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Abstract

We present VILBERT (short for Vision-and-Language BERT), a model for learning
task-agnostic joint representations of image content and natural language. We
extend the popular BERT architecture to a multi-modal two-stream model, pro-
cessing both visual and textual inputs in separate streams that interact through
co-attentional transformer layers. We pretrain our model through two proxy tasks
on the large, automatically collected Conceptual Captions dataset and then transfer
it to multiple established vision-and-language tasks — visual question answering,
visual commonsense reasoning, referring expressions, and caption-based image
retrieval — by making only minor additions to the base architecture. We observe
significant improvements across tasks compared to existing task-specific models —
achieving state-of-the-art on all four tasks. Our work represents a shift away from
learning groundings between vision and language only as part of task training and
towards treating visual grounding as a pretrainable and transferable capability.

1 Introduction

“... spend the summer linking a camera to a computer and getting the computer to describe what it saw.”

Marvin Minsky on the goal of a 1966 undergraduate summer research project [1|]

Since this now famously ambitious summer project, steady progress has been made towards systems
that can demonstrate their visual understanding by generating or responding to natural language in the
context of images, videos, or even full 3D environments [2H8]]. These approaches and corresponding
tasks have come to be referred to under the common banner of ‘vision-and-language’. However,
despite the common need to align natural language and visual stimuli — i.e. to perform visual
grounding — approaches for vision-and-language tasks lack a unified foundation to gain this capability.
Instead, the dominant strategy is to start with separate language and vision models pretrained for
other large-scale tasks and then learn grounding as part of task training — often resulting in myopic
groundings that generalize poorly when paired visiolinguistic data is limited or biased [9} [10].

This pretrain-then-transfer learning approach to vision-and-language tasks follows naturally from its
widespread use in both computer vision and natural language processing where it has become the de
facto standard due to the ease-of-use and strong representational power of large, publicly-available
models [[11H14] trained on large-scale data sources [[15H19]]. In these domains, pretrained models can
provide useful information for target tasks, e.g. dog breed-sensitive image features or a well-calibrated
semantic distance between words. While visual and linguistic understandings like these are of course
essential to vision-and-language tasks, equally important is how they relate to one another —e.g. a
perfect visual representation of dog breeds is of little use if a downstream vision-and-language model
fails to associate it with appropriate phrases like “beagle” or “shepherd”. We are therefore interested
in developing a common model for visual grounding that can learn these connections and leverage
them on a wide array of vision-and-language tasks — i.e., we seek to pretrain for visual grounding.

To learn these joint visual-linguistic representations, we look to recent successes in self-supervised
learning which have captured rich semantic and structural information from large, unlabelled data
sources by training models to perform so-called ‘proxy’ tasks. These proxy tasks leverage structure
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Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic
(purple) processing that interact through novel co-attentional transformer layers. This structure allows
for variable depths for each modality and enables sparse interaction through co-attention. Dashed
boxes with multiplier subscripts denote repeated blocks of layers.

within the data to generate supervised tasks automatically (e.g. colorizing images [20] or reconstruct-
ing masked words in text [[12]). While work within the vision community has shown increasing
promise [21H23]], the greatest impact of self-supervised learning so far is through language models
like ELMo [13]], BERT [12], and GPT [[14]] which have set new high-water marks on many NLP
tasks. To learn visual grounding via a similar approach, we must identify a suitable data source
where alignment between vision and language is available. In this work, we consider the recently
released Conceptual Captions [24]] dataset consisting of ~3.3 million images with weakly-associated
descriptive captions automatically collected from alt-text enabled images on the web.

We present a joint model for learning task-agnostic visual grounding from paired visiolinguistic data
which we call Vision & Language BERT (ViLBERT for short). Our approach extends the recently
developed BERT [[12] language model to jointly reason about text and images. Our key technical
innovation is introducing separate streams for vision and language processing that communicate
through co-attentional transformer layers. This structure can accommodate the differing processing
needs of each modality and provides interaction between modalities at varying representation depths.
We demonstrate that this structure outperforms a single-stream unified model in our experiments.

