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ABSTRACT

In many real-world learning scenarios, features are only acquirable at a cost con-
strained under a budget. In this paper, we propose a novel approach for cost-
sensitive feature acquisition at the prediction-time. The suggested method acquires
features incrementally based on a context-aware feature-value function. We formu-
late the problem in the reinforcement learning paradigm, and introduce a reward
function based on the utility of each feature. Specifically, MC dropout sampling is
used to measure expected variations of the model uncertainty which is used as a
feature-value function. Furthermore, we suggest sharing representations between
the class predictor and value function estimator networks. The suggested approach
is completely online and is readily applicable to stream learning setups. The so-
lution is evaluated on three different datasets including the well-known MNIST
dataset as a benchmark as well as two cost-sensitive datasets: Yahoo Learning to
Rank and a dataset in the medical domain for diabetes classification. According to
the results, the proposed method is able to efficiently acquire features and make
accurate predictions.

1 INTRODUCTION

In traditional machine learning settings, it is usually assumed that a training dataset is freely available
and the objective is to train models that generalize well. In this paradigm, the feature set is fixed,
and we are dealing with complete feature vectors accompanied by class labels that are provided
for training. However, in many real-world scenarios, there are certain costs for acquiring features
as well as budgets limiting the total expenditure. Here, the notation of cost is more general than
financial cost and it also refers to other concepts such as computational cost, privacy impacts, energy
consumption, patient discomfort in medical tests, and so forth (Krishnapuram et al., 2011). Take the
example of the disease diagnosis based on medical tests. Creating a complete feature vector from all
the relevant information is synonymous with conducting many tests such as MRI scan, blood test,
etc. which would not be practical. On the other hand, a physician approaches the problem by asking
a set of basic easy-to-acquire features, and then incrementally prescribes other tests based on the
current known information (i.e., context) until a reliable diagnosis can be made. Furthermore, in
many real-world use-cases, due to the volume of data or necessity of prompt decisions, learning and
prediction should take place in an online and stream-based fashion. In the medical diagnosis example,
it is consistent with the fact that the latency of diagnosis is vital (e.g., urgency of specific cases and
diagnosis), and it is often impossible to defer the decisions. Here, by online we mean processing
samples one at a time as they are being received.

Various approaches were suggested in the literature for cost-sensitive feature acquisition. To begin
with, traditional feature selection methods suggested to limit the set of features being used for training
(Greiner et al., 2002; Ji & Carin, 2007). For instance, L1 regularization for linear classifiers results in

A version of the source code and the health dataset preproccessing code for this paper is available at:
https://github.com/mkachuee/Opportunistic
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models that effectively use a subset of features (Efron et al., 2004). Note that these methods focus on
finding a fixed subset of features to be used (i.e., feature selection), while a more optimal solution
would be making feature acquisition decisions based on the sample at hand and at the prediction-time.

More recently, probabilistic methods were suggested that measure the value of each feature based
on the current evidence (Chen et al., 2015). However, these methods are usually applicable to
Bayesian networks or similar probabilistic models and make limiting assumptions such as having
binary features and binary classes (Chen et al., 2014). Furthermore, these probabilistic methods are
computationally expensive and intractable in large scale problems (Chen et al., 2015).

Motivated by the success of discriminative learning, cascade and tree based classifiers suggested as
an intuitive way to incorporate feature costs (Karayev et al., 2012; Chen et al., 2012; Xu et al., 2012;
2014). Nevertheless, these methods are basically limited to the modeling capability of tree classifiers
and are limited to fixed predetermined structures. A recent work by Nan & Saligrama (2017)
suggested a gating method that employs adaptive linear or tree-based classifiers, alternating between
low-cost models for easy-to-handle instances and higher-cost models to handle more complicated
cases. While this method outperforms many of the previous work on the tree-based and cascade
cost-sensitive classifiers, the low-cost model being used is limited to simple linear classifiers or
pruned random forests.

As an alternative approach, sensitivity analysis of trained predictors is suggested to measure the
importance of each feature given a context (Early et al., 2016a; Kachuee et al., 2017; 2018). These
approaches either require an exhaustive measurement of sensitivities or rely on approximations of
sensitivity. These methods are easy to use as they work without any significant modification to the
predictor models being trained. However, theoretically, finding the global sensitivity is a difficult
and computationally expensive problem. Therefore, frequently, approximate or local sensitivities are
being used in these methods which may cause not optimal solutions.

