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Abstract

Quantum computing is an information processing paradigm
with the potential to solve certain problems faster than any
algorithm running on classical computer architectures. In the
next few years, new processors will be developed that sup-
port quantum computations exceeding the simulation abil-
ity of even the largest classical computer systems. A num-
ber of academic and industrial groups are developing pro-
totypes of such devices, also known as NISQ (Noisy Inter-
mediate Scale Quantum) processors. Much as software must
be compiled to run on classical computers, quantum algo-
rithms must be compiled to take into account the constraints
of particular NISQ devices. Especially in these early proto-
types, algorithm performance degrades with runtime due to
noise; for this reason, minimizing the runtime of the com-
piled algorithm (which is represented by a ”quantum circuit”)
is critical. We describe a software framework to enable an
automated reasoning approach to Quantum Circuit Compi-
lation for NISQ architectures (QCC-NISQ), and our current
implementation of it as part of software suite for automated,
architecture-aware, compilation for emerging quantum com-
puters. The key components of this suite are a circuit synthe-
sizer, a QCC solver, and a visualizer. These tools provide crit-
ical support for the continued development of practical quan-
tum computers and research into quantum algorithms.

1 Introduction
Quantum computing is an emerging computational
paradigm with the potential to solve certain problems faster
than any algorithm running on classical computer architec-
tures. The breadth of quantum computing applications will
become clearer in the next few years as new processors are
developed that support quantum computations exceeding
the simulation ability of even the largest classical supercom-
puters. The emerging gate-model noisy, intermediate scale
quantum (NISQ) processor units, currently in the prototype
phase, are universal in that, once scaled up, they can run
any quantum algorithm.

Much as software must be compiled to run on classi-
cal computers, quantum algorithms, also referred to as log-
ical quantum circuits, must be compiled to take into ac-
count the constraints of particular NISQ devices. Especially
in these early prototypes, algorithm performance degrades
with runtime due to noise; for this reason, minimizing the
runtime of the compiled circuit is critical. Current NISQ ar-

chitectures have geometric limitations (e.g., connectivity),
the specifics of which vary from processor to processor.
In this paper, we concentrate on the problem of produc-
ing optimally-compiled circuits given the geometric limita-
tions of the processor. Variants of this problem are known as
the qubit mapping, qubit routing, qubit allocation, and qubit
movement problem. We refer to this problem as Quantum
Circuit Compilation for NISQ architectures (QCC-NISQ).

We focus on solid-state architectures based on supercon-
ducting quantum bits (qubits), which are among the most
advanced NISQ processors. As one example of a geomet-
ric limitation, the planar architecture of these processors
means that quantum operations can be carried out only be-
tween nearest-neighbor locations (qubits). A variety of small
superconducting processors, with varying architectures, al-
ready exist. Such processors include the 20-qubit IBMQ20
by IBM made available through the Q-Network (IBM Corp.
2018); the 8-, 16-, and 19-qubit chips by Rigetti Comput-
ing (Rigetti Computing 2018), and the 72-qubit Bristlecone
processor unveiled recently by Google (Google AI Blog
2018). The 50-qubit Intel Tangle Lake chip (Intel Corp.
2018) and a new IBM 50-qubit device are under test and
evaluation. Other commercial players in the superconduct-
ing NISQ race include Alibaba (Alibaba Cloud 2018) and
Quantum Circuits Inc. (Ofek et al. 2016).

In this paper, we detail our software suite based around
applying AI Planning, aided by Constraint Programming
(CP), to solve the QCC-NISQ problem. Our suite targets:
(1) multiple gate-model quantum computing hardware plat-
forms built by different companies (specifically, at the time
of writing, Google, Rigetti, and IBM), and (2) different com-
binatorial optimization problems that can be solved with
specific quantum algorithms such as the quantum alternating
operator ansatz algorithm (QAOA) (Hadfield et al. 2019)
(e.g., Max-Cut, graph coloring, and job shop scheduling).
While we have previously published technical details on
how we model and solve the QCC-NISQ problem, in this
paper we report not only on the actual QCC-NISQ solver,
but also on our software suite in its entirety: its components,
engineering, and deployment in this promising application
area for AI technologies.