In analogy to the training tasks in [[12]], we train our model on Conceptual Captions on two proxy
tasks: predicting the semantics of masked words and image regions given the unmasked inputs,
and predicting whether an image and text segment correspond. We apply our pretrained model
as a base for four established vision-and-language tasks — visual question answering [3]], visual
commonsense reasoning [25]], referring expressions [2], and caption-based image retrieval [26] —
setting state-of-the-art on all four tasks. We find improvements of 2 to 10 percentage points across
these tasks when compared to state-of-the-art task-specific baselines using separately pretrained
vision and language models. Furthermore, our structure is simple to modify for each of these tasks —
serving as a common foundation for visual grounding across multiple vision-and-language tasks.

2 Approach

In this section, we first briefly summarize the BERT language model (Sec. [2.T) and then describe
how we extend it to jointly represent vision and language data (Sec.[2.2)).

2.1 Preliminaries: Bidirectional Encoder Representations from Transformers (BERT)

The BERT model introduced by [12] is an attention-based bidirectional language model. When
pretrained on a large language corpus, BERT has proven to be very effective for transfer learning to
multiple natural language processing tasks.

The BERT model operates on sequences of word tokens wy, ..., wp. These tokens are mapped
to learned encodings and passed through L “encoder-style” transformer blocks [27] to produce

final representations ho, .. ., hr. Let H) be a matrix with rows h(()l), ey hgpl) corresponding to the
intermediate representations after the [-th layer. Abstracting some internal details found in [27],
we depict the computation of a single encoder-style transformer block in Fig. 2a] consisting of a
multi-headed attention block followed by a small fully-connected network, both wrapped in residual
adds. Note that the intermediate representation @ is used to compute three matrices — @), K, and V'
— corresponding to queries, keys, and values that drive the multi-headed attention block. Specifically,
the dot-product similarity between queries and keys determines attentional distributions over value
vectors. The resulting weight-averaged value vector forms the output of the attention block. As
we describe later, we modify this query-conditioned key-value attention mechanism to develop a
multi-modal co-attentional transformer module for VILBERT (Fig. [2b).
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Figure 2: We introduce a novel co-attention mechanism based on the transformer architecture. By
exchanging key-value pairs in multi-headed attention, this structure enables vision-attended language
features to be incorporated into visual representations (and vice versa).

Text Representation. BERT operates over sequences of discrete tokens comprised of vocabulary
words and a small set of special tokens: SEP, CLS, and MASK. For a given token, the input represen-
tation is a sum of a token-specific learned embedding [28]] and encodings for position (i.e. token’s
index in the sequence) and segment (i.e. index of the token’s sentence if multiple exist).

Training Tasks and Objectives. The BERT model is trained end-to-end on a large language-corpus
under two tasks: masked language modelling and next sentence prediction.

The masked language modelling task randomly divides input tokens into disjoint sets corresponding
to masked X, and observed X tokens (approximately 15% of tokens being masked). Masked
tokens are replaced with a special MASK token 80% of the time, a random word 10%, and unaltered
10%. The BERT model is then trained to reconstruct these masked tokens given the observed set.
Specifically, a linear layer is learned to map the final representations at each index (e.g. h;) to a
distribution over the vocabulary and the model is trained under a cross-entropy loss.

In next sentence prediction, the BERT model is passed two text segments A and B following the
format {CLS, wai,...,war, SEP, wp1,...,wpT, SEP} and is trained to predict whether or not B
follows A in the source text. Specifically, a linear layer operating on the final representation for the
CLS token (i.e. h¢r,g) is trained to minimize a binary cross-entropy loss on this label.

2.2 VILBERT: Extending BERT to Jointly Represent Images and Text

Inspired by BERT’s success at language modeling, we would like to develop analogous models
and training tasks to learn joint representations of language and visual content from paired data.
Specifically, we consider jointly representing static images and corresponding descriptive text.

One straightforward approach is to make minimal changes to BERT — simply discretizing the space
of visual inputs via clustering, treat these visual ‘tokens’ exactly like text inputs, and start from
a pretrained BERT modeﬂ This architecture suffers from a number of drawbacks. First, initial
clustering may result in discretization error and lose important visual details. Second, it treats inputs
from both modalities identically, ignoring that they may need different levels of processing due to
either their inherent complexity or the initial level of abstraction of their input representations. For
instance, image regions may have weaker relations than words in a sentence and visual features are
themselves often already the output of a very deep network. Finally, forcing the pretrained weights to
accommodate the large set of additional visual ‘tokens’ may damage the learned BERT language
model. Instead, we develop a two-stream architecture modelling each modality separately and then
fusing them through a small set of attention-based interactions. This approach allows for variable
network depth for each modality and enables cross-modal connections at different depths.

