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ABSTRACT

Prior researches suggest that attentional neural machine translation (NMT) is able
to capture word alignment by attention, however, to our surprise, it almost fails
for NMT models with multiple attentional layers except for those with a single
layer. This paper introduce two methods to induce word alignment from general
neural machine translation models. Experiments verify that both methods obtain
much better word alignment than the method by attention. Furthermore, based on
one of the proposed method, we design a criterion to divide target words into two
categories (i.e. those mostly contributed from source “CFS” words and the other
words mostly contributed from target “CFT” words), and analyze word alignment
under these two categories in depth. We find that although NMT models are dif-
ficult to capture word alignment for CFT words but these words do not sacrifice
translation quality significantly, which provides an explanation why NMT is more
successful for translation yet worse for word alignment compared to statistical
machine translation. We further demonstrate that word alignment errors for CFS
words are responsible for translation errors in some extent by measuring the cor-
relation between word alignment and translation for several NMT systems.

1 INTRODUCTION

Machine translation aims at modeling the semantic equivalence between a pair of source and target
sentences (Koehn, 2009), and word alignment tries to model the semantic equivalence between a pair
of source and target words (Och & Ney, 2003). As a sentence consists of words, word alignment
is conceptually related to machine translation and such a relation can be traced back to the birth
of statistical machine translation (SMT) (Brown et al., 1993), where word alignment is the basis of
SMT models and its accuracy is generally helpful to improve translation quality (Koehn et al., 2003;
Liu et al., 2005).

In neural machine translation (NMT), it is also important to study word alignment, because word
alignment provides potential ways to understanding black-box NMT models and analyzing their
translation errors (Ding et al., 2017). Unlike SMT, NMT models do not directly depend on word
alignment and prior researches implicitly extract word alignment by attention (Bahdanau et al.,
2014; Mi et al., 2016; Liu et al., 2016). Unfortunately, this method is not general for all NMT
models. In particular, to our surprise, it can only obtain word alignment for NMT models with a
single attentional layer, but fails for those with multiple attentional layers, which is the standard for
state-of-the-art NMT systems such as TRANSFORMER (Vaswani et al., 2017).

In this paper, we propose two methods to induce word alignment from general NMT models and
answer a fundamental question how much word alignment NMT models can learn. The first method
explicitly builds a word alignment model between a pair of source and target word representations
encoded by NMT models, and then it learns additional parameters for this word alignment model
with the supervision from external aligners similar to (Mi et al., 2016) and (Liu et al., 2016). The
second method is more intuitive and flexible: it is parameter-free and thus does not need retraining
and external aligners. Its key idea is to measure the prediction difference of a target word if a
source word is removed, inspired by (Arras et al., 2016; Zintgraf et al., 2017). Unlike the first
method, the second one only depends on NMT models, and it thereby facilitates better understanding
and interpreting NMT models. Experiments on an advanced NMT model show that both methods
achieve much better word alignment than the method by attention.
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However, word alignment obtained by our methods is still worse than statistical word aligners (Dyer
et al., 2013; Och & Ney, 2003). This raises another natural question why advanced NMT models
including less word alignment knowledge but deliver better translations than SMT models based on
statistical aligners, which was observed in prior researches yet without deep interpretation (Tu et al.,
2016; Liu et al., 2016). To answer this question, in the spirit of the proposed prediction difference
(PD) method, we design a criterion to divide target words in the reference of a test sentence into
two categories: those target words mostly contributed from source (CFS) words and the other target
words mostly contributed from target (CFT) words in their histories. 1 Our experiments further
demonstrate that NMT models capture good word alignment for the first category (CFS) words with
accuracy comparable to a statistical aligner, while their word alignment for the second category
(CFT) words is much worse. Thankfully, most target words in the second category (CFT) can be
easily decoded by NMT models because of the strong language model effects implicitly learned by
NMT models. Finally, we exploit the correlation between translation quality and word alignment
quality for neural machine translation. We find that there is a weak correlation between translation
and word alignment for all target words, yet a strong correlation between translation and word
alignment for those target words mostly contributed from source words, after analyzing translations
from several NMT systems. This finding suggests that word alignment errors for CFS words are
responsible for translation errors in some extent.

This paper makes the following contributions:

• It proposes two better methods to acquire word alignment from general NMT models.

• It explains why NMT models deliver excellent translations no matter their worse word
alignment compared to statistical machine translation.

• It empirically shows a strong correlation between translation quality and word alignment
accuracy for those target words mostly contributed from source words.