2 QCC for NISQ Devices
In the circuit model of quantum computation, a quantum
algorithm is expressed conceptually as a logical quantum
circuit, consisting of a series of quantum operations called
quantum logic gates. Quantum processors are physical de-
vices that implement these quantum logic gates so that the
desired quantum operations can be carried out on the quan-
tum states stored in the qubits. In simple cases, the quantum
logic gates directly correspond to physical quantum gates
on the quantum processor, but more typically the processor
has physical constraints that prevent a quantum logic circuit,
describing the desired algorithm, from being directly imple-
mented.

At a high level, these constraints can be classified into
two types: (1) gate set constraints (i.e., those that specify
the set of logic gates the processor is capable of applying),
and (2) geometric constraints (i.e., those that specify upon
which sets of qubits the available logic gates can be applied,
limited by, for example, processor connectivity). Although
these constraints differ among quantum processors, quan-
tum algorithms can be re-expressed respecting the processor
constraints with polynomial overhead in the number of gates
(Brierley 2017). As such, for theoretical algorithmic work,
the design of logical quantum circuits without concern for
the implementation constraints of physical devices is suf-
ficient. However, to implement a quantum algorithm on an
actual device, these constraints must be efficiently addressed
to take full advantage of NISQ processors.

In this work, we focus on a particular approach to address-
ing geometric constraints associated with processor connec-
tivity. The approach maps logical qubits to physical qubits
on the processor and iteratively updates the mapping through
the insertion of additional gates in the course of the com-
putation so as to enable the logical operations to be imple-
mented respecting the physical contraints. This problem is
often referred to as “quantum compilation,” though quan-
tum compilation usually involves addressing gate set con-
straints as well as geometric (e.g., connectivity) constraints.
Another simple constraint is that gates involving the same
qubit cannot be executed in parallel. A generalization of this
constraint is a “cross-talk” constraint that may prevent gates
in physical proximity from being executed at the same time
(Booth et al. 2018).

QCC-NISQ frequently requires adding supplementary
operations supported by the hardware to those specified
in the idealized circuit. Current superconducting quantum
processors have planar architectures with connections only
between nearest-neighbor locations (qubits), resulting in
restrictions as to where gates can be applied. Specifically,
a gate can operate only on qubit states located on adjacent
qubits on the chip. To compensate for the nearest-neighbor
limitation, swap gates can move qubit states between
connected qubits to reach a configuration where the desired
gate, specified in the idealized circuit, can be applied. Cur-
rent quantum computational hardware suffers greatly from
decoherence (akin to noise), which degrades the fidelity of
the computation (Bishop 2017). In NISQ processors, deco-
herence is intimately linked to the duration of the executed
circuit that carries out the quantum computation, so it is
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Figure 1: Pictorial view of QCC-NISQ concepts. At the
highest level, an idealized quantum circuit specifies a se-
quence of quantum logical gates over qubit states that
solves a specified problem (top). The idealized quantum cir-
cuit could conceptually be implemented on fully-connected
quantum hardware in which gates can be carried out between
all pairs of physical qubits, which is depicted here by a fully-
connected graph. Qubit states in an idealized quantum cir-
cuit are mapped onto physical qubits in the fully-connected
architecture. At this level, gates are specified between phys-
ical qubits and can be executed in parallel if they do not in-
volve the same qubit (middle). In an actual NISQ chip, phys-
ical gates can only be carried out between a subset of pairs
of qubits, usually nearest neighbors in a 1D or 2D array. To
carry out 2-qubit gates specified in idealized quantum cir-
cuits between qubits that are not connected, swap gates are
added to route logical qubit states to physical qubits that are
connected so that the desired gates can be applied (bottom).

critical to minimize the duration of compiled circuits. Thus,
compilation is challenging due to: the parallel execution of
gates with different durations, the planar or quasi-planar
topology of the qubit locations on the chip, the ordering
constraints from the original idealized circuit, as well as
additional constraints such as cross-talk.