Our model which we call VILBERT is shown in Fig. [T] and consists of two paralle]l BERT-style
models operating over image regions and text segments. Each stream is a series of transformer
blocks (TRM) and novel co-attentional transformer layers (Co-TRM) which we introduce to enable
information exchange between modalities. Given an image I represented as a set of region features
v1,...,v7 and a text input wy, . . . , wp, our model outputs final representations hq, - . . , h,7 and
hwo, - - -, hypr. Notice that exchange between the two streams is restricted to be between specific

!Concurrent work [29] modelling language and video sequences takes this approach. See Sec.
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Figure 3: We train VILBERT on the Conceptual Captions [24]] dataset under two training tasks to
learn visual grounding. In masked multi-modal learning, the model must reconstruct image region
categories or words for masked inputs given the observed inputs. In multi-modal alignment prediction,
the model must predict whether or not the caption describes the image content.

layers and that the text stream has significantly more processing before interacting with visual features
— matching our intuitions that our chosen visual features are already fairly high-level and require
limited context-aggregation compared to words in a sentence.

Co-Attentional Transformer Layers. We introduce a co-attentional transformer layer shown in

Fig. Given intermediate visual and linguistic representations /1. ‘(; ) and HY ), the module computes
query, key, and value matrices as in a standard transformer block. However, the keys and values
from each modality are passed as input to the other modality’s multi-headed attention block. Con-
sequentially, the attention block produces attention-pooled features for each modality conditioned
on the other — in effect performing image-conditioned language attention in the visual stream and
language-conditioned image attention in the linguistic stream. The latter mimics common attention
mechanisms found in vision-and-language models [30]. The rest of the transformer block proceeds
as before, including a residual add with the initial representations — resulting in a multi-modal feature.
In general, co-attention for vision-and-language is not a new idea (being first proposed in [31]) and
concurrent work [32,33] has shown the effectiveness of similar co-attentional transformer structures
on the visual question answering [3] task.

Image Representations. We generate image region features by extracting bounding boxes and their
visual features from a pre-trained object detection network (see Sec.[3.1). Unlike words in text, image
regions lack a natural ordering. we encode spatial location instead, constructing a 5-d vector from
region position (normalized top-left and bottom-right coordinates) and the fraction of image area
covered. This is then projected to match the dimension of the visual feature and they are summed.

We mark the beginning of an image region sequence with a special IMG token representing the entire
image (i.e. mean-pooled visual features with a spatial encoding corresponding to the entire image).

Training Tasks and Objectives. In analogy to those described in the previous section, we consider
two pretraining tasks: masked multi-modal modelling and multi-modal alignment prediction.

The masked multi-modal modelling task (shown in Fig. follows from the masked language
modelling task in standard BERT — masking approximately 15% of both words and image region
inputs and tasking the model with reconstructing them given the remaining inputs. Masked image
regions have their image features zeroed out 90% of the time and are unaltered 10%. Masked text
inputs are handled as in BERT. Rather than directly regressing the masked feature values, the model
instead predicts a distribution over semantic classes for the corresponding image region. To supervise
this, we take the output distribution for the region from the same pretrained detection model used in
feature extraction. We train the model to minimize the KL divergence between these two distributions.
This choice reflects the notion that language often only identifies high-level semantics of visual
content and is unlikely to be able to reconstruct exact image features. Further, applying a regression
loss could make it difficult to balance losses incurred by masked image and text inputs.

In the multi-modal alignment task (shown in Fig.[3b)), the model is presented an image-text pair as
{IMG, vy, ...,v7,CLS, w1, ..., wr, SEP} and must predict whether the image and text are aligned, i.e.
whether the text describes the image. We take the outputs h1yg and hgrg as holistic representations
of the visual and linguistic inputs. Borrowing another common structure from vision-and-language
models, we compute the overall representation as an element-wise product between h1yg and hgrg
and learn a linear layer to make the binary prediction whether the image and text are aligned. However,
the Conceptual Captions [24]] dataset only includes aligned image-caption pairs. To generate negatives
for an image-caption pair, we randomly replace either the image or caption with another.