2 PRELIMINARIES

2.1 NEURAL MACHINE TRANSLATION

Given a source sentence x = 〈x1, · · · , x|x|〉 and a target sentence y = 〈y1, · · · , y|y|〉, NMT aims at
maximizing the following conditional probabilities: 2

P (y | x) =
|y|∏
i=1

P (yi | y<i,x) =

|y|∏
i=1

P
(
yi | sLi

)
, (1)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y with length i − 1, and sLi is the decoding state
of yi. Generally, the conditional distribution P

(
yi | sLi

)
is somehow modeled within an encoder-

decoder framework. In encoding stage, the source sentence x are encoded as a sequence of hidden
vectors h by an encoder according to specific NMT models, such as a multi-layer encoder consisting
of recurrent neural network (RNN), convolutional neural network (CNN), or self-attention layer. In
decoding stage, each decoding state sLi is computed by an L-layer decoder as follows:

sli = f
(
cli, s

l−1
i , sl<i,h

)
, l ∈ {1, . . . , L} , s0i = yi, (2)

where yi is the word embedding of word yi, f is a general function dependent on a specific NMT
model, cli is a context vector in lth layer, computed from h and sl<i according to different NMT
models. As the dominant models, attentional NMT models define the context vector cli as a weighted
sum of h, where the weight αl

i = g
(
sl−1i , sl<i,h

)
is defined by a similarity function g. Due to the

space limitation, we refer readers to (Bahdanau et al., 2014), (Gehring et al., 2017) and (Vaswani
et al., 2017) for the details on the definitions of f and g.

1For a sentence 〈y1, y2, · · · , yi, · · · , y|y|〉, a history word of yi can be any yk sufficing k < i.
2Throughout this paper, bold font such as x denote a sequence while regular font such as x denote an

element which may be a scaler x, vector x or matrixX .
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2.2 ALIGNMENT BY ATTENTION

Since the attention weightαl
i,j measures the similarity between sl−1i and hj , it has been widely used

to evaluate the word alignment between yi and xj (Bahdanau et al., 2014; Ghader & Monz, 2017).
Once an attentional NMT model has been trained, one can easily extract word alignment A from
the attention weight α according to the style of maximum a posterior strategy (MAP) as follows:

Ai,j(α) =

{
1 j = argmax

j′
αi,j′

0 o/w
, (3)

where Ai,j = 1 indicates yi aligns to xj . For NMT models with multiple attentional layers or
multiple head attentional layers as in (Vaswani et al., 2017), we sum all attention weights with
respect to all layers and heads to a single α before MAP in equation 3.

3 METHODS TO INDUCING WORD ALIGNMENT

Although attention might obtain some word alignment as described in previous section, it is un-
known whether NMT models contain more word alignment information than that obtained by at-
tention. In addition, the method using attention is useful to induce word alignment for attentional
NMT models, (more precisely, those models including a single attentional layer as shown in our
experiments), whereas it is useless for general NMT models. In this section, in order to induce
word alignment from general NMT models, we propose two different methods, which are agnostic
to specific NMT models.

3.1 ALIGNMENT BY EXPLICIT ALIGNMENT MODEL

Given a source sentence x, a target sentence y, following (Liu et al., 2005) and(Taskar et al., 2005),
we explicitly define a word alignment model as follows:

P (xj | yi,y,x;W ) =
exp (δ (xj , yi,x,y;W ))∑m

j′=1 exp (δ (xj′ , yi,x,y;W ))
, (4)

where δ (xj , yi,x,y;W ) is a distance function parametrized by W . Ideally, δ is able to include
arbitrary features such as IBM model 1 similar to (Liu et al., 2005). However, as our goal is not to
achieve the best word alignment but to focus on that captured by an NMT model, we only consider
these features completely learned in NMT. Hence, we define the

δ (xj , yi,x,y;W ) = (xj‖hj)
>
W
(
yi‖sLi

)
, (5)

where xj and yi are word embeddings of xj and yi learned in NMT, hj is the hidden unit of xj
in the encoding network and sLi is the hidden unit of yj in the decoding network, ‖ denotes the
concatenation of a pair of column vectors of dimension d, andW is a matrix of dimension 2d× 2d.

The explicit word alignment model is trained by maximizing the objective function with respect to
W :

max
W

∑
x,y

∑
∀j,i:Aref

ij =1

logP (xj | yi,y,x;W ) , (6)

where Aref
ij is the reference alignment between xj and yi for a sentence pair x and y. As the

number of elements in W is up to one million (i.e., (2 × 512)2), it is not feasible to train it using
a small dataset with gold alignment. Therefore, following (Mi et al., 2016; Liu et al., 2016), we
run statistical word aligner such as FAST ALIGN (Dyer et al., 2013) on a large corpus and then
employ resulting word alignment as the silver alignment Aref for training. Note that our goal is to
quantify word alignment learned by an NMT model, and thus we only treat W as the parameter to
be learned, which differs from the joint training all parameters including those from NMT models
as in (Mi et al., 2016; Liu et al., 2016).