Example: Figure 1 shows a concrete QCC example requir-
ing gate operations gA = G(q1, q2) and gB = G(q3, q8). At
the top, the algorithm is specified, as is typically done in the
gate-model quantum computing literature, as an idealized
quantum circuit, with sequential specifications of 2-qubit
gates over qubit states. There are no hardware constraints;
further, some ordered pairs of gates in the idealized circuit
may commute (i.e., could execute in arbitrary order, even
simultaneously, and still produce correct results). A fully-
connected quantum hardware, with no hardware constraints



except that two gates involving the same qubit cannot be
carried out at the same time, is represented in the middle
as a complete graph connecting all possible pairs of qubits.
The gates gA and gB are indicated as a subset of this graph
(yellow edges). A corresponding real-world NISQ chip has
gates between only a small subset of qubit pairs (bottom).
For instance, the gates acting respectively on qubit states q1
and q2 and on q3 and q8 can be executed, even concurrently,
when these states are located at pairs qubits connected in
the chip. Furthermore, on the actual chip, gate execution du-
rations may differ depending on the actual location they are
executed, indicated by red or blue edges in the chip (bottom).
Cross-talk constraints preclude operations on qubits that are
physically located nearby an activated gate. A 2-qubit gate
operating on the quantum state residing on qubit n1 and n2

will prevent any other gate operating concurrently on n3 or
n8; this is shown by the yellow Xs (bottom). In this example,
we assume the initial assignment of quantum states to qubits
allocates qi to qubit ni, shown as a dashed line. We see that
gA can be applied immediately, but gB involves two qubit
states that are not mapped to nearest neighbors. One solu-
tion is for the QCC software to add additional “swap” gates.
For instance, swap(n1, n8) and concurrently swap(n2, n3),
shown in bold (bottom), will bring the states q3 and q8 to
qubits where gB can be applied. This highlights that the
QCC procedure can also determine the initial assignment
task (i.e., decide the initial qubit location for each qubit state
on the idealized hardware) to optimize the gate schedule. For
example, the QCC solver could decide to initialize q3 and q8
on two adjacent qubits on the actual hardware chip, avoiding
all swaps for executing the idealized circuit in question.

To summarize, to compile from the idealized quantum
circuit illustrated at the top of Figure 1 consisting of two
gates {G(q1, q2),G(q3, q8)} and no hardware constraints,
into the sequence of (parallel) gates that can be executed in
the actual NISQ hardware chip at the bottom of Figure 1,
the QCC solver will: (1) first find the initial locations for the
four qubit states q1, q2, q3, and q8 on the NISQ chip; then
(2) add auxiliary swap gates to bring the two pairs (q1, q2)
and (q3, q8) to adjacent physical qubits that are connected
and execute the required operations; and (3) schedule all
the gates, each with possibly different duration, to execute
in parallel in the shortest amount of time, while obeying all
hardware constraints such as cross-talk constraints.

Existing Work on QCC: Since the development of NISQ
superconducting processors, there has been development of
software libraries to synthesize and compile quantum cir-
cuits from algorithm specifications (Wecker and Svore 2014;
Smith, Curtis, and Zeng 2016; Steiger, Häner, and Troyer
2018; Barends and others 2016), including work explicitly
addressing theoretical bounds on the overhead introduced by
swap gates (Beals and others 2013; Brierley 2017; Bremner,
Montanaro, and Shepherd 2017). Recently, it was proven
that the QCC problem and its common variants are NP-
Complete (Botea, Kishimoto, and Marinescu 2018). (Bhat-
tacharjee and Chattopadhyay 2017) investigated approaches
with off-the-shelf MILP solvers, such as Gurobi, for solv-
ing QCC. (Guerreschi and Park 2018; Zulehner and Wille