3 Experimental Settings

In this section, we describe how we train our model and provide overviews of the vision-and-language
tasks to which we transfer the trained model.

3.1 Training VILBERT

To train our full VILBERT model, we apply the training tasks presented in Sec.[2.2]to the Conceptual
Captions dataset [24]. Conceptual Captions is a collection of 3.3 million image-caption pairs
automatically scraped from alt-text enabled web images. The automatic collection and sanitation
process leaves some noise and the ‘captions’ are sometimes not human-like or short on details (e.g.
“actors attend the premiere at festival”’). However, it presents a huge diversity of visual content and
serves as an excellent dataset for our purposes. Since some links had become broken by the time we
downloaded the data, our model is trained with around 3.1 million image-caption pairs.

Implementation Details. We initialize the linguistic stream of our VILBERT model with a BERT
language model pretrained on the BookCorpus [17] and English Wikipedia. Specifically, we use the
BERTgpgE model [12] which has 12 layers of transformer blocks with each block having a hidden
state size of 762 and 12 attention heads. We choose to use the BASE model due to concerns over
training time but find it likely the more powerful BERT pggr model could further boost performance.

We use Faster R-CNN [31] (with ResNet-101 [[L1] backbone) pretrained on the Visual Genome
dataset [16] (see [30] for details) to extract region features. We select regions where class detection
probability exceeds a confidence threshold and keep between 10 to 36 high-scoring boxes. For
each selected region ¢, v; is defined as the mean-pooled convolutional feature from that region.
Transformer and co-attentional transformer blocks in the visual stream have hidden state size of 1024
and 8 attention heads.

We train on 8 TitanX GPUs with a total batch size of 512 for 10 epochs. We use the Adam optimizer
with initial learning rates of le-4. We use a linear decay learning rate schedule with warm up to train
the model. Both training task losses are weighed equally.

3.2 Vision-and-Language Transfer Tasks

We transfer our pretrained VILBERT model to a set of four established vision-and-language tasks and
one diagnostic task. We follow a fine-tuning strategy where we modify the pretrained base model
to perform the new task and then train the entire model end-to-end. In all cases, the modification
is trivial — typically amounting to learning a classification layer. This is in stark contrast to the
significant efforts made within the community to develop specialized models for each of these tasks.
We describe the problem, dataset, model modifications, and training objective for each task below.

Visual Question Answering (VQA). The VQA task requires answering natural language questions
about images. We train and evaluate on the VQA 2.0 dataset [3] consisting of 1.1 million questions
about COCO images [3]] each with 10 answers. To fine-tune VILBERT on VQA, we learn a two
layer MLP on top of the element-wise product of the image and text representations htyg and herg.
mapping this representation to 3,129 possible answers. As in [30], we treat VQA as a multi-label
classification task — assigning a soft target score to each answer based on its relevancy to the 10
human answer responses. We then train with a binary cross-entropy loss on the soft target scores
using a batch size of 256 over a maximum of 20 epochs. We use the Adam optimizer with an initial
learning rate of 4e-5. At inference, we simply take a softmax.

Visual Commonsense Reasoning (VCR). Given an image, the VCR task presents two problems —
visual question answering (Q—A) and answer justification (QA—R) — both being posed as multiple-
choice problems. The holistic setting (Q—AR) requires both the chosen answer and then the
chosen rationale to be correct. The Visual Commonsense Reasoning (VCR) dataset consists of 290k
multiple choice QA problems derived from 110k movie scenes. Different from the VQA dataset,
VCR integrates object tags into the language providing direct grounding supervision and explicitly
excludes referring expressions. To finetune on this task, we concatenate the question and each
possible response to form four different text inputs and pass each through ViILBERT along with the
image. We learn a linear layer on top of the post-elementwise product representation to predict a
score for each pair. The final prediction is a softmax over these four scores and is trained under a
cross-entropy loss over 20 epochs with a batch size of 64 and initial learning rate of 2e-5.

Grounding Referring Expressions. The referring expression task is to localize an image region
given a natural language reference. We train and evaluate on the RefCOCO+ dataset [32]. A common
approach to this task is to rerank a set of image region proposals given the referring expression.