After training, one obtains the optimizedW and then easily infers word alignment for a test sentence
pair 〈x,y〉 via the MAP strategy as defined in equation 3 by setting αi,j′ = P (xj′ | yi,y,x;W ).
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Note that if word embeddings and hidden units learned by NMT models capture enough information
for word alignment, the above method can obtain excellent word alignment. However, because the
dataset for supervision in training definitely include some data intrinsic word alignment information,
it is unclear how much word alignment is only from NMT models. Therefore, we propose the other
method which is parameter-free and only dependent on NMT models themselves.

3.2 ALIGNMENT BY PREDICTION DIFFERENCE

The intuition to this method is that if yi aligns to xj , the relevance between yi and xj should be
much higher than that between yi and any other xk with k 6= j. Therefore, the key to our method is
that how to measure the relevance between yi and xj .

Sampling method Zintgraf et al. (2017) propose a principled method to measure the relevance
between a pair of tokens in input and output. It is estimated by measuring how the prediction of yi
in the output changes if the input token xj is unknown. Formally, the relevance between yi and xj

for a given sentence pair 〈x,y〉 is defined as follows:

R (yi, xj ,x,y) = P (yi | y<i,x)− P
(
yi | y<i,x\j

)
, (7)

with

P
(
yi | y<i,x\j

)
=
∑

x

P
(
x | y<i,x(j,∅)

)
P
(
yi | y<i,x(j,x)

)
≈ Ex∼P (x)

[
P
(
yi | y<i,x(j,x)

)]
, (8)

where x(j,x) = 〈x1, . . . , xj−1, x, xj+1, . . . , x|x|〉 denotes the sequence by replacing xj with x in x,
particularly x(j,∅) = 〈x1, . . . , xj−1, xj+1, . . . , x|x|〉 denotes the sequence by removing xj from x,
P (yi | y<i,x) is defined in equation 1 and P

(
x | y<i,x(j,∅)

)
is approximated by the empirical

distribution P (x), which can be considered as the 1-gram language model for the source side of
the training corpus. Unlike a computer vision task in (Zintgraf et al., 2017), the size of source
vocabulary in NMT is up to 30000 and thus summation over this large vocabulary is challenging in
computational efficiency. As a result, we only sample multiple words to approximate the expectation
in equation 8 by Monte Carlo (MC) approach.

Deterministic method Inspired by the idea of dropout (Srivastava et al., 2014), we measure the
relevance by disabling the connection between xj and the encoder network in a deterministic way.
Formally, R (yi, xj ,x,y) is directly defined via dropout effect on xj as follows:

R (yi, xj ,x,y) = P (yi | y<i,x)− P
(
yi | y<i,x(j,0)

)
, (9)

where x(j,0) denotes the sequence by replacing xj with a word whose embedding is a zero vector.
In this way, the computation in equation 9 is much faster than the Monte Carlo sampling approach
involving multiple samples. It is worth mentioning that equation 9 resembles the Monte Carlo
sampling approach with a single sample in calculation, but it is significantly better than MC with a
single sample in alignment quality and is very close to MC approach with enough samples, as to be
shown in our experiments.

Note that R(yi, xj ,x,y) ∈ [−1, 1], where R(yi, xj ,x,y) = 1 means ith target word is totally
determined by the jth source word; R(yi, xj ,x,y) = −1 means ith target word and jth source
word are mutual exclusive; R(yi, xj ,x,y) = 0 means jth source word do not affect generating ith
target word. In order to obtain word alignment, after collecting R(yi, xj ,x,y) for xj , yi, x and
y, one can easily infer word alignment via the MAP strategy as defined in equation 3 by setting
αi,j′ = R(yi, xj′ ,x,y).

Remark The above R(yi, xj ,x,y) in equation 7 quantifies the relevance between a target word yi
and a source word xj . Similarly, one can quantify the relevance between yi and its history word yk
as follows:

Ro (yi, yk,x,y) = P (yi | y<i,x)− P
(

yi | y<i(k,0),x
)
, (10)

where Ro indicates the relevance between two target words yi and yk with k < i, and P (yi |
y<i(k,0),x) is obtained by disabling the connection between yk and the decoder network, similar to
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P
(
yi | y<i,x(j,0)

)
. Unlike R(yi, xj ,x,y) capturing word alignment information, Ro(yi, yk,x,y)

is able to capture word allocation in a target sentence and it will be used to answer a fundamental
question why NMT models yields better translation yet worse word alignment compared with SMT
in section of experiments.

