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ABSTRACT

Wisdom of the crowd (Surowiecki, 2005) revealed a striking fact that the majority
answer from a crowd is often more accurate than any individual expert. We
observed the same story in machine learning - ensemble methods (Dietterich,
2000) leverage this idea to combine multiple learning algorithms to obtain better
classification performance. Among many popular examples is the celebrated
Random Forest (Ho, 1995), which applies the majority voting rule in aggregating
different decision trees to make the final prediction. Nonetheless, these aggregation
rules would fail when the majority is more likely to be wrong. In this paper,
we extend the idea proposed in Bayesian Truth Serum (Prelec, 2004) that “a
surprisingly more popular answer is more likely the true answer” to classification
problems. The challenge for us is to define or detect when an answer should be
considered as being “surprising”. We present two machine learning aided methods
which aim to reveal the truth when it is minority instead of majority who has the true
answer. Our experiments over real-world datasets show that better classification
performance can be obtained compared to always trusting the majority voting. Our
proposed methods also outperform popular ensemble algorithms. Our approach
can be generically applied as a subroutine in ensemble methods to replace majority
voting rule.

1 INTRODUCTION

Wisdom of the crowd harnesses the power of aggregated opinion of a diverse group rather than a few
individuals. Though initially proposed for mainly aggregating human judgements, this idea has been
successfully implemented in the context of machine learning. In particular, ensemble learning was
proposed and studied to improve prediction performance by combining several learning models to
obtain better results compared to a single one (Dietterich, 2000). The developed ensemble techniques
have shown consistent benefits in real-world machine learning applications, evidenced by the Netflix
Competition (Bennett et al., 2007) and Kaggle competition. Popular ensemble methods include
Boosting (e.g., AdaBoost (Freund & Schapire, 1997)), Bootstrap aggregating (bagging), Stacking
(Bishop, 2006), and Random Forest (Ho, 1995).

The most popular, as well as simple, way to perform aggregation is via majority voting rule. The
classical example is Random Forest, which outputs the majority answer from multiple trained decision
trees. Inference methods (Raykar et al., 2010; Zhang et al., 2014; Liu et al., 2012; Zhou et al., 2012;
2014) have been applied to perform smarter aggregation that aims to outperform majority-voted
answers. These methods often leverage homogeneous assumption of certain hidden models over a
large number of data points in order to perform joint inference.

Nonetheless, all above methods rely on the assumption that the majority answer is more likely to be
correct - this is also true for the more sophisticated inference models, as the inferences will mostly
likely initiate based on majority-voted answers (when the algorithm has no prior information). While
enjoying this assumption that majority tends to be correct, this claim is questionable in settings where
special knowledge is needed to infer the truth, but it is owned by few individuals when they are not
widely shared (Chen et al., 2004; Simmons et al., 2010; Prelec et al., 2017). Echoing to the above
problem of aggregating human judgements, we face similar challenge when aggregating classifiers’
predictions in machine learning. For example, we have a deep learning (Goodfellow et al., 2016)
classification model which performs the best among multiple models when used in the ensemble
method. For some data point, the classification result of this deep learning model may be the correct
minority. In this situation, applying majority voting leads to wrong answers.

1



Under review as a conference paper at ICLR 2020

We aim to complement the literature via studying whether we can aggregate classifiers better than
majority voting even when majority opinion is wrong. We also target a method that can operate over
each data point separately without assuming homogeneous assumptions across a massive dataset.

The question sounds unlikely to resolve at a first look, but we are inspired by the seminal work
Bayesian Truth Serum (BTS) (Prelec, 2004; Prelec et al., 2017) which approached this question in the
setting of incentivizing and aggregating truthful human judgements. The core idea behind BTS is
simple and elegant: the correctness of an answer does not rely on its popularity, but rather whether it
is “surprisingly” popular or not - here an answer that has a higher posterior (computed from reports
of the crowds) than its prior is taken as being “surprisingly” popular, and should be considered as the
true answer. This argument has a very intuitive Bayesian reasoning: the signal that improves over
its prior is more likely to be informative. Prelec et al. (2017) also argued that via eliciting a peer
prediction information, which is defined as the fraction of “how many other people would agree with
you” from each agent, he will be able to construct an informative prior to compare with the majority
vote posterior aggregation. BTS operates over each single question separately, without seeing a large
number of similar tasks (in order to leverage a certain homogeneity assumption).