Thus we directly use the bounding box proposals provided by [33]], which use a Mask R-CNN [34]]
pretrained on the COCO dataset. For fine-tuning, we pass the final representation h,, for each
image region ¢ into a learned linear layer to predict a matching score. We label each proposal box
by computing the IoU with the ground truth box and thresholding at 0.5. We train with a binary
cross-entropy loss for a maximum of 20 epochs with a batch size of 256 and an initial learning rate of
4e-5. At inference, we use the highest scoring region as the prediction.

Caption-Based Image Retrieval. Caption-based image retrieval is the task of identifying an image
from a pool given a caption describing its content. We train and evaluate on the Flickr30k dataset
[26] consisting of 31,000 images from Flickr with five captions each. Following the splits in [35], we
use 1,000 images for validation and test each and train on the rest. These captions are well-grounded
in and descriptive of the visual content and are qualitatively different than the automatically collected
Conceptual Captions. We train in a 4-way multiple-choice setting by randomly sampling three
distractors for each image-caption pair — substituting a random caption, a random image, or a hard
negative from among the 100 nearest neighbors of the target image. We compute the alignment score
(as in alignment prediction pretraining) for each and apply a softmax. We train this model under a
cross-entropy loss to select the true image-caption pair for 20 epochs with a batch size of 64 and an
initial learning rate of 2e-5. At inference, we score each caption-image pair in the test set and then
sort. For efficiency, we cache the linguistic stream representation before the first Co-TRM layer —
effectively freezing the linguistic representation before fusion.

‘Zero-shot’ Caption-Based Image Retrieval. The previous tasks are all transfer tasks that include
dataset specific fine-tuning. In this ‘zero-shot’ task, we directly apply the pretrained the multi-modal
alignment prediction mechanism to caption-based image retrieval in Flickr30k [26] without fine-
tuning (thus the description as ‘zero-shot’). The goal of this task is to demonstrate that the pretraining
has developed the ability to ground text and that this can generalize to visual and linguistic variation
without any task specific fine-tuning. We directly use the VILBERT model trained on Conceptual
Captions dataset described in Sec.[3.1} We use the alignment prediction objective as a scoring function
and test on the same split as the caption-based image retrieval task described above.

4 Results and Analysis

Baselines. We compare our pretrained VILBERT model against two ablative baselines:

— Single-Stream consisting of a single BERT architecture that processes both modality inputs
through the same set of transformer blocks — sharing parameters and processing stacks for
both visual and linguistic inputs. Like [29], this model avoids making changes to the BERT
architecture, resulting in significantly deeper visual processing and earlier interaction between
modalities than in our model. The model is initialized with BERTgpgF and trained identically to
our full model. We compare to this baseline to establish the impact of our two-stream architecture.
As both streams interact throughout, we cannot cache any representations for efficiency. As such,
we do not evaluate this baseline on image retrieval and zero-shot image retrieval due to high
computational cost.

— VILBERT' which is a VILBERT architecture that has not undergone our pretraining tasks.
Notably, it does still have BERT initilization for the linguistic stream and represents image regions
with the same Faster R-CNN model as the full VILBERT model. We compare to this baseline to
isolate gains over task-specific baseline models that might be due to our architecture, language
initialization, or visual features as opposed to our pretraining process on Conceptual Captions .

For both baselines and our model, we finetune the transfer tasks as described in the previous section.

Task-Specific Baselines. To put our results in context, we present published results of problem-
specific methods that are to our knowledge state-of-the-art in each task: DFAF [36] for VQA, R2C
[25] for VCR, MAttNet [33] for RefCOCO+, and SCAN [35]] for caption-based image retrieval.

Results. Tab.|l|shows results across all transfer tasks and we highlight key findings below:

— Qur architecture improves performance over a single-stream model. We observe improve-
ments across tasks for VILBERT over the single-stream baseline for both pretrained (Single-Stream
vs. VILBERT) and non-pretrained (Single-Stream' vs. VILBERT'). Most significant gains are
observed for VQA and RefCOCO+.