4 EXPERIMENTS

In this section, we will empirically explore the following questions through experiments:

1. Does attention really capture word alignment for attentional NMT models?

2. How much word alignment do NMT models learn?

3. Why NMT models deliver better translation yet worse word alignment than SMT?

4. What is the relationship between translation quality and word alignment quality?

To answer these questions, we conduct experiments on Chinese-to-English dataset, which includes
many reorderings and thereby is challenging for word alignment and translation tasks. Transla-
tion quality is evaluated with case-insensitive 4-gram BLEU (Papineni et al., 2002), implemented
by multi-bleu.perl, and alignment performance is evaluated by AER (Mihalcea & Pedersen, 2003;
Koehn, 2009). In the following experiments and analyzes, both BLEU and AER are shown in per-
centage.

4.1 SETTING

The training data consists of 1.8M sentence pairs from Chinese-to-English task of NIST2008 Open
Machine Translation Campaign with 40.1M Chinese words and 48.3M English words respectively.
The development set is chosen as NIST2002, and the test set is NIST2005. To make NMT model ca-
pable of open-vocabulary translation, all the datasets are pre-processed by Byte Pair Encoding (BPE)
(Sennrich et al., 2015) with 32K merging operations. 3 To measure word alignment quality, we report
AER on NIST05 test set, whose reference alignment was manually annotated by experts (Liu et al.,
2016). The experiments are based on an alignment baseline and three strong translation baselines
from NMT and SMT:

• FAST ALIGN (Dyer et al., 2013): a simple, fast, unsupervised word aligner.

• MOSES (Koehn et al., 2007): an open source phrase based translation system with default
configuration, whose translation tables are derived from FAST ALIGN.

• NEMATUS (Sennrich et al., 2017): an open source neural machine translation implementa-
tion of RNN based sequence-to-sequence model.

• TRANSFORMER (Vaswani et al., 2017): a novel neural network architecture for language
understanding implemented by Zhang et al. (2017).

More details on training these systems are described in Appendix A.

4.2 DOES ATTENTION REALLY CAPTURE ALIGNMENT?

To our surprise, word alignment by attention is with AER around 83 for TRANSFORMER with six
attentional layers: we examined averaged alignment and that from each attentional layer, but any of
their alignment is worse.

Since the bilingual corpus intrinsically includes word alignment in some extent, word alignment
by attention should be better than the data intrinsic alignment if attention indeed captures align-
ment. To obtain the data intrinsic word alignment, we calculate point-wise mutual information
(PMI) from the bilingual corpus and then infer word alignment for each bilingual sentence by using

3Throughout this paper, both BLEU and AER are evaluated after restoring BPE. Particularly for restoring
BPE before acquiring alignment via MAP strategy in equation 3, α is firstly merged along target tokens by
averaging then merged along source tokens by summation.
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Table 1: Word alignment captured by attention in TRANSFORMER and NEMATUS
Methods AER BLEU

PMI 65.66 None
TRANSFORMER-L6 (attention) 83.07* 46.95
TRANSFORMER-L1 (attention) 56.49 36.51

NEMATUS (attention) 50.60 36.82
* Attention captures less word alignment than PMI for NMT models with

multiple attentional layers.

the MAP strategy as in equation 3. 4 Referring to Table 1, alignment captured by attention of six-
layer TRANSFORMER (TRANSFORMER-L6) is obviously worse than alignment by PMI. Hence, it
is hard to conclude attention from the standard six-layer TRANSFORMER captures word alignment.

As shown in Table 1, NEMATUS using single attentional layer of RNN is able to capture better word
alignment than PMI, so the architecture of multiple attentional layers in TRANSFORMER may be
the reason why its attention fails to capture word alignment. Therefore, we reset TRANSFORMER to
include one attentional layer in both encoder and decoder and retrain it on the same dataset. We find
that the TRANSFORMER with a single attentional layer (TRANSFORMER-L1) can produce much
more reasonable alignment than TRANSFORMER-L6, even if its translation quality substantially
decreases. In this sense, we believe that the hidden units hj and sli in equation 2 represent the
information of the entire sequence x and y instead of the information particularly emphasizing the
words xj and yi, and thereby attention between hj and sli is not necessary to indicate the word
alignment between xj and yi especially for multi-layer attention models.