In this paper, we make a connection between these two seemingly irrelevant topics, and extend the
key idea in Bayesian Truth Serum to aggregating classifiers’ predictions. The challenge is that we
would not be able to elicit a belief from a classifier on “how many other classifiers would agree with
themselves”, which renders the task of computing the prior difficult. We proposed two machine
learning aided algorithms to mimic the procedure of reporting the peer prediction information, which
we jointly name as Machine Truth Serum (MTS). We firstly propose Heuristic Machine Truth Serum
(HMTS). In HMTS, we pair each baseline classifier (an agent) with a regressor model, which is trained
to predict the peer prediction information using a processed training dataset. With the predictions
from the regressors, we will be able to apply the idea of BTS to decide on whether to adopt the
minority as the answer via comparing the prior (computed using the regressor) and the posterior for
each label. Then we proposed Discriminative Machine Truth Serum (DMTS). In DMTS, we directly
train one classifier to predict whether adopting the minority as the answer or not. As for the training
complexity of our algorithm, the training time of HMTS is linear in the number of label classes
because of the training of extra regressors. DMTS will only need to train one additional classifier and
both the training and the running time are almost the same as the basic majority voting algorithm.
Therefore our proposed methods are very practical to implement and run.

Our contributions summarize as follows: (1) We propose Heuristic Machine Truth Serum (HMTS)
and Discriminative Machine Truth Serum (DMTS) to complement ensemble methods, which can
detect when minority should be considered the final prediction instead of the majority. (2) Our
experiments over 6 binary and 6 multiclass classification real-world datasets reveal promising results
of our approach in improving over majority voting. Our proposed methods also outperform popular
ensemble algorithms. (3) To pair with our experimental results, we also provide analytical evidences
for the correctness of our proposed approaches. (4) Our approaches can be generically applied in
ensemble methods to replace simple majority voting rules.

The rest of the paper is organized as follows. Section 2 introduces some related works. Section 3
reviews preliminaries and BTS. Section 4 introduces our Machine Truth Serum approaches. Section
5 presents our experimental results. Section 6 concludes our paper.

2 RELATED WORK

Wisdom of the crowd (Surowiecki, 2005) are often considered as being more accurate than a few elite
individuals in applications including decision making of public policy (Morgan, 2014), answering
the questions on general world knowledge (Singh et al., 2002), and so on. Typical algorithms for
extracting wisdom of the crowd are based on majority voting, and the assumption that the majority
opinion is more likely to be correct (Surowiecki, 2005). There is another line of machine learning
works on proposing inference methods, including Expectation Maximization method (Raykar et al.,
2010; Zhang et al., 2014), Variational Inference (Liu et al., 2012; Chen et al., 2015), and Minimax
Entropy Inference (Zhou et al., 2012; 2014) to crowdsourcing settings, aiming to uncover the true
labels from the noisy labels provided by non-expert crowdsourcing workers. Most relevant to us,
(Prelec, 2004; Prelec et al., 2017) proposed a Bayesian Truth Serum method to extract the subjective
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judgment of minority expert by collecting not only people’s judgements but also how many percentage
of the population share the same opinion.

In machine learning, ensemble methods combining multiple learning algorithms usually performs
better than any single method (Dietterich, 2000). Ensemble methods consist of a rich family of
algorithms. For instance, AdaBoost (Freund & Schapire, 1997) and Random Forest (Ho, 1995) are
two different and commonly used ones. AdaBoost tries to optimize weighted voting outcomes, while
Random Forest train and test using the majority voting rule. But these popular ensemble methods
will be wrong when the minority is the correct answer.

In both the setting of aggregating human judgements and classifiers’ predictions, most works, except
for (Prelec, 2004), would fail when the majority opinion is instead likely to be wrong. But BTS only
works in the setting of aggregating human judgements by collecting subjective judgment data. Based
on the ideas proposed by Prelec (2004) and Prelec et al. (2017), we proposed two machine learning
aided algorithms to find the correct answer when it is minority instead of majority in the setting
of classifiers’ predictions. As our proposed methods are machine learning algorithms, they can be
trained and the predictions will be made automatically instead of collecting subjective judgment data
as the case in (Prelec, 2004).

3 PRELIMINARY

In this paper, we consider both binary and multiclass classification problems. Nonetheless, for
simplicity of demonstration, our main presentation focuses on binary classification. A multi-class
extension of our method is presented in Section 4.3.

Suppose that we have a training dataset D := {(xi, yi)}Ni=1 and a test dataset T := {(xi, yi)}Ti=1,
where xi ∈ X ⊆ Rd is a d-dimensional vector. We have K baseline classifiers F := {f1, f2, ..., fK :
X → {0, 1}} that map each feature vector to a binary classification outcome. Ensemble method such
as boosting algorithms can combine {f1, f2, ..., fK} to get better prediction results than each single
one. For instance, Random Forest first applies the bootstrap aggregating to train multiple different
decision trees to correct overfitting problems of decision trees. After training, the majority rule will
be applied to generate the prediction result.