— Our pretraining tasks result in improved visiolinguistic representations. Our models further
improve by between 2% and 13% across tasks when using a VILBERT model that has been



Table 1: Transfer task results for our VILBERT model compared with existing state-of-the-art and
sensible architectural ablations.  indicates models without pretraining on Conceptual Captions. For
VCR and VQA which have private test sets, we report test results (in parentheses) only for our full
model. Our full VILBERT model outperforms task-specific state-of-the-art models across all tasks.

VQA [3 VCR [25 RefCOCO+ [32 Image Retrieval [26 ZS Image Retrieval
Method test-dev (test-std) Q—A QA—R Q—AR val testA  testB R1 RS R10 R1 RS R10
DFAF (36 70.22 (70.34) - -
g R2C 25 - 63.8(65.1) 67.2(67.3) 43.1(44.0) - -
@ MAttNet [33 - - - 65.33 71.62 56.02 - - -
SCAN [35 - - - - - - - 48.60 77.70 85.20
Single-Stream’ 65.90 68.15 68.89 47.27 65.64 72.02 56.04
£ Single-Stream 68.85 71.09 73.93 52.73 69.21 7532 61.02 - - - - - -
O VIiLBERT? 68.93 69.26 71.01 49.48 68.61 7597 5844 4550 76.78 8502 0.00 0.00 0.00
ViLBERT 70.55 (70.92) 7242 (73.3) 7447 (74.6) 54.04(54.8) 7234 7852 62.61 5820 8490 9152 31.86 61.12 72.80

pretrained under our proxy tasks (VILBERT vs VILBERT' ). We also observe improvements on
Single-Stream which verifies our proxy tasks can generalize to different model architectures.

— Finetuning from ViLBERT is a powerful strategy for vision-and-language tasks. With a
single base architecture, our transfer task performance exceeds state-of-the-art task-specific
models for all four established tasks. We set state-of-the-art for VCR, RefCOCO+ and image
retrieval by significant margins (7-10 percentage points improvement). Further, extending to these
tasks was simple — requiring the addition of a single classifier for each task.

Overall, these results demonstrate that our VILBERT model is able to learn important visual-linguistic
relationships that can be exploited by downstream tasks.

Effect of Visual Stream Depth. In Tab.[2]we compare the results transferring from VILBERT models
of varying depths. We consider depth with respect to the number of repeated CO-TRM—TRM blocks
(shown in a dashed box in Fig. [l) in our model. We find that VQA and Image Retrieval tasks
benefit from greater depth - performance increases monotonically until a layer depth of 6. Likewise,
zero-shot image retrieval continues making significant gains as depth increases. In contrast, VCR and
RefCOCO+ seem to benefit from shallower models.

Benefits of Large Training Sets. We also studied the impact of the size of the pretraining dataset.
For this experiment, we take random subsets of 25% and 50% from the conceptual caption dataset,
and pretrain and finetune VILBERT using the same setup as above. We can see that the accuracy
grows monotonically as the amount of data increases, which suggests that VILBERT may benefit
from even more pretraining data.

What does VILBERT learn during pretraining? To get a sense for what VILBERT learns during
Conceptual Caption pretraining, we look at zero-shot caption-based image retreival and some qualita-
tive examples. While zero-shot performance (Tab. [T} right) is significantly lower than the fine-tuned
model (31.86 vs 58.20 R1) it performs reasonably without having seen a Flickr30k image or caption
(31.86 vs 48.60 R1 for prior SOTA) — indicating that VILBERT has learned a semantically meaningful
alignment between vision and language during pretraining.

5 Related Work

Self-Supervised Learning. There has been substantial recent interest in both vision [37-42] and
language around self-supervised representation learning. In this paradigm, deep models are trained

Table 2: Ablation study of the depth of our model with respect to the number of Co-TRM—TRM
blocks (shown in a dashed box in Fig.[T). We find that different tasks perform better at different
network depths — implying they may need more or less context aggregation.

VQA [3] VCR [25] RefCOCO+ [32] Image Retrieval [26] ZS Image Retrieval [26

Method test-dev. Q—A QA—R Q—AR val testA  testB R1 RS R10 R1 RS R10

VILBERT (2-layer) 69.92 7244  74.80 5440 71.74 78.61 6228 5568 8426 90.56 26.14 56.04 68.80
VIiLBERT (4-layer) 70.22 7245  74.00 5382  72.07 7853 63.14 5538 84.10 90.62 26.28 5434  66.08
VIiLBERT (6-layer) 70.55 7242 7447 54.04 7234 7852 62.61 5820 8490 91.52 3186 61.12 72.80
VILBERT (8-layer) 70.47 7233 7415 5379 71.66 7829 6243 58.78 8560 91.42 32.80 63.38 74.62




Table 3: Transfer task results for VILBERT as a function of the percentage of the Conceptual Captions
dataset used during pre-training. We see monotonic gains as the pretraining dataset size grows.