4.3 HOW MUCH ALIGNMENT CAN NMT LEARN?

Previous subsection shows alignment by attention may not be a well-defined method to acquiring
alignment particularly for multi-layers models, and thus we need better methods to tell how much
alignment NMT models can learn. In this subsection, we analyze performances of the two pro-
posed methods, which includes an explicit alignment model and prediction difference based on
TRANSFORMER-L6.

Table 2: AER of the proposed methods on TRANSFORMER-L6
Methods AER

FAST ALIGN 36.57
NEMATUS (attention) 50.60

TRANSFORMER-L1 (attention) 56.49
PMI (FAST ALIGN) 60.18

Explicit Alignment Model 38.88
Prediction Difference 41.77

Explicit Alignment Model As the explicit model employs the silver alignment dataset from FAST
ALIGN for training its parameters, its final AER includes contributions from both the aligned data
and the model. We analyze the alignment performance from the model itself by comparing with
PMI (FAST ALIGN), which is similar to PMI but calculates co-occurrence of a word pair aligned by
FAST ALIGN in a bilingual sentence. 4 As shown in Table 2, the explicit model outperforms PMI
(FAST ALIGN), which indicates that the six-layer TRANSFORMER indeed learns word alignment
information. In addition, AER by the explicit model is better than attention method over both one
layer TRANSFORMER and RNN models.

One might argue that the reason why the explicit model yields excellent alignment is attributed
to the supervision from silver alignment dataset. However, with the same amount of supervision,
TRANSFORMER-L1 generates much worse alignment than TRANSFORMER-L6 and it is only com-
parable to PMI (FAST ALIGN) in AER, as shown in Table 3. This suggests that supervision is

4More details in Appendix C.
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Table 3: Explicit alignment model on different translation models

Models TRANSFORMER PMI
(FAST ALIGN)L1 L2 L3 L4 L5 L6

AER EAM* 54.50 47.94 40.47 38.40 38.80 38.88 60.18Attention 56.49 76.96 81.23 81.83 87.15 86.87
BLEU 36.51 44.83 45.63 47.19 46.35 46.95 N/A

* EAM is the abbreviation of “Explicit Alignment Model”.

not enough to obtain good alignment and the hidden units learned by a translation model indeed
implicitly capture alignment knowledge.

Prediction Difference As shown in Table 2, prediction difference delivers better word alignment
than the data intrinsic word alignment, i.e. PMI (FAST ALIGN), and this result gives a strong indica-
tor that TRANSFORMER with multiple attentional layers indeed induces reasonable alignment even
though the alignment is not captured by its attention. In addition, prediction difference is able to
capture better word alignment than attention in the state of the art RNN model NEMATUS. However,
both explicit model and prediction difference are worse than statistical word aligner FAST ALIGN in
terms of AER.

Table 4: Comparison between sampling and deterministic methods for prediction difference
Methods Sampling method Deterministic methodSample size 1 2 4 20 50

AER 44.92 43.30 42.42 41.83 41.73 41.77
Variance 0.004 < 10−5 < 10−5 < 10−5 < 10−5 N/A

* Results are measured on TRANSFORMER-L6.

Prediction different can be implemented by sampling method or deterministic method. As shown
in Table 4, the alignment performance of sampling method is improving as growing of the sample
size, because the accuracy of Monte Carlo approach is dependent on the number of samples. And no
matter what sample size is, the variance of AER is always ignorable. The reason might be argmax
operation in equation 3 eliminate the fluctuation of probability matrix. Although using large sample
size can achieve nice alignment performance, but it will cost too much computation. Fortunately, the
deterministic method can also achieve the nice alignment performance with the same computational
cost as sample size equals one in sampling method. As a result, we employ deterministic version as
the default for prediction difference in this paper.

Although explicit model achieves better word alignment result than prediction difference, it is dif-
ficult to interpret and understand neural machine translation through word alignment from explicit
model. The main reason is that explicit model relies on an external aligned dataset with guidance
from statistical word aligner FAST ALIGN, and thus the characteristic of its alignment result are
similar to that of FAST ALIGN, leading to interpretation biased to FAST ALIGN. On the other hand,
prediction difference only relies on prediction from a neural model to define the relevance, it has
been successfully used to understand and interpret a neural model (Zintgraf et al., 2017). Therefore,
in the rest of this section, we try to understand TRANSFORMER by using prediction difference in the
rest of this section.

4.4 DOES ALIGNMENT ERROR AFFECT TRANSLATION?

It is still unreasonable that TRANSFORMER is good at translation even though messes up with word
alignment. In order to reveal this observation, we firstly divide the target words into two categories:

• Contributing from source (CFS): the prediction of a target word can be mostly attributed to
the appearance of a source side word.

