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Abstract

We study the problem of cross-lingual voice conversion in non-parallel speech1

corpora and one-shot learning setting. Most prior work require either parallel2

speech corpora or enough amount of training data from a target speaker. However,3

we convert an arbitrary sentences of an arbitrary source speaker to target speaker’s4

given only one target speaker training utterance. To achieve this, we formulate the5

problem as learning disentangled speaker-specific and context-specific represen-6

tations and follow the idea of [1] which uses Factorized Hierarchical Variational7

Autoencoder (FHVAE). After training FHVAE on multi-speaker training data,8

given arbitrary source and target speakers’ utterance, we estimate those latent9

representations and then reconstruct the desired utterance of converted voice to that10

of target speaker. We use multi-language speech corpus to learn a universal model11

that works for all of the languages. We investigate the use of a one-hot language12

embedding to condition the model on the language of the utterance being queried13

and show the effectiveness of the approach. We also investigate the effect of using14

or not using the language conditioning. Furthermore, we visualize the embeddings15

of the different languages and sexes. Finally, in the subjective tests, for one lan-16

guage and cross-lingual voice conversion, our approach achieved moderately better17

or comparable results compared to the baseline in speech quality and similarity.18

1 Introduction19

The task of Voice Conversion (VC) [2, 3] is a technique to convert source speaker’s spoken sentences20

into those of a target speaker’s voice. It requires to preserve not only the target speaker’s identity,21

but also phonetic context spoken by the source speaker. To tackle this problem, many approaches22

have been proposed [4, 5, 6]. However, most prior work require parallel spoken corpus and enough23

amount of data to learn the target speaker’s voice. Recently, there were approaches proposed for24

voice conversion with non-parallel corpus [7, 8, 9]. But they still require that speaker identity was25

known priori, or included in training data for the model.26

Recently, Hsu et al. [1] proposed to use disentangled and interpretable representations to overcome27

these limitations by exploiting Factorized Hierarchical Variation Autoencoder. They achieved28

reasonable quality with just single utterance from a target speaker but it was still not satisfactory.29

Nevertheless, most prior work focus on voice conversion within one language. But we believe that if30

we can capture disentangled representations of phonetic or linguistic contexts and speaker identities,31

the model should be capable for more challenging cross-lingual setting, which means that source and32

target speakers are from different languages. Therefore, we focus on investigating cross-lingual voice33

conversion, and propose to follow the same spirit from Hsu et al. [1] and improve the performance.34

Our contributions are:35
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• We build a voice model which is trained on utterances from 5 different languages to let the36

model observe as much speaker and phonetic variations as possible.37

• We conduct cross-lingual voice conversion experiments and our approach achieved mod-38

erately better or comparable results than baselines in speech quality and similarity in the39

subjective tests.40

• We examine the effect of using additional one-hot embedding along with speaker embedding41

that determines the input utterance language.42

2 Related Work43

Voice conversion has been an important research problem for over a decade. One popular approach to44

tackle the problem is spectral conversion such as Gaussian mixture models (GMMs) [4] and deep45

neural networks (DNN) [5]. However, it requires parallel spoken corpus and dynamic time warping46

(DTW) is usually used to align source and target utterances. To overcome this limitation, non-47

parallel voice conversion approaches were proposed, for instance, eigenvoice [6], i-vecotor [10], and48

Variational Autoencoder [7, 9] based models. However, eigenvoice based approach [6] still requires49

reference speaker to train the model, and VAE based approaches [7, 9] require speaker identities to be50

known priori as included in training data for the model. i-vector based approach [10] looks promising51

which remains to be studied further. The i-vectors are converted by replacing the source latent variable52

by the target latent variable. The Gaussian mixture means are then reconstructed from the converted53

i-vector. The Gaussians with adjusted means are then applied to the source vector to perform the54

acoustic feature conversion. Siamese autoencoder has also been proposed for decomposing speaker55

identity and linguistic embeddings [11]. However, this approach requires parallel training data to56

learn the decomposing architecture. This decomposition is achieved by means of applying some57

similarity and non-similarity costs between the Siamese architectures.58

Nonetheless, cross-lingual voice conversion is also a challenging task since target language is not59

known in training time, and only few work has proposed, including GMMs based approach [12] and60

eigenvoice based approach [13], but still have inherent limitations as above.61

Recently, deep generative models have been applied and successful for unsupervised learning tasks,62

and include Variational Autoencoder (VAE) [14], Generative Adversarial Networks (GAN) [15], and63

auto-regressive models [16, 17]. Among them, VAE can infer latent codes from data and generate64

data from them by jointly learning inference and generative networks, and VAE has been also applied65

for voice conversion [7, 9]. However, in their models, speaker identities are not infered from data and66

instead required to be known in model training time. GAN has been also exploited for non-parallel67

voice conversion [18] with the cycle consistency contraint [19], but it still has the limitation that it68

needs to know the target speaker in training time and be trained for each target.69