VQA [3] VCR [25] RefCOCO+ [32] Image Retrieval [26] ZS Image Retrieval [26]
Method test-dev. Q—A QA—R Q—AR val testA  testB R1 RS R10 R1 RS R10
VIiLBERT (0 %) 68.93 69.26  71.01 4948  68.61 7597 5844 4550 76.78 85.02 0.00 0.00 0.00

VIiLBERT (25 %) 69.82 71.61 73.00 52.66  69.90 7683 6099 53.08 80.80 88.52 2040 48.54 62.06
VIiLBERT (50 %) 70.30 71.88  73.60 53.03 71.16 7735 61.57 5484 83.62 90.10 26.76 56.26 68.80
VILBERT (100 %) 70.55 7242 7447 54.04 7234 7852 62.61 5820 8490 91.52 31.86 61.12 72.80

for tasks where regularities in existing data can be turned into supervision automatically. While there
has been progress on the vision side, self-supervised image representations still lag behind those from
models trained under image classification tasks. Self-supervised language models on the other hand
have resulted in significant improvements over prior work [[12H14} 43]. In this work, we develop a
model and proxy tasks for learning joint visual-linguistic representations — extending the popular
BERT [12]] model.

Vision-and-Language. While we address many vision-and-language tasks in Sec.[3.2] we do miss
some families of tasks including visually grounded dialog [4! 144], embodied tasks like question
answering [7]] and instruction following [8]], and text generation tasks like image and video captioning
[S)]. These tasks may also benefit from a self-supervised approach similar to what we have presented.
There are open questions on how to incorporate long sequences of images and text found in dialog,
embodied tasks, and video processing. Further, it is unclear how to effectively decode output text
from our bidirectional model as existing greedy decoders like beam-search do not apply.

Self-Supervised Learning for Vision-And-Language. Most related to our approach is concurrent
work on learning joint representations between video and language [29]. In this work, self-supervised
tasks paralleling our own are derived from cooking videos paired with text-to-speech transcribed
audio. They present a unified BERT architecture for both the visual and linguistic inputs similar to
the Single-Stream baseline we consider here. They apply the learned model to two tasks on cooking
videos: zero-shot activity recognition and blank-filling on audio transcripts. In contrast, we learn
representations of images and descriptive text on a wide range of images from the web and focus
extensively on transfer learning from this model for well-established vision-and-language tasks.

Recent works on Vision-And-Language pre-training. Since our paper released on arXiv, a few
other useful preprints have recently been released on similar vision-and-language cross-modality pre-
training directions. LXMERT [45]] uses a more specific design for the cross-modality model. Instead
of using webly supervised Conceptual Caption [24] dataset, LXMERT uses in-domain datasets (i.e.
COCO [5]] and Visual Genome [16l)) for pre-training. VisualBERT [46] directly extend BERT [12]
for vision and language domain. VisualBERT uses both out-of-domain and in-domain dataset for
pre-training and applies MLM object only on the language side. Unicoder [47] focuses exclusively
on image caption retrieval tasks with online hardest negative mining. More recent preprints including
VLBERT [48]], Unified VLP [49] and UNITER [49] also show promising improvements in this
research direction of joint visio-linguistic pretraining.

6 Conclusion

We develop a joint model for image content and text and pretrain it on a large, automatically-collected
dataset to learn visual grounding. Our ViLBERT model introduces a novel two-stream architecture
with co-attentional transformer blocks that outperforms sensible ablations and exceeds state-of-the-art
when transferred to multiple established vision-and-language tasks. Furthermore, transferring our
model to these tasks is simple and easy to implement — requiring only the addition of a classifier for
each task we examined here. We consider extensions of our model to other vision-and-language tasks
(including those requiring generation) as well as multi-task learning as exciting future work.
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