Another approach that is suggested in the literature is modeling the feature acquisition problem as
a learning problem in the imitation learning (He et al., 2012) or reinforcement learning (He et al.,
2016; Shim et al., 2017; Janisch et al., 2017) domain. These approaches are promising in terms
of performance and scalability. However, the value functions used in these methods are usually
not intuitive and require tuning hyper-parameters to balance the cost vs. accuracy trade-off. More
specifically, they often rely on one or more hyper-parameters to adjust the average cost at which these
models operate. On the other hand, in many real-world scenarios it is desirable to adjust the trade-off
at the prediction-time rather than the training-time. For instance, it might be desirable to spend more
for a certain instance or continue the feature acquisition until a desired level of prediction confidence
is achieved.

This paper presents a novel method based on deep Q-networks for cost-sensitive feature acquisition.
The proposed solution employs uncertainty analysis in neural network classifiers as a measure for
finding the value of each feature given a context. Specifically, we use variations in the certainty of
predictions as a reward function to measure the value per unit of the cost given the current context. In
contrast to the recent feature acquisition methods that use reinforcement learning ideas (He et al.,
2016; Shim et al., 2017; Janisch et al., 2017), the suggested reward function does not require any
hyper-parameter tuning to balance cost versus performance trade-off. Here, features are acquired
incrementally, while maintaining a certain budget or a stopping criterion. Moreover, in contrast to
many other work in the literature that assume an initial complete dataset (He et al., 2012; Kusner
et al., 2014; Chen et al., 2015; Early et al., 2016b; Nan & Saligrama, 2017), the proposed solution
is stream-based and online which learns and optimizes acquisition costs during the training and
the prediction. This might be beneficial as, in many real-world use cases, it might be prohibitively
expensive to collect all features for all training data. Furthermore, this paper suggests a method for
sharing the representations between the class predictor and action-value models that increases the
training efficiency.
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2 PRELIMINARIES

2.1 PROBLEM SETTINGS

In this paper, we consider the general scenario of having a stream of samples as input (Si). Each
sample Si corresponds to a data point of a certain class in Rd, where there is a cost for acquiring
each feature (cj ; 1 ≤ j ≤ d). For each sample, initially, we do not know the value of any feature.
Subsequently, at each time step t, we only have access to a partial realization of the feature vector
denoted by xt

i that consists of features that are acquired so far. There is a maximum feature acquisition
budget (B) that is available for each sample. Note that the acquisition may also be terminated before
reaching the maximum budget, based on any other termination condition such as reaching a certain
prediction confidence. Furthermore, for each Si, there is a ground truth target label ỹi. It is also
worth noting that we consider the online stream processing task in which acquiring features is only
possible for the current sample being processed. In other words, any decision should take place in an
online fashion.

In this setting, the goal of an Opportunistic Learning (OL) solution is to make accurate predictions
for each sample by acquiring as many features as necessary. At the same time, learning should take
place by updating the model while maintaining the budgets. Please note that, in this setup, we are
assuming that the feature acquisition algorithm is processing a stream of input samples and there are
no distinct training or test samples. However, we assume that ground truth labels are only available to
us after the prediction and for a subset of samples.

More formally, we define a mask vector kt
i ∈ {0, 1}d where each element of k indicates if the

corresponding feature is available in xt
i. Using this notation, the total feature acquisition cost at each

time step can be represented as
Ct

total,i = (kt
i − k0

i )
T c . (1)

Furthermore, we define the feature query operator (q) as

xt+1
i = q(xt

i, j), where kt+1
i,j − kt

i,j = 1 . (2)

In Section 3, we use these primitive operations and notations for presenting the suggested solution.