2018) developed heuristics that address NISQ constraints
while minimizing the number of required swap gates. The
initial assignment task has been recently addressed in (Paler
2019). Policies for compilation in chips with variable per-
formance parameters among different qubits and gates have
been studied in (Tannu and Qureshi 2018), as well as in (Mu-
rali et al. 2019). In (Oddi and Rasconi 2018; Rasconi and
Oddi 2019), the authors present heuristics (greedy random-
ized search, and genetic algorithms) specifically designed to
solve the QCC Max-Cut benchmark set that was introduced
in (Venturelli et al. 2018). In (Booth et al. 2018), CP is ex-
plored as an alternative and complementary approach to the
temporal planning methods introduced in (Venturelli et al.
2018). Other methods are proposed in (Li, Ding, and Xie
2018) and in (Childs, Schoute, and Unsal 2019), where the
crosstalk-free compilation of circuits is handled heuristically
on benchmarks for the IBM chip. In (Khatri et al. 2018),
an approach based on iteratively learning a sequence of na-
tive gate implementing a target unitary is introduced, solving
the problem of compilation with that of gate-synthesis at the
same time, for small shallow circuits. Another recent learn-
ing approach in (Jones and Benjamin 2018) converts the ap-
proximate compilation problem into an auxiliary quantum
variational algorithm native on the hardware. In (Nash, Ghe-
orghiu, and Michele 2019) and (Kissinger and Meijer-van de
Griend 2019) the QCC problem is solved heuristically for
circuits consisting of CNOT gates only.

3 Automated Reasoning for QCC-NISQ
Our approach to solve the QCC-NISQ problem is to deploy
a general-purpose software suite that leverages model-based
approaches, including temporal planning and constraint
programming (CP) for the solution of the actual combinato-
rial problem. Since quantum computing is still a relatively
new paradigm, different quantum hardware architectures
and algorithms running on them are introduced and revised
frequently, with no current clear winner. Therefore, instead
of a machine-specific QCC tool, there is a tremendous
benefit in developing a general-purpose QCC software suite
that is capable of addressing different hardware architec-
tures, different quantum algorithms running on them, and
different optimization problems that can be solved by those
algorithms. Furthermore, our approach is a very attractive
option because: (1) declarative model adjustment (e.g.,
through a declarative planning model) can adapt quickly
to revised hardware designs and constraints, and can also
cover a wide range of hardware architectures; (2) existing
hardware from various companies are still limited in size,
thus even general-purpose algorithms can quickly find good,
sometimes proven optimal, solutions.

Why AI Planning? In planning, a planner searches for a
set of actions that can be executed in sequence to achieve
the pre-defined set of goals, while satisfying all domain
constraints. In model-based temporal planning, specifically
PDDL-based planning, actions can have different durations
and can be executed in parallel. We choose planning to be
the center piece of the QCC solver suite because:



• The action model and plan constraints in PDDL planning
can be used to describe gate operation naturally, capturing
chip layout, gate duration, and domain constraints such as
“cross-talk”. This flexibility lets us model various chips
from all of the groups mentioned above developing NISQ
chips.

• Any new adjustment or hardware updates from the man-
ufacturer can also be reflected easily in planning model
updates, without extensive writing of new software.

• The default objective function of optimizing makespan for
most temporal planners fits well with quantum decoher-
ence (discussed in the previous section).

• There are multiple off-the-shelf open-sourced PDDL tem-
poral planners that have been tested through multiple In-
ternational Planning Competitions (IPC), providing a rich
set of algorithms, ranging from exact to anytime, to test
on the NISQ-QCC problem.

For more details on the AI planning approach to NISQ-
QCC, see (Venturelli et al. 2018).

Why Constraint Programming? Constraint Programming
(CP) is a paradigm for modeling and solving combinato-
rial optimization problems, leveraging a diverse set of tech-
niques from fields including operations research and arti-
ficial intelligence (Rossi, Van Beek, and Walsh 2006). CP
is more general than other discrete optimization paradigms,
such as integer programming, as it allows variable types be-
yond integer and continuous (e.g., interval and set variables),
and drops the linearity on the constraints and objective func-
tion. CP complements PDDL-based planning for the QCC
software suite for a number of reasons, including:
• The scheduling characteristics of QCC (i.e., gate du-

rations, precedence constraints, makespan minimization,
and unary qubit capacity) are readily modeled within
modern CP solver software.