To understand the disentangled and interpretable structure of latent codes, several work were proposed,70

namely, DC-IGN [20], InfoGAN [21], β-VAE [22], and FHVAE [1]. These approaches to uncover71

disentangled representation may help voice conversion with very limited resource from target speaker,72

since it might infer speaker identity information from data without supervision, as illustrated in73

FHVAE [1]. However, the qualities of converted voices were not good enough, therefore, we focus on74

the model structure of FHVAE and investigate to improve it, even with more challenging cross-lingual75

voice conversion setting.76

3 Model77

Variational autoencoder [14] (VAE) is a powerful model to uncover hidden representation and generate78

new data samples. Let observations be x and latent variables z. In the variational autoencoder model,79

the encoder (or inference network) qφ(z|x) outputs z given input x, and decoder pΦ(x|z) generates80

data x given z. The encoder and decoder are neural networks. Training is done by maximizing81

variational lower bound (or also called evidence lower bound):82

`(Φ, φ) = Eq[log pΦ(x, z)]− Eq[log qφ(z|x)]

= log pΦ(x)−DKL(qφ(z|x)||pΦ(z|x)).

where DKL is Kullback-Leibler divergence.83

However, VAE considers no structure for latent variable z. Assuming structure for z could be84

beneficial to exploit the inherent structures in data. Here we describe Factorized Hierarchical85
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Figure 1: Structures of Variation Autoencoder (upper) and Factorized Hierarchical Variational
Autoencoder (lower).

Variational Autoencoder proposed by Hsu et al [1]. Let a dataset D consist of Nseq i.i.d. sequences86

Xi. For each sequence Xi, it consists of N i
seg X

i,j observation segments. Then we define factorized87

latent variables of latent segment variable Zi,j1 and latent sequence variable Zi,j2 . In the context of88

voice conversion, Zi,j1 is responsible for generating phonetic contexts and Zi,j2 is for speaker identity.89

When generating data Xi,j , we first sample Zi,j2 from isotropic Gaussian centered at µi shared for90

the entire sequence, and also Zi,j1 independently. Then we generate Xi,j conditioned on Zi,j1 and91

Zi,j2 . Thus, joint probability with a sequence Xi is:92

pΦ(Xi, Zi1, Z
i
2, µ

i) = pΦ(µi)

Niseg∏
j=1

pΦ(Xi,j |Zi,j1 , Zi,j2 )

pΦ(Zi,j1 )pΦ(Zi,j2 |µi)
This is illustrated in Figure 1. For inference, we use variational inference to approximate the true93

posterior and have:94

qφ(Zi1, Z
i
2, µ

i|Xi) = qφ(µi)

Niseg∏
j=1

qφ(Zi,j1 |Xi,j , Zi,j2 )

qφ(Zi,j2 |Xi,j)

Since sequence variational lower bound can be decomposed to segment variational lower bound, we95

can use batches of segment instead of sequence level to maximize:96

`(Φ, φ;Xi,j) = `(Φ, φ;Xi,j |µ̃i) +
1

N i
seg

log pΦ(µ̃i) + const

`(Φ, φ;Xi,j |µ̃i) = Eqφ(Zi,j1 ,Zi,j2 |Xi,j)
[log pΦ(Xi,j |Zi,j1 , Zi,j2 )]

−Eqφ(Zi,j2 |Xi,j)
[DKL(qφ(Zi,j1 |Xi,j , Zi,j2 )||pΦ(Zi,j1 ))]

−DKL(qφ(Zi,j2 |Xi,j)||pΦ(Zi,j2 |µ̃i))

where µ̃i is the posterior mean of µi. Please refer to Hsu et al. [1] for more details. Additionally,97