• Contributing from target (CFT): the prediction of a target word can be mostly attributed to
the appearance of a target side word.
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Specifically, we employ prediction difference to define CFS and CFT as follows:

CFS: {yi ∈ y | maxx∈xR(yi, x,x,y)−maxy∈y<i
Ro(yi, y,x,y) > ε} ,

CFT: {yi ∈ y | maxy∈y<i
Ro(yi, y,x,y)−maxx∈xR(yi, x,x,y) > ε} . (11)

where ε ∈ [0, 1) is a probability margin between CFS and CFT words.

Table 5: Word alignment quality affects translation quality
Methods Target Words* AER Translation Recall†

PD & TRANSFORMER-L6
Overall 41.77 63.81

CFS 33.95 64.51
CFT 63.28 62.10

FAST ALIGN & MOSES
Overall 36.57 60.76

CFS 31.66 61.74
CFT 50.80 58.42

* Overall target words, 70.71% target words belong to CFS and 29.29% target words belong to CFT.
† Translation recall measures the percentages of target words in reference recalled by decoding.

After dividing the target words into two categories of CFS words and CFT words according to the
criterion defined above, 5 we calculate their percentages and find that the ratio between CFS and
CFT is about 7:3. This result suggests that TRANSFORMER employs more information from source
side than target side for translation and it is more important for TRANSFORMER to make better use
of source side information.

In addition, it is shown in Table 5 that AER of CFS words by prediction difference improves to
33.95 comparable to AER of CFS by FAST ALIGN, even though AER by prediction difference
on overall targets is substantially worse than AER by FAST ALIGN. We further compare word
alignment from prediction difference and that from FAST ALIGN according to the CFS words or the
CFT words and the results are shown in Table 5. We find that prediction difference captures good
alignment for CFS words as FAST ALIGN does, but its alignment for CFT words is much worse
than FAST ALIGN. Additionally, we evaluate the effects of translation quality on both the CFS
words and the CFT words by translation recall, which measures the percentages of target words in
references recalled by TRANSFORMER and MOSES after decoding. As shown in Table 5, although
TRANSFORMER induces worse alignment for the CFT words, it successfully decodes 62% of the
CFT words, which is comparable to the percentages of the CFS words. These results demonstrate
that TRANSFORMER is able to easily translate the CFT words by using target history words thanks
to its strong language model effect, even if it involves noise source information due to inaccurate
alignment. Therefore, CFT words might be the reason why TRANSFORMER yields better translation
yet worse word alignment compared to SMT models.

4.5 CORRELATION BETWEEN TRANSLATION AND ALIGNMENT

We train six translation systems on the same dataset: they share the same model architecture but
use encoder-decoder layer number ranging from 1 to 6. As there is only a single manually aligned
dataset (i.e. NIST2005), the result might be highly dependent on the specific dataset. Inspired
by (Koehn, 2004), we randomly sample 1200 datasets with replacement from NIST2005, each of
which includes the same number of the sentences as NIST2005. We report their BLEU points
and AER captured by prediction difference on the 1200 sampled datasets. Figure 1(a) shows the
correlation between translation quality and alignment error rate is only about −0.45. This result
indicates a weak correlation between translation and alignment.

Because CFT words yield worse alignment but are easy to translate as observed before, we propose
to modify AER on CFS words only. However, since CFS words defined in previous section are
dependent on a specific translation model whereas we employ six translation models, there will be
a bias for the correlation between translation and alignment on CFS words for different translation
models. Hence, we redefine CFS words using two PMI statistics based on a pair of source and target
words and a pair of a target word and its history target word, 4 by replacing R and Ro with these

5Without affecting main conclusions, ε = 0 in this experiment for covering all words in analysis. Experi-
ments with different margins are in Appendix D.
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Figure 1: Pearson correlation r between translation quality and word alignment captured by the
prediction difference method for Overall, CFS and CFT target words.

two PMI statistics in equation 11. It is known that the redefined CFS and CFT are dependent on the
training data yet independent on any specific model. In order to avoid redundant concepts, they are
still mentioned as CFS and CFT words as before.

In Figure 1(b), one can see that the modified AER on CFS words correlates well with BLEU points,
and such a correlation is up to−0.82. Additionally, as shown in Figure 1(c), the correlation between
translation and alignment for CFT words is around zero and even positive. This indicates that correct
alignment of CFT words is not necessary to lead to improved translation quality, because these CFT
words are easily figured out by the strong language model effects encoded in NMT models. Together
with the result shown in Table 5, improving word alignment for CFS words is potential to improve
translation quality for neural machine translation.