• Solutions found by PDDL-based planning or a heuristic
method can be used as a starting point for the CP search,
leading to subsequently better solutions.

• The CP search is an exact algorithm, ensuring that, given
enough runtime, the optimal quantum circuit compilation
will be found. Additionally, modern CP solvers provide
anytime bounds on solution quality in the form of an op-
timality gap.

For more details on the CP approach to optimize circuits
together with planners, see (Booth et al. 2018).

4 System Architecture
The objective of the whole framework is to provide to quan-
tum computing researchers the ability to efficiently deploy
executables of specific quantum algorithms by keeping con-
trol over the tradeoffs imposed by the different choices re-
lated to what strategy to adopt to solve the QCC-NISQ prob-
lem. While the key component of our suite is the QCC solver
that does the compilation, multiple additional tools comple-
ment the software suite.
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Figure 2: The software suite architecture. Arrows indi-
cate input-output relationship between data structures (black
text) and software components (red text). The visualizer can
be optionally available (dashed lines) to display the data
structure that interacts with the QCC solver in a compelling
way. See text of section 4 for details.

Figure 2 shows the architecture of our software suite, with
the initial inputs provided by the users consisting of two
main components: the problem instance containing details
on the problem for which we attempt to solve using a quan-
tum algorithm, and the machine configuration specifying the
details of the gate-model quantum chip (e.g., physical lay-
out, gate durations, constraints). (A third input, the algo-
rithm parameters, concerns the setting of the classical pa-
rameters of the gates once they are already compiled, and
will be discussed in connection with the generation of the
executable.)

These inputs are provided to the Synthesizer that gen-
erates three different outputs (described in later sections),
that can be fed into two other components: the QCC Solver
and the Machine Code Generator (MCG). The QCC Solver
generates planning problems in the standard Planning Do-
main Definition Language (PDDL) and generates plans in
the standard IPC format, which can then be parsed in a cir-
cuit plan representation or fed into the CP solver (the ”opti-
mizer”) to generate a better quality solution.

The last two components are: the Visualizer, which can
show graphically the machine logical layout, the high-level
problem specifications, and the QCC solutions; and the
Machine Code Generator, which maps the QCC solution
and information on how to synthesize gates onto a particular
hardware architecture to produce the machine-specific
executable file (e.g. a python script) that can submit a job on
the cloud to a quantum NISQ device through its public API.

In the rest of this section, we will describe in more detail
the different components and their inputs and outputs.

(Circuit) Synthesizer (CS): the CS is in charge of two main
tasks: (1) generate the low-level gate synthesis (gate decom-



positions) to act as one input to the MCG; and (2) generate
the inputs for the QCC Solver (circuit DAG and abstract de-
vice).

The first task is meant to decompose the abstract gates,
which appear in the idealized circuit of the quantum al-
gorithm, into elementary gates supported by the hardware,
whose duration in nanoseconds is known at all possible loca-
tions in the chip. This decomposition is known as the gate-
synthesis problem. It is non-trivial in the general case, but
for many quantum algorithms and for standard universal el-
ementary gate sets, optimal decompositions are known. Cur-
rently, the CS implementation just consists of a lookup li-
brary of known decompositions into elementary gates 1. This
decomposition library has been found by various methods,
including proven optimal results (Vatan and Williams 2004).
The CS assigns a total duration (in standardized clock units)
to each possible logical gate, to inform the second compo-
nent of the module that will have to generate the input files
to the QCC solver.

The second task is to instantiate an abstract device soft-
ware object, which is representing the topology of the hard-
ware but is aware only of the different types of gates that
need to be scheduled (including swaps), which are repre-
sented as edges, and their duration obtained through syn-
thesis (the edge weight). The abstract device includes infor-
mation about crosstalks/simultaneity constraints in the form
of an extra graph whose vertices are the edges of the hard-
ware graph and whose edges indicate impossibility of con-
current gate operations using the corresponding edges of the
hardware graph. Fig. 1 (bottom) is a pictorial representa-
tion of some informations contained in the abstract device.
While the properties described in the Abstract Device in-
stance are tailored to the QCC solver capabilities, the device
class should be used by different solvers. For instance, if a
non-temporal method is used as a solver instead of temporal
planning, the gate durations could be discarded.