Hsu et al. also proposed discriminative segment variational lower bound to encourage Zi2 to be more98

sequence-specific by adding the additional term of inferring the sequence index i from Zi,j2 . For our99

experiments, we exploit this FHVAE model and sequence-to-sequence model [23] as the structure of100

encoder-decoder for sequential data. We propose adding an input language embedding to the input of101

the model. This language embedding will be used to determine the input utterance language using a102

one-hot representation of the in-training languages.103

For performing the voice conversion, we compute the average Z2 from the training utterance(s) of104

source and target speakers. For a given input utterance, we compute Z1 and Z2 of the input utterance.105

There are two ways to perform voice conversion. First, we can replace Z2 values of the source speaker106

with the average Z2 from the target speaker. This approach resulted in too muffled generated result.107

Second, we compute a difference vector between source and target average Zdiff2 = Ztrg2 − Zsrc2 .108
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This difference vector is added to Z2 from the input utterance as Zconverted2 = Z2 + Zdiff2 and then109

decoded using FHVAE to achieve the speech features. In an informal listening test, we decided to the110

second approach since it resulted in significantly higher quality generated speech.111

4 Experiments112

4.1 Datasets113

We used the TIMIT corpus [24] which is a multi-speaker speech corpus as the training data for114

FHVAE model. We used the training speakers as suggested by the corpus to train the model. For115

English test speakers, we select speakers from TIMIT testing part of the corpus. We also use a116

proprietary Chinese speech corpus (hereon referred to as CH) with 5200 speakers each uttering one117

sentence. We use Microsoft’s Indian Language Speech Corpus for Indian language. We also use118

proprietary Korean and Japanese multi-speaker speech corpora. Additionaly. we consider using the119

combination of all languages corpus for training the model. For Korean, Japanese, and Indian corpora,120

we randomly exclude 10 percent of the speakers from each corpus for training purposes. For Chinese121

test speakers, we utilize speakers from the THCHS-30 speech corpus [25]. To observe the effect of122

having more utterances per speaker but less speakers we also train the model on VCTK corpus [26].123

Finally, for objective testing (which requires availability of parallel data), we utilized four CMU-arctic124

voices (BDL, SLT, RMS, CLB)[27]. As speech features, we used 40th-order MCEPs (excluding the125

energy coefficient, dimensionality D=39), extracted using the World toolkit [28] with a 5ms frame126

shift. All audio files are transformed to 16kHz and 16 bit before any analysis.127

4.2 Experimental setting128

For the encoder and decoder in FHVAE model, we use Long Short Term Memory (LSTM) [29] as129

the first layer with 256 hidden units with a fully-connected layer on top. We use 32 dimensions for130

each latent variable Z1 and Z2. The models were trained with stochastic gradient descent. We use131

a mini-batch size of 256. The Adam optimizer [30] is used with β1 = 0.95, β2 = 0.999, ε = 10−8,132

and initial learning rate of 10−4. The model is trained for 500 epochs and select the model best133

performing on the development set.134

From now on, we use the abbreviation VAE for FHVAE model. In our experiments, we consider135

two models: VAE-UNC (unconditioned) [31] and VAE-CND (conditioned) which mean models136

trained either with or without the language conditioning input. We consider four gender conversions137

(F: female, M: male): F2F, F2M, M2F, M2M. We also consider 25 cross-language conversions: all138

permutations of 5 languages considered as source and target. The voice conversion samples are139

available at: https://shamidreza.github.io/nips2018samples140

4.3 Visualizing embeddings141

In this experiment, we investigate the speaker embeddings Z2 by visualizing them in Figure 2. For142

visualizing the speaker embeddings, we use the 10 test speakers (5 male, 5 female) from each language143

test corpus. We use VAE-UNC and VAE-CND. In Figures 2, we show the speaker embeddings144

computed from 1 utterance where the 2D plot of the speaker embeddings (computed using PCA)145

are shown. In all subplots, the female and male embedding cluster locations are clearly separated.146

Furthermore, the plot shows that the speaker embeddings of unique speakers fall near the same147

location. One phenomenon that we notice is that the speaker embeddings for different languages and148

gender fall to different locations for VAE-UNC, however, they fall closer to each other in VAE-CND.149

This might be due to the conditioning on language improving the representation ability of the model.150

Furthermore, we investigate the phonetic context embedding Z1 for a sentence for four English test151

speakers on VAE-UNC. The phonetic context matrix over the computed utterances (compressed using152