5 RELATED WORK

In NMT, there are many notable researches which mention word alignment captured by attention in
some extent. For example, (Bahdanau et al., 2014) is the first work to show word alignment exam-
ples by using attention in an NMT model. Tu et al. (2016) quantitatively evaluate word alignment
captured by attention and find that its quality is much worse than statistical word aligners. Motived
by this finding, Chen et al. (2016), Mi et al. (2016) and Liu et al. (2016) improve attention with
the supervision from silver alignment results obtained by statistical aligners, in the hope that the
improved attention leads to better word alignment and translation quality consequently. Despite the
close relation between word alignment and attention, Koehn & Knowles (2017) and Ghader & Monz
(2017) discuss the differences between word alignment and attention in NMT. All these works study
word alignment for the same kind of NMT models, i.e. that with a single attentional layer. One of
our contribution is that we propose model-agnostic methods to study word alignment in a general
way which deliver better word alignment quality than attention method. Moreover, for the first time,
we further explain and quantify the relationship between translation quality and word alignment for
an NMT model.

The prediction difference method in this paper actually provides an avenue to understand and inter-
pret neural machine translation models. Therefore, it is closely related to many works on visualizing
and interpreting neural networks (Lei et al., 2016; Bach et al., 2015; Zintgraf et al., 2017). Indeed,
our method is inherited from (Zintgraf et al., 2017), and our advantage is that it is computationally
efficient particularly for those tasks with a large vocabulary. In sequence-to-sequence tasks, Ding
et al. (2017) focus on model interpretability by modeling how influence propagates across hidden
units in networks, which is often too restrictive and challenging to achieve as argued by (Alvarez-
Melis & Jaakkola, 2017). Instead, Alvarez-Melis & Jaakkola (2017) concentrate on prediction in-
terpretability with only oracle access to the model generating the prediction. To achieve this effect,
they propose a casual learning framework to measure the relevance between a pair of source and
target words. Our method belongs to the type of prediction interpretability similar to (Alvarez-
Melis & Jaakkola, 2017), but ours is a unified and parameter-free method rather than a pipeline
and parameter-dependent one. In addition, both Ding et al. (2017) and Alvarez-Melis & Jaakkola
(2017) qualitatively demonstrate interpretability by showing some sentences, while we exhibit the
interpretability by quantitatively analyzing all sentences in a test set.
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6 CONCLUSION AND FUTURE WORK

This paper points out that attention is insufficient to induce word alignment or even surprisingly
fails for general NMT models. Therefore, it proposes two better methods to induce word alignment
than the method by attention for general NMT models. Based on one of the proposed method, it
divides target words into two categories including CFS and CFT, and shows that NMT models yield
excellent word alignment on CFS words but worse word alignment on CFT words, which do not
significantly sacrifice translation quality. This explains a fundamental question why NMT delivers
better translation yet worse word alignment than its SMT counterpart. Finally, this paper empirically
demonstrates that word alignment errors for CFS words are responsible for translation errors in some
extent by measuring the correlation between word alignment quality and translation quality. In the
future, we believe that more work is interesting to analyze translation errors such as those errors for
CFT words. In addition, we will investigate solutions to improving NMT models, in the hope of
using source context and target history context in a more robust manner for better predicting CFS
and CFT words.
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A TRAINING DETAILS

We implemented the proposed methods to induce word alignment on TRANSFORMER, since it is
the most popular NMT model nowadays. For training MOSES, we use all 1.8M sentences from the
corpus, and we train a 4-gram language model based on the target side of its training data. For
training both NMT models, only the sentences of length up to 256 tokens are used, with no more
than 215 tokens in a batch. The dimension of both word embeddings and hidden states are 512.
Both encoder and decoder have 6 layers by default, and adopt multi-head attention with 8 heads.
The beam size for decoding is 4, and the loss function is optimized by Adam (Kingma & Ba, 2014),
where β1 = 0.9, β2 = 0.98 and ε = 10−9. Particularly for the explicit alignment model, the
alignment reference is produced by FAST ALIGN.

Note that MOSES and NEMATUS achieve BLEU points on NIST2005 test set comparable to those
reported in recent works using the similar corpora (Tu et al., 2016; Liu et al., 2016; Zhou et al.,
2017), and TRANSFORMER achieves much higher performance (i.e. 47 BLEU points). This shows
that our MT models are well-trained.