The above dependence on the majority voting rule is ubiquitous in ensemble methods. The key
assumption of using the majority rule is that the majority is more likely to be correct than random
guessing. Denoting as Maj({f1(x), f2(x), ..., fK(x)}) the majority answer from the K classifiers,
formally, most, if not all, methods require that P (Maj({f1(x), f2(x), ..., fK(x)}) 6= y) < 0.5. Our
goal is still to construct a single aggregator A({f1, f2, ..., fK}) that takes the classifiers’ predictions
on each data point as inputs and generates an accurate aggregated prediction. But we aim to provide
instruction to cases where it is possible that P (Maj({f1(x), f2(x), ..., fK(x)}) 6= y) > 0.5. The
challenge is to detect when the minority population has the true answer.

3.1 BAYESIAN TRUTH SERUM

(Prelec, 2004) considers the following human judgement elicitation problem: There are a set of
agents denoted by {ai}Ki=1. The designer aims to collect subjective judgement from each agent about
an unknown event y ∈ {0, 1} and aggregate accordingly. Each of the agent i needs to report his
own predicted label li ∈ {0, 1} for y, and the percentage of other agents he believes will agree with
him pi ∈ [0, 1]. We will also call this second belief information as the peer prediction information.

Denote the belief of agent i as Bi. pi is defined as follows: pi = EBi

(∑
j 6=i 1(lj=li)

K−1

)
.

We, as the designer, obtain the prediction labels {li}Ki=1 and the percentage information {pi}Ki=1 from
all the agents. The posterior for each label is defined as the actual percentage of this label which can
be easily calculated utilizing the prediction results: (for label 1)

Posterior(1) =

∑
i 1(li = 1)

K
(1)
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In (Prelec, 2004; Prelec et al., 2017), Prelec et al. promote the idea of using the average predicted
percentage of the responding label as the approximation of the priors: (for label 1).

Prior(1) =

∑K
i=1 p

1(li=1)
i · (1− pi)

1−1(li=1)

K
(2)

If Posterior(1) > Prior(1), label 1 will be taken as the surprisingly more popular answer, which
should be considered as the true answer ŷ, even though it might be in minority’s hands. The same
rule is applied to label 0. Formally, if we denote ŷ as the aggregated answer:

ŷ =

{
1 if Prior(1) < Posterior(1);
0 if Prior(1) > Posterior(1).

(3)

The rest of the paper will focus on generalizing the above idea to aggregate classifiers’ predictions.

4 MACHINE TRUTH SERUM

In this section, we introduce Machine Truth Serum (MTS). Suppose we have access to a set of baseline
classifiers. Each classifier can be treated as an agent. We’d like to build a BTS-ish aggregation method
to aggregate the classifiers’ predictions. The challenge is to compute the priors from the classifiers -
machine-trained classifiers do not encode beliefs as human agents do, so we cannot elicit the peer
prediction information from them directly. We propose two machine learning aided approaches to
perform the generation of this peer prediction information. We firstly introduce two MTS approaches
for binary classification and then extend these approaches to multiclass classification case.

4.1 HEURISTIC MACHINE TRUTH SERUM

We first introduce heuristic machine truth serum (HMTS). The high level idea is to train a regression
model for each classifier to predict the percent of the agreement from other classifiers on the prediction
of each particular data point. After getting the predicted labels and the predicted peer prediction
information of the classifiers, we can again approximate the priors using the predicted peer prediction
information for each classifier, compute the average and compare it to posterior. In this part, HMTS
for binary classification will be introduced firstly and its multiclass extension is stated in Section 4.3.

Given the training data D = {(xi, yi)}Ni=1 and multiple classifiers {fj}Kj=1, we first try to compute
the j-th classifier’s “belief” of the fraction of other classifiers that would “agree” with it. Denote this
number as ȳji for each training sample (xi, yi). ȳji can be computed as follows:

ȳji =

∑
j 6=k 1(fj(xi) = fk(xi))

K − 1
, (4)

By above, we have pre-processed the training data to obtain DH
j := {(xi, ȳ

j
i )}Ni=1, j = 1, ...,K,

which can serve as the training data to predict the peer prediction information of classifier j (again to
recall, peer prediction information is the fraction of other classifiers that classifier j believes would
agree with it). We then train peer prediction regression models {gj}Kj=1 onDH

j := {(xi, ȳ
j
i )}Ni=1, j =

1, ...,K respectively to map xi to ȳji . We consider different class labels and will first train two
regression models: gj,0 and gj,1 are two belief regression models of classifier j and trained on the
examples whose predicted labels are 0s (DH

j,0 := {(xi, ȳ
j
i ) : fj(xi) = 0}Ni=1) and 1s (DH

j,1 :=

{(xi, ȳ
j
i ) : fj(xi) = 1}Ni=1) respectively.