2.2 PREDICTION CERTAINTY

As prediction certainty is used extensively throughout this paper, we devote this section to certainty
measurement. The softmax output layer in neural networks are traditionally used as a measure of
prediction certainty. However, interpreting softmax values as probabilities is an ad hoc approach
prone to errors and inaccurate certainty estimates (Szegedy et al., 2013). In order to mitigate this issue,
we follow the idea of Bayesian neural networks and Monte Carlo dropout (MC dropout) (Williams,
1997; Gal & Ghahramani, 2016). Here we consider the distribution of model parameters at each layer
l in an L layer neural network as:

ω̂l ∼ p(ωl), where 1 ≤ l ≤ L , (3)

where ω̂l is a realization of layer parameters from the probability distribution of p(ωl). In this setting,
a probability estimate conditioned on the input and stochastic model parameters is represented as:

p(y|x, ω̂) = softmax(f ω̂D (x)) , (4)

where f ω̂D is the output activation of a neural network with parameters ω̂ trained on dataset D. In
order to find the uncertainty of final predictions with respect to inputs, we integrate equation 4 with
respect to ω:

p(y|x,D) =
∫
p(y|x, ω)p(ω|D)dω . (5)

Finally, MC dropout suggests interpreting the dropout forward path evaluations as Monte Carlo
samples (ωt) from the ω distribution and approximating the prediction probability as:

p(y|x,D) = 1

T

T∑
t=1

p(y|x, ωt) . (6)
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With reasonable dropout probability and number of samples, the MC dropout estimate can be
considered as an accurate estimate of the prediction uncertainty. Readers are referred to Gal &
Ghahramani (2016) for a more detailed discussion. In this paper, we denote the certainty of prediction
for a given sample (Cert(xt

i)) as a vector providing the probability of the sample belonging to each
class in equation 6.

3 PROPOSED SOLUTION

3.1 COST-SENSITIVE FEATURE ACQUISITION

We formulate the problem at hand as a generic reinforcement learning problem. Each episode is
basically consisting of a sequence of interactions between the suggested algorithm and a single
data instance (i.e., sample). At each point, the current state is defined as the current realization of
the feature vector (i.e., xt

i) for a given instance. At each state, the set of valid actions consists of
acquiring any feature that is not acquired yet (i.e., At

i = {j = 1 . . . d|kt
i,j = 0}). In this setting, each

action along with the state transition as well as a reward, defined in the following, is characterizing
an experience.

We suggest incremental feature acquisition based on the value per unit cost of each feature. Here, the
value of acquiring a feature is defined as the expected amount of change in the prediction uncertainty
that acquiring the feature causes. Specifically, we define the value of each unknown feature as:

rti,j =
||Cert(xt

i)− Cert(q(xt
i, j))||

cj
, (7)

where rti,j is the value of acquiring feature j for sample i at time step t. It can be interpreted as
the expected change of the hypothesis due to acquiring each feature per unit of the cost. Other
reinforcement learning based feature acquisition methods in the literature usually use the final
prediction accuracy and feature acquisition costs as components of reward function (He et al., 2016;
Shim et al., 2017; Janisch et al., 2017). However, the reward function of equation 7 is modeling
the weighted changes of hypothesis after acquiring each feature. Consequently, it results in an
incremental solution which is selecting the most informative feature to be acquired at each point. As
it is demonstrated in our experiments, this property is particularly beneficial when a single model is
to be used under a budget determined at the prediction-time or any other, not predefined, termination
condition.

While it is possible to directly use the measure introduced in equation 7 to find features to be acquired
at each time, it would be computationally expensive; because it requires exhaustively measuring the
value function for all features at each time. Instead, in addition to a predictor model, we train an
action value (i.e., feature value) function which estimates the gain of acquiring each feature based
on the current context. For this purpose, we follow the idea of the deep Q-network (DQN) (Mnih
et al., 2015; 2013). Briefly, DQN suggests end-to-end learning of the action-value function. It is
achieved by exploring the space through taking actions using an ε-greedy policy, storing experiences
in a replay memory, and gradually updating the value function used for exploration. Due to space
limitations, readers are referred to Mnih et al. (2015) for a more detailed discussion.

Figure 1 presents the network architecture of the proposed method for prediction and feature acqui-
sition. In this architecture, a predictor network (P-Network) is trained jointly with an action value
network (Q-Network). The P-Network is responsible for making prediction and consists of dropout
layers that are sampled in order to find the prediction uncertainty. The Q-Network estimates the value
of each unknown feature being acquired.