Finally, the CS composes a Directed Acyclic Graph (Cir-
cuit DAG) representation of the problem instance, which
takes care of defining the partial ordering rules of the gates
composing the circuit. The vertices of the DAG correspond
to gates on specified qubits and the arcs correspond to
precedence constraints; operations that are incomparable by
this relation can be scheduled in any order relative to each
other. This freedom arises naturally in quantum computation
for quantum gates that “commute” with each other, i.e.,
produce the same effect regardless of the order in which
they are applied. But can also be used in the context of
heuristic algorithms that try to balance the effectiveness of
the logical circuit and cost of implementing it as a physical
circuit. The DAG includes only the synthesized two-qubit
gates that are necessary for the logical description of the
algorithm.

QCC Solver: The QCC solver takes the SC input and pro-
duces internally the PDDL files that represent the planning
instances. The ultimate objective of this module is to output

1Elementary gates might include CZ, CNOT, iSWAP, the
PhasedXPowGate of Google’s chip and single qubit rotation gates.

the circuit plan, which is the compiled representation of the
target algorithm. The following options are currently imple-
mented:
• With/without cross-talk constraints: specifying whether

or not the underlying hardware has cross-talk constraints
between adjacent qubits; see Figure 1 (bottom).

• With/without qubit initialization: specifying whether or
not the QCC Solver should decide (as part of the plan-
ning objective) the mapping of specific qubits to quan-
tum states at the beginning of the algorithm; see Figure 1
(dashed line, middle-bottom).

• Single or multiple phases: specifying if the idealized
circuit should be executed multiple times in sequence
(see Section 2). This is particularly important for QAOA
circuits, which require insertion of alternating “phase-
separation” and “mixing” sets of gates to increase the ac-
curacy of the solution returned by the algorithm. Require-
ments on running multiple phases will lead to CS gener-
ating PDDL files with different sets of actions and goals.
The planning instance is processed by a Planner to obtain

a temporal plan, which is a sequence of gates to be executed
on the designated hardware architecture. Specifically, at the
moment we use two different macro-approaches to generate
the final plan2:

• Use off-the-shelf temporal planners that can take the stan-
dard PDDL input. The following planners have been used:
LPG, TFD, POPF, CPT, and SGPlan; all previous winners
at different IPC. The performance of different individual
planners is reported on in (Venturelli et al. 2018).

• Use a combination of planning and CP in a hybrid setting
where plans found by any temporal planner can then be
used to warm-start (i.e., seed) the CP model that in turn is
solved by the commercial software CP Optimizer to find
a new, better quality plan. The evaluation of this approach
is described in (Booth et al. 2018) 3.

Results on the use of the QCC solver with the various
variants for MaxCut QAOA are presented in (Venturelli et
al. 2018) and (Booth et al. 2018). The QCC solvers have
been also configured for tests on Graph Coloring, which are
currently being performed. The versatility of our approach
utilizing off-the-shelf domain-independent PDDL temporal
planners is reflected in the ability to quickly test machine
models from different companies (Rigetti, Google, IBM) at
different scales and diffferent chip layouts, for different set
of gate operations, gate durations, and gate constraints.

Figure 3 shows the visualizer displaying a single phase
of QAOA to solve a Maxcut problem (referred to below as
Maxcut-QAOA) on the Google Bristlecone chip. The figure
shows the following components:
• Goal Graph: at the top-left corner, the goal graph shows

the gates to be scheduled (colored edges) according to the
2The plans generated either by planner or CP Optimizer are val-

idated by the official plan validator software VAL before passing on
to the next component.

3The CP model is not automatically generated.



Figure 3: Our visualizer interface with: Goal Graph (top-left), Machine Graph (top-right), and QCC plan (bottom).

idealized quantum circuit. For Maxcut-QAOA, the goal
graph is identical to the actual graph that we want to cut.
The goal graph contains essentially information related to
the circuit DAG (Fig. 2).