PCA) is shown in Figures 3. Ideally, we want the matrices should be close to each other since the153

phonetic context embedding is supposed to be speaker-independent. The figure show the closeness154

of the embeddings at the similar time frames. There is still some minor discrepancy between the155

embeddings which shows room for further improvement of model architecture and/or larger speech156

corpus.157
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Figure 2: Visualization of speaker embeddings: unconditioned (top) versus conditioned (bottom). Red
represents female speakers and blue represents male speakers. Each dot type represents a langauge

Figure 3: Visualization of phonetic context embedding sequence of a sentences aligned to each other
for four English speakers. The embeddings are transformed to 2D using PCA.

4.4 Subjective evaluation158

To subjectively evaluate voice conversion performance, we performed two perceptual tests. The159

first test measured speech quality, designed to answer the question “how natural does the converted160

speech sound”?, and the second test measured speaker similarity, designed to answer the question161

“how accurate does the converted speech mimic the target speaker"?. The listening experiments were162

carried out using Amazon Mechanical Turk, with participants who had approval ratings of at least163

90% and were located in North America. Both perceptual tests used three trivial-to-judge trials,164
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Figure 4: Speech Quality average score with gender and language break-down. Positive scores favor
VAE-CND. (confidence intervals for all is close to 0.14)
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Figure 5: Speech Similarity average score with conversion break-down. Positive scores are desirable.

added to the experiment to exclude unreliable listeners from statistical analysis. No listeners were165

flagged as unreliable in our experiments.166

4.4.1 Speech quality167

To evaluate the speech quality of the converted utterances, we conducted a Comparative Mean Opinion168

Score (CMOS) test. In this test, listeners heard two stimuli A and B with the same content, generated169

using the same source speaker, but in two different processing conditions, and were then asked to170

indicate whether they thought B was better or worse than A, using a five-point scale comprised171

of +2 (much better), +1 (somewhat better), 0 (same), -1 (somewhat worse), -2 (much worse). We172

randomized the order of stimulus presentation, both the order of A and B, as well as the order of the173

comparison pairs. We utilized two processing conditions: VAE-UNC, VAE-CND. We assessed the174

VC approach effect by directly comparing VAE-UNC vs. VAE-CND utterances. The experiment was175

administered to 50 listeners with each listener judging 100 sentence pairs. We achieved +0.15±0.14176

mean score towards VAE-CND. Although this is a positive difference, we did not find statistically177

significant difference between the quality of VAE-UNC and VAE-CND. The language-breakdown of178

the results are shown in Figure 4.179

4.4.2 Speaker similarity180

To evaluate the speaker similarity of the converted utterances, we conducted a same-different speaker181

similarity test [32]. In this test, listeners heard two stimuli A and B with different content, and182

were then asked to indicate whether they thought that A and B were spoken by the same, or by two183

different speakers, using a five-point scale comprised of +2 (definitely same), +1 (probably same), 0184

(unsure), -1 (probably different), and -2 (definitely different). One of the stimuli in each pair was185

created by one of the two conversion methods, and the other stimulus was a purely MCEP-vocoded186

condition, used as the reference speaker. The listeners were explicitly instructed to disregard the187

language of the stimuli and merely judge based on the fact whether they think the utterances are from188

the same speaker regardless of the language. Half of all pairs were created with the reference speaker189

identical to the target speaker of the conversion (expecting listeners to reply “same", ideally); the190

other half were created with the reference speaker being the same gender, but not identical to the191

target speaker of the conversion (expecting listeners to reply different). We only report “same" scores.192

The experiment was administered to 50 listeners, with each listener judging 100 sentence pairs. The193

results are shown in Figure 5. We did find a consistent improvement of VAE-CND performance over194

VAE-UNC, however these differences where not statistically significant.195
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5 Conclusions196

We proposed to exploit FHVAE model for challenging non-parallel and cross-lingual voice conversion,197

even with very small number of training utterances such as only one target speaker’s utterance. We use198

multi-language corpus to learn disentangled representations from speech. We also introduce a one-hot199

language embedding to the model in order to improve the model performance. We perform several200

visualizations to show the effect of the model. In the subjective tests, we found some improvement in201

the quality and similarity performance of the system, although the differences where not statistically202

significant.203
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