Here, we suggest sharing the representations learned from the P-Network with the Q-Network.
Specifically, the activations of each layer in the P-Network serve as input to the adjacent layers of the
Q-Network (see Figure 1). Note that, in order to increase model stability during the training, we do
not allow back-propagation from Q-Network outputs to P-Network weights. We also explored other
architectures and sharing methods including using fully-shared layers between P- and Q-Networks
that are trained jointly or only sharing the first few layers. According to our experiments, the
suggested sharing method of Figure 1 is reasonably efficient, while introducing a minimal burden on
the prediction performance.
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Figure 1: Network architecture of the proposed approach for prediction and action value estimation.

Algorithm 1 summarizes the procedures for cost-sensitive feature acquisition and training the net-
works. This algorithm is designed to operate on a stream of input instances, actively acquire features,
make predictions, and optimize the models. In this algorithm, if any features are available for free
we include them in the initial feature vector; otherwise, we start with all features not being available
initially. Here, the feature acquisition is terminated when either a maximum budget is exceeded, a
user-defined stopping function decides to stop, or there is no unknown feature left to acquire. It is
worth noting that, in Algorithm 1, to simplify the presentation, we assumed that ground-truth labels
are available at the beginning of each episode. However, in the actual implementation, we store
experiences within an episode in a temporary buffer, excluding the label. At last, after the termination
of the feature acquisition procedure, a prediction is being made and upon the availability of label for
that sample, the temporary experiences along with the ground-truth label are pushed to the experience
replay memory.

In our experiments, for the simplicity of presentation, we assume that all features are independently
acquirable at a certain cost, while in many scenarios, features are bundled and acquired together (e.g.,
certain clinical measurements). However, it should be noted that the current formulation presented
in this paper allows for having bundled feature sets. In this case, each action would be acquiring
each bundle and the reward function is evaluated for the acquisition of the bundle by measuring the
variations of uncertainty before and after acquiring the bundle.

3.2 IMPLEMENTATION DETAILS

In this paper, PyTorch numerical computational library (Paszke et al., 2017) is used for the implemen-
tation of the proposed method. The experiments took between a few hours to a couple days on a GPU
server, depending on the experiment. Here, we explored fully connected multi-layer neural network
architectures; however, the approach taken can be readily applied to other neural network and deep
learning architectures. We normalize features prior to our experiments statistically (µ = 0, σ = 1)
and impute missing features with zeros. Note that, in our implementation, for efficiency reasons, we
use NaN (not a number) values to represent features that are not available and impute them with zeros
during the forward/backward computation.

Cross-entropy and mean squared error (MSE) loss functions were used as the objective functions
for the P and Q networks, respectively. Furthermore, the Adam optimization algorithm Kingma
& Ba (2014) was used throughout this work for training the networks. We used dropout with the
probability of 0.5 for all hidden layers of the P-Network and no dropout for the Q-Network. The
target Q-Network was updated softly with the rate of 0.001. We update P, Q, and target Q networks
every 1 +

nfe

100 experiences, where nfe is the total number of features in an experiment. In addition,
the replay memory size is set to store 1000× nfe most recent experiences. The random exploration
probability is decayed such that eventually it reaches the probability of 0.1. We determined these
hyper-parameters using the validation set. Based on our experiments, the suggested solution is not
much sensitive to these values and any reasonable setting, given enough training iterations, would
result in reasonable a performance. A more detailed explanation of implementation details for each
specific experiment is provided in Section 4.
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Algorithm 1: Suggested algorithm for Cost-Sensitive Feature Acquisition, Prediction, and Training
Input: total budget (B), stream of samples (Si), acquisition cost of features (cj)
Initialize: experience replay memory, random exploration probability (Prrand)← 1

1 for Si in the stream do
2 Prrand ← decay factor × Prrand
3 t← 0
4 xt

i ← known features of Si // if there are any features available
5 total cost← 0
6 ỹi ← class label of Si

7 terminate flag ← False
8 while not terminate flag do // collect experiences from each episode
9 if new random in [0, 1) < Prrand then // if it is a random exploration