• Machine Graph: at the top-right corner, the machine
graph represents the underlying logical layout of the
NISQ processor target (in this case, a portion of Google’s
Bristlecone chip). Multiple connections between a given
pair of qubits represent different types of gates that can
be applied to the nearest-neighbor connected qubits. Each
type of gate has a different duration. The machine graph
contains essentially information related to the abstract de-
vice (Fig. 2).

• QCC plan: this shows the temporal schedule of gate op-
erations as a Gantt chart, each with its starting time, du-
ration, and the qubits involved in that particular gate op-
eration. The gates are color coded to match the high-level
goals (see the matching edge color on the Goal Graph
described above). Sliding over the timeline of this Gantt-
chart representation will also highlight on the machine
graph the qubit set and the active gates operating on that
set, at the timepoint selected on the timeline of the plan.
For reference, in Figure 3, the slider has been set on time
slot number 5. The QCC plan contains essentially the
same information related to the circuit plan (Fig. 2).
For the case of graph coloring, the QAOA algorithm

logical gates require multiple kind of two qubit gates,
as explained in (Hadfield et al. 2019). A more advanced
visualizer that is able to show the various steps by using
different colors, graphic notations and animations is under
development.

Machine Code Generator (MCG): this component out-
puts the machine instructions that perform the compiled
algorithm on the target quantum processor or in a simulator
(the Executable circuit). The MCG integrates the abstract
QCC solution (the circuit plan) with the gate synthesis in-
structions generated by the CS, and sets the parameters that
are required for the execution of the algorithm, which are
given as inputs (Algorithm parameters). More specifically,
it unwinds the duration abstraction of the gates that has
been scheduled and replaces the composite gate with the
code that activates the exact sequence of native gates on
the chip with the correct parameters. For instance, for the
case of QAOA, these includes the angles for the alternating
unitary transformations that compose the algorithm. The
algorithm specifications not only set the individual gate
parameters, but also many control-loop policies for hybrid
classical-quantum computation. Examples include the mea-
surement and accuracy evaluation functions that determine
whether the algorithm needs to be iterated one more time
with different parameters after execution.

Current deployment and implementation details: The
software suite we describe ultimately will be integrated with
the general software framework for programming quantum
processors QuaSar (NASA’s Quantum user-assisting Soft-
ware for applied research. QuaSar is a high-level back-
end and frontend system, soon to be released, which sup-
port transparent inter-operability between code written for
most quantum computers that released APIs, including Cirq,
Rigetti Computing PyQuil as well as QASM 2.0.



The current implementation of the CS, and of the
QCC Solver is in Cirq (Google AI 2018)4, an opensource
framework that conveniently abstracts several aspects of
temporal manipulation of operations in quantum circuits.
This excludes the actual implementation of the planner
and the CP optimizer, that varies case by case (they
are considered external black boxes to be interfaced).
The output of the MCG is a Cirq schedule object; such
an object can be run directly on Google’s hardware or
converted by QuaSar to the common quantum circuit for-
mat QASM for compatibility with other hardware providers.

Relation to existing work on software frameworks: as re-
viewed in (LaRose 2019), most quantum computing com-
panies have released software frameworks that allow end-
to-end deployment of quantum algorithms. These packages
could be as simple as generic wrappers around machine in-
struction languages, or include suites for handling specific
aspects. For instance, Xanadu’s PennyLane focuses on facil-
itating aspects of development of (quantum) machine learn-
ing algorithms (Bergholm et al. 2018), Microsoft’s Quantum
Development Kit (Svore et al. 2018) focuses on resource
estimation for fault-tolerant quantum computers, and Zap-
ata’s algo2qpu (Sim et al. 2018) focuses attention on the
hybridization of variational algorithms with classical opti-
mization techniques.

Our framework focuses on facilitating the optimization of
the compilation by allowing the user to use alternative com-
pilation strategies, possibly hybridizing them, and allowing
the inspection of the results of the compilation.

