIFAR-100 VGG16 72.83 69.1 71.5
CIFAR-10 ResNet44 93.42 91.7 92.6
CIFAR-100 ResNet44x2 75.55 72.8 73.6
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Figure 4: Validation error over number of epochs. Left: Training on CIFAR-10 with VGG-16. Right: Train-
ing on CIFAR-100 with resnet44. The reason why 4K with diagonal Fisher converges faster than the 4K GBN
baseline in the beginning is because we need to use a larger learning rate for 4K GBN to get the best gener-
alization performance, which makes it actually converge a bit slower in the beginning. If they share the same
learning rate scheme, 4K GBN would converge a bit faster because it is less noisy.
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