10 j ← index of a randomly selected unknown feature
11 else // if it is an exploration using policy
12 j ← index of the unknown feature with maximum Q value
13 xt+1

i ← q(xt
i, j) // acquire feature j

14 total cost← total cost+ cj // pay the cost of j

15 rti,j ←
||Cert(xt

i)−Cert(xt+1
i )||

cj

16 push (xt
i,x

t+1
i , j, rti,j , ỹi) into the replay memory

17 t← t+ 1
18 if total cost ≥ B or stop condition() or no unknown feature then
19 terminate flag ← True // terminate if all the budget is used
20 if update condition() then
21 train batch← random mini-batch from the replay memory
22 update P, Q, and target Q networks using train batch // Jointly train P & Q
23 end
24 end

Table 1: The summary of datasets and experimental settings.

Dataset Instances Features Classes P-Net Architecture Q-Net Architecture
MNIST (LeCun et al., 1998) 70000 784 10 [512, 512, 128, 64] [512+ 512,512+ 256,128+ 65,64+ 16]

LTRC (Chapelle & Chang, 2011) 34815 519 5 [128, 32] [128+ 128,32+ 8]

Diabetes (Sec. 4.1) 92062 45 3 [64, 32, 16] [64+ 64,32+ 16,16+ 10]

4 RESULTS AND EXPERIMENTS

4.1 DATASETS AND EXPERIMENTS

We evaluated the proposed method on three different datasets: MNIST handwritten digits (LeCun
et al., 1998), Yahoo Learning to Rank (LTRC) (Chapelle & Chang, 2011), and a health informatics
dataset. The MNIST dataset is used as it is a widely used benchmark. For this dataset, we assume
equal feature acquisition cost of 1 for all features. It is worth noting that we are considering the
permutation invariant setup for MNIST where each pixel is a feature discarding the spatial information.
Regarding the LTRC dataset, we use feature acquisition costs provided by Yahoo! that corresponding
to the computational cost of each feature. Furthermore, we evaluated our method using a real-world
health dataset for diabetes classification where feature acquisition costs and budgets are natural
and essential to be considered. The national health and nutrition examination survey (NAHNES)
data (nha, 2018) was used for this purpose. A feature set including: (i) demographic information
(age, gender, ethnicity, etc.), (ii) lab results (total cholesterol, triglyceride, etc.), (iii) examination
data (weight, height, etc.) , and (iv) questionnaire answers (smoking, alcohol, sleep habits, etc.) is
used here. An expert with experience in medical studies is asked to suggest costs for each feature
based on the overall financial burden, patient privacy, and patient inconvenience. Finally, the fasting
glucose values were used to define three classes: normal, pre-diabetes, and diabetes based on standard
threshold values. The final dataset consists of 92062 samples of 45 features.
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Figure 2: Evaluation of the proposed method on
MNIST dataset. Accuracy vs. number of ac-
quired features for OL, RADIN (Contardo et al.,
2016), GreedyMiser (Xu et al., 2012), and a recent
work based on reinforcement learning (RL-Based)
(Janisch et al., 2017).
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Figure 3: Evaluation of the proposed method on
LTRC dataset. NDCG vs. cost of acquired fea-
tures for OL, CSTC (Xu et al., 2014), Cronus
(Chen et al., 2012), and Early Exit (Cambazoglu
et al., 2010) approaches.

In the current study, we use reinforcement learning as an optimization algorithm, while processing
data in a sequential manner. Throughout all experiments, we used fully-connected neural networks
with ReLU non-linearity and dropout applied to hidden layers. We apply MC dropout sampling
using 1000 evaluations of the predictor network for confidence measurements and finding the reward
values. Meanwhile, 100 evaluations are used for prediction at test-time. We selected these value for
our experiments as it showed stable prediction and uncertainty estimates. Each dataset was randomly
splitted to 15% for test, 15% for validation, and the rest for train. During the training and validation
phase, we use the random exploration mechanism. For comparison of the results with other work in
the literature, as they are all offline methods, the random exploration is not used during the feature
acquisition. However, intuitively we believe in datasets with non-stationary distributions, it may be
helpful to use random exploration as it helps to capture concept drift. Furthermore, we do model
training multiple time for each experiment and average the outcomes. It is also worth noting that, as
the proposed method is incremental, we continued feature acquisition until all features were acquired
and reported the average accuracy corresponding to each feature acquisition budget.