5 Conclusions and Future Work
We have introduced a framework for applying AI Planning
to the QCC-NISQ problem, and developed a software suite
that implements components of that framework. The frame-
work and suite are completely general and can be used to tar-
get quantum computing hardware devices of different types
and by different companies. Different planning algorithms,
complemented by hybrid algorithms using Constraint Pro-
gramming, can be used to compile a qunatum circuit to a
specified hardware device. The compiled circuit can be vi-
sualized, enabling users to understand how the compilation
of the circuit interacts with the constraints of the device. The
resulting compiled circuit can then be run on actual hard-
ware, or simulators therof, by different companies. The flex-
ibility of declarative AI planning models allows us to solve
the QCC-NISQ problem for these diverse hardware architec-
tures, and to evolve our solutions as the details of the hard-
ware evolve.

The suite integrates several planners (LPG, POPF, TFD,
CPT, and SGPlan), together with IBM’s CP Optimizer suite,
the best performing commercial software of its kind. We
have generated tens of thousands of instances of the QCC-
NISQ problem based on pairing QAOA for MaxCut on ran-
dom graphs with quantum computer architectures of varying
size and constraints. Performance comparisons of different
planners and hybrid approaches are reported in (Booth et

4https://github.com/quantumlib/Cirq

al. 2018; Venturelli et al. 2018) and benchmark instances
are available online5 and have already been used to test
other QCC-NISQ solver approaches (e.g. in (Oddi and Ras-
coni 2018)). Future hybrid efforts are under development,
including the use of different planners hybridized with LPG,
which can take as input a “seed” plan. While CP improves on
seed plans, it requires a separate modeling effort; hybridiz-
ing multiple planners uses multiple algorithms but requires
no additional modeling effort.

We claim that a general-purpose software suite built on
declarative planning algorithms and constraint programming
is a promising approach to addressing the constraints of
NISQ devices. A highly optimized problem-specific tool
may perform better in some cases, but at the cost of signif-
icant engineering effort that cannot be reused for new prob-
lems. Our model-based, automated reasoning approach is
very flexible with respect to features of the hardware graph,
including irregular structures, as often arise from manufac-
turing imperfections. The ease and expressiveness of PDDL
modeling facilitates the inclusion of additional features that
are characteristic of quantum computer architectures, such
as the ability to quantum teleport quantum states across the
chip (Copsey et al. 2003), providing more flexibility than
mere nearest-neighbor swap.

The modularity of the software suite we introduced al-
lows it to be improved iteratively, giving a foundation for
future work on the application artificial intelligence methods
to quantum computing. Here, we focused on the makespan
of the compiled circuit as the objective function to minimize,
but data from ongoing experimental work will likely yield
more sophisticated quantities to optimize. We are also ac-
tively looking at compiling circuits corresponding to QAOA
for different combinatioral optimization problems (e.g. job
shop scheduling), many of which involve new types of
multi-qubit gates with different characteristics from the sim-
ple ones used in illustrative examples in this paper and in
other introductory publications. Another avenue of exten-
sion of our work is to generalize the NISQ-QCC problem
and our software suite to the specificities of quantum pro-
cessors that are dramatically different than superconducting
NISQ devices. For instance, soon to made available Ion-
trap processors such as the one of IonQ (Nam et al. 2019)
or of Honeywell International Inc. feature a number fully-
connected cells of qubits (where qubits interact through a
different set of native gates than the ones of superconduct-
ing processors) which are in communinication to each other
through the ability to swap quantum information via pho-
tonic interfaces. In a future work, we intend to provide ex-
amples for different architectures including sample code. We
plan to make the architecture available (to be interfaced with
a planner and optionally a CP optimizer) as an opensource
package.

Finally we believe that our approach should be
of great interest to the community developing low-
level quantum compilers for generic architectures
(Steiger, Häner, and Troyer 2018; Häner et al. 2018),

5https://ti.arc.nasa.gov/m/groups/asr/planning-and-schedul-
ing/QCC ICAPS18.zip.



to designers of machine-instructions languages for
quantum computing (Smith, Curtis, and Zeng 2016;
Bishop 2017), and to developers of unifying frameworks
for quantum computing software toolchains and interface to
solvers (McCaskey et al. 2018).
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