B CASE STUDY

zhèng hé shì shì jiè zhù míng háng hǎi jiā 。 <eos>
郑 和 是 世界 著名 航海家 。 <eos>

Zheng he is a world famous navigator . <eos>
Zheng he is a world famous navigator . <eos>

Reference:
Translation:

(a) Gold Alignment

zhèng hé shì shì jiè zhù míng háng hǎi jiā 。 <eos>
郑 和 是 世界 著名 航海家 。 <eos>

Zheng he is a world famous navigator . <eos>
Zheng and is a world famous navigator . <eos>

Reference:
Translation:

(b) FAST ALIGN & MOSES

zhèng hé shì shì jiè zhù míng háng hǎi jiā 。 <eos>
郑 和 是 世界 著名 航海家 。 <eos>

Zheng he is a world famous navigator . <eos>
Zheng he is a world famous navigator . <eos>

Reference:
Translation:

(c) PD (Overall) & TRANSFORMER-L6

zhèng hé shì shì jiè zhù míng háng hǎi jiā 。 <eos>
郑 和 是 世界 著名 航海家 。 <eos>

Zheng he is a world famous navigator . <eos>
Zheng he is a world famous navigator . <eos>

Reference:
Translation:

(d) PD (CFS) & TRANSFORMER-L6

Figure 2: An example of word alignment and translation produced by SMT and NMT systems. Red
arrow means wrong alignment and blue arrow means the prediction is attributed to a target word.
The word in light font do not align to any source word, while red word means wrong translation.

Here is an example to demonstrate the results of previous experiments intuitively. As shown in
Figure 2(a), the word ‘a’ should not be aligned to any source word. However, in Figure 2(b) FAST
ALIGN wrongly aligned ‘a’ to ‘shı̀’, and in Figure 2(c) PD makes the same mistake. Fortunately,
as shown in Figure 2(d), if we only consider alignment of words in CFS, ‘a’ is superbly not aligned
to any source word because it belongs to CFT. In terms of translation, TRANSFORMER translates
perfectly, yet MOSES wrongly translate ‘hé’ into ‘and’ due to ‘hé’ mostly means ‘and’ ignoring the
context in Chinese. Instead of depending on phrase table, as shown in Figure 2(d), TRANSFORMER
successfully translate ‘hé’ into the given name ‘he’ referring to the surname ‘Zheng’ in translation
history, thanks to its more powerful language model.

C POINTWISE MUTUAL INFORMATION AMONG WORDS

Pointwise mutual information (PMI) measures the relevance of two discrete random variables, which
is defined as

PMI(µ, ν) = log
P (µ, ν)

P (µ) · P (ν)
= logZ + log

C(µ, ν)

C(µ) · C(ν)
, (12)

where C(µ, ν) is a function for counting occurrence of the pair (µ, ν) according to different scenar-
ios, and Z is the normalizer, i.e. the total number of all possible (µ, ν) pairs. In this paper, we define
three types of PMI according to different definitions of C(µ, ν) in the three scenarios as follows.
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PMI on Bilingual Data In this scenario, a set of bilingual sentences is given. For a given bilingual
sentence 〈x,y〉, C(yi, xj) is added by one if both yi ∈ y and xj ∈ x.

PMI on Word Aligned Bilingual Data In this scenario, a set of word aligned bilingual sentences
is given. That is, for a bilingual sentence, words in its target side may align to words in its source
side. For a given word aligned bilingual sentence (x,y), C(yi, xj) is added by one if yi ∈ y and
xj ∈ x and yi aligns to xj .

PMI between a Word and Its History Word on Monolingual Data In this scenario, a set of
monolingual sentences is given. For a given monolingual sentence y, C(yk, yi) is added by one if
yk ∈ y and yi ∈ y with k < i.

D DIFFERENT MARGINS FOR DIVIDING CFS AND CFT

In equation 11, different margins will partition CFS and CFT differently. As growing of the margin
ε, the partition of CFS and CFT becomes more confident. As shown in Table 6, more confident CFS
words can achieve better alignment performance and translation performance. But the translation
recall is still similar between CFS and CFT words, despite the big gap of AER between CFS and
CFT words.

Table 6: Word alignment and translation quality under different partitions of CFS and CFT
ε Target Words AER Translation Recall Proportion

10−4
CFS 31.64 65.54 65.61%
CFT 62.91 66.39 24.66%

10−3
CFS 30.33 67.82 60.40%
CFT 63.29 69.40 22.04%

10−2
CFS 28.26 71.56 51.53%
CFT 64.22 73.76 17.56%

10−1
CFS 22.87 78.59 34.85%
CFT 64.13 78.33 10.39%

* Results are measured on TRANSFORMER-L6.
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