Table 1 presents a summary of datasets and network architectures used throughout the experiments.
In this table, we report the number of hidden neurons at each network layer of the P and Q networks.
For the Q-Network architecture, the number of neurons in each hidden layer is reported as the number
of shared neurons from the P-Network plus the number of neurons specific to the Q-Network.

4.2 PERFORMANCE OF THE PROPOSED APPROACH

Figure 2 presents the accuracy versus acquisition cost curve for the MNIST dataset. Here, we com-
pared results of the proposed method (OL) with a feature acquisition method based on recurrent neural
networks (RADIN) (Contardo et al., 2016), a tree-based feature acquisition method (GreedyMiser)
(Xu et al., 2012), and a recent work using reinforcement learning ideas (RL-Based) (Janisch et al.,
2017). As it can be seen from this figure, our cost-sensitive feature acquisition method achieves
higher accuracies at a lower cost compared to other competitors. Regarding the RL-Based method,
(Janisch et al., 2017), to make a fair comparison, we used the similar network sizes and learning
algorithms as with the OL method. Also, it is worth mentioning that the RL-based curve is the result
of training many models with different cost-accuracy trade-off hyper-parameter values, while training
the OL model gives us a complete curve. Accordingly, evaluating the method of (Janisch et al., 2017)
took more than 10 times compared to OL.

Figure 3 presents the accuracy versus acquisition cost curve for the LTRC dataset. As LTRC is a
ranking dataset, in order to have a fair comparison with other work in the literature, we have used
the normalized discounted cumulative gain (NDCG) (Järvelin & Kekäläinen, 2002) performance
measure. In short, NDCG is the ratio of the discounted relevance achieved using a suggested ranking
method to the discounted relevance achieved using the ideal ranking. Inferring from Figure 3, the
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Figure 4: Evaluation of the proposed method on the diabetes dataset. (a) Visualization of feature
acquisition orders for 50 test samples (warmer colors represent more priority). (b) Accuracy vs. cost
of acquired features for this paper (OL), an exhaustive sensitivity-based method (Exhaustive) (Early
et al., 2016a), the method suggested by Janisch et al. (2017) (RL-Based), and using gating functions
and adaptively trained random forests (Nan & Saligrama, 2017) (Adapt-GBRT).

proposed method is able to achieve higher NDCG values using a much lower acquisition budget
compared to tree-based approaches in the literature including CSTC (Xu et al., 2014), Cronus (Chen
et al., 2012), and Early Exit (Cambazoglu et al., 2010).

Figure 4a shows a visualization of the OL feature acquisition on the diabetes dataset. In this figure,
the y-axis corresponds to 50 random test samples and the x-axis corresponds to each feature. Here,
warmer colors represent features that were acquired with more priority and colder colors represent
less acquisition priority. It can be observed from this figure that OL acquires features based on the
available context rather than having a static feature importance and ordering. It can also be seen
that OL gives more priority to less costly and yet informative features such as demographics and
examinations. Furthermore, Figure 4b demonstrates the accuracy versus acquisition cost for the
diabetes classification. As it can be observed from this figure, OL achieves a superior accuracy with a
lower acquisition cost compared to other approaches. Here, we used the exhaustive feature query
method as suggested by Early et al. (2016a) using sensitivity as the utility function, the method
suggested by Janisch et al. (2017) (RL-Based), as well a recent paper using gating functions and
adaptively trained random forests (Nan & Saligrama, 2017) (Adapt-GBRT).

4.3 ANALYSIS

4.3.1 ABLATION STUDY

In this section we show the effectiveness of three ideas suggested by this paper i.e, using model
uncertainty as a feature-value measure, representation sharing between the P and Q networks, and
using MC-dropout as a measure of prediction uncertainty. Additionally, we study the influence
of the available budget on the performance of the algorithm. In these experiments, we used the
diabetes dataset. A comparison between the suggested feature-value function (OL) in this paper
with a traditional feature-value function (RL-Based) was presented in Figure 2 and Figure 4b. We
implemented the RL-Based method such that it is using a similar architecture and learning algorithm
as the OL, while the reward function is simply the the negative of feature costs for acquiring each
feature and a positive value for making correct predictions. As it can be seen from the comparison
of these approaches, the reward function suggested in this paper results in a more efficient feature
acquisition.

In order to demonstrate the importance of MC-dropout, we measured the average of accuracy at each
certainty value. Statistically, confidence values indicate the average accuracy of predictions (Guo
et al., 2017). For instance, if we measure the certainty of prediction for a group of samples to be
90%, we expect to correctly classify samples of that group 90% of the time. Figure 5 shows the
average prediction accuracy versus the certainty of samples reported using the MC-dropout method
(using 1000 samples) and directly using the softmax output values. As it can be inferred from this
figure, MC-dropout estimates are highly accurate, while softmax estimates are mostly over-confident
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Figure 5: (a) The average prediction accuracy versus the certainty of samples reported using the
MC-dropout method (1000 samples) and directly using the softmax output values. (b) The accuracy
versus cost curves for using the MC-dropout method and directly using the softmax output values.

0 2000 4000 6000 8000 10000 12000
Number of Episodes

0.3

0.4

0.5

0.6

0.7

0.8

AU
AC

C

W/ Sharing
W/O Sharing

Figure 6: The speed of convergence using the
suggested sharing between the P and Q networks
(W/ Sharing) compared with not using the sharing
architecture (W/O Sharing).
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Figure 7: Accuracy versus cost curves achieved
using different budget levels: 25 %, 50%, 75%,
and 100% of the cost of acquiring all features.

and inaccurate. Note that the accuracy of certainty estimates are crucially important to us as any
inaccuracy in these values results in having inaccurate reward values. Figure 5b shows the accuracy
versus cost curves that the suggested architecture achieves using the accurate MC-dropout certainty
estimates and using the inaccurate softmax estimates. It can be seen from this figure that more
accurate MC-dropout estimates are essential.

Figure 6 demonstrates the speed of convergence using the suggested sharing between the P and Q
networks (W/ Sharing) as well as not using the sharing architecture (W/O Sharing). Here, we use
the normalized area under the accuracy-cost curve (AUACC) as measure of acquisition performance
at each episode. Please note that we adjust the number of hidden neurons such that the number of
Q-Network parameters is the same for each corresponding layer between the two cases. As it can be
seen from this figure, the suggested representation sharing between the P and Q networks increases
the speed of convergence.

Figure 7 shows the performance of the OL method having various limited budgets during the operation.
Here, we report the accuracy-cost curves for 25%, 50%, 75%, and 100% of the budget required to
acquire all features. As it can be inferred from this figure, the suggested method is able to efficiently
operate at different enforced budget constraints.

4.3.2 CONVERGENCE ANALYSIS

Figure 8a and 8b demonstrate the validation accuracy and AUACC values measured during the
processing of the data stream at each episode for the MNIST and Diabetes datasets, respectively.
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Figure 8: The validation set accuracy and AUACC values versus the number of episodes for the (a)
MNIST and (b) Diabetes datasets.

As it can be seen from this figure, as the algorithm observes more data samples, it achieves higher
validation accuracy/AUACC values, and it eventually converges after a certain number of episodes. It
should be noted that, in general, convergence in reinforcement learning setups is dependent on the
training algorithm and parameters used. For instance, the random exploration strategy, the update
condition, and the update strategy for the target Q network would influence the overall time behavior
of the algorithm. In this paper, we use conservative and reasonable strategies as reported in Section 3.2
that results in stable results across a wide range of experiments.

5 CONCLUSION

In this paper, we proposed an approach for cost-sensitive learning in stream-based settings. We
demonstrated that certainty estimation in neural network classifiers can be used as a viable measure
for the value of features. Specifically, variations of the model certainty per unit of the cost is used as
measure of feature value. In this paradigm, a reinforcement learning solution is suggested which is
efficient to train using a shared representation. The introduced method is evaluated on three different
real-world datasets representing different applications: MNIST digits recognition, Yahoo LTRC web
ranking dataset, and diabetes prediction using health records. Based on the results, the suggested
method is able to learn from data streams, make accurate predictions, and effectively reduce the
prediction-time feature acquisition cost.
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