Then compute the following prior of label 1 for each xi:

gj(xi) =

{
gj,1(xi) if fj(xi) = 1;
1− gj,0(xi) if fj(xi) = 0.

(5)

After obtaining these peer prediction regression models gjs, the prior and posterior of (xi, yi) ∈ T in
the test dataset are then calculated by,

Prior(xi, l = 1) :=

∑
j gj(xi)

K
(6)

Posterior(xi, l = 1) :=

∑
j 1(fj(xi) = 1)

K
(7)
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Algorithm 1 Heuristic Machine Truth Serum (Binary classification)
Require:

1: Input:
2: D = {(x1, y1), ..., (xN , yN )}: training data
3: T = {(x1, y1), ..., (xT , yT )}: testing data
4: F = {f1, ..., fK}: classifiers

Procedure:
5: Train K classifiers (F) on the training data
6: for j = 1 to K do
7: for i = 1 to N do
8: Compute ȳji according to Eqn.(4)
9: end for

10: Train machine belief gj,0, gj,1 on training dataset DH
j := {(xi, ȳ

j
i )}Ni=1.

11: end for
12: for t = 1 to T do
13: Compute Prior(xi, l = 1) and Posterior(xi, l = 1) according to Eqn.(6) and Eqn.(7)
14: if Prior(xi, l = 1) < Posterior(xi, l = 1) then
15: Output “surprising” answer 1 as the final prediction.
16: else if Prior(xi, l = 1) > Posterior(xi, l = 1) then
17: Output “surprising” answer 0 as the final prediction.
18: end if
19: end for

If Prior(xi, l = 1) < Posterior(xi, l = 1), the “surprsing” answer 1 will be considered as the true
answer. The decision rule is similar for label 0. The procedure is illustrated in Algorithm 1.

4.2 DISCRIMINATIVE MACHINE TRUTH SERUM

The Heuristic Machine Truth Serum above relies on training models to predict the peer prediction
information for each classifier (which will be used to compute the priors) and compare them to the
posteriors, and then decide on whether to follow the minority opinion or not. We notice the above
task of determining whether to follow the minority or not is also a binary classification question. We
can therefore utilize a classification model to directly predict for each data point whether the minority
should be chosen as the answer or not.

We propose Discriminative Machine Truth Serum (DMTS). Again, DMTS for binary classification
will be introduced firstly and its multiclass extension is stated in Section 4.3. With DMTS, a new
training dataset DD := {xi, ŷi}Ni=1 about whether considering the minority as the final answer or not
is constructed. Each data DD := (xi, ŷi), for i = 1, ..., N , in this new training dataset is calculated
as follows: for each (xi, yi) ∈ D

ŷi =

{
1 if majority of F on xi is different from the true label;
0 if majority of F on xi is same as the true label. (8)

Now with above preparation, predicting whether majority is correct or not becomes a standard classi-
fication problem on DD := {xi, ŷi}Ni=1. This is readily solvable by applying standard techniques.
In our experiments, we will mainly use a Multi-Layer Perceptron (MLP) (Goodfellow et al., 2016)
denoted as f . f is trained on this new training dataset and can directly predict whether we should
adopt the minority as the answer or not. f does not restrict to MLP and can be other classifiers. We
have tried several other methods, such as logistic regression, and similar conclusions are obtained.
The procedure is further illustrated in Algorithm 2 in Appendix A.3.

4.3 MULTICLASS EXTENSION OF HMTS AND DMTS

HMTS and DMTS can be extended to multiclass classification problem with the same ideas by
modifying them accordingly. In the multiclass case, l ∈ C = {0, 1, ..., L} is denoted as the class
label of the dataset. Consider HMTS first. For each classifier j, we need to consider different class
labels of regression models {gj,l}, where l ∈ C = {0, 1, ..., L}. gj,l is the belief regression model of
classifier j and trained on the examples whose predicting labels are ls.
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Again compute the following prior for each xi

g∗j,l(xi) =

{
gj,l(xi) if fj(xi) = l;(
1− gj,fj(xi)(xi)

)
· ratiol if fj(xi) 6= l,

(9)

where ratiol =
gj,l(xi)∑

c∈C:c 6=fj(xi)
gj,c(xi)

is defined as the ratio of the l’s belief to the summation of all

the other classes’ beliefs except for the predicted class utilizing majority rule.

In HMTS, Eqn. (6) and (7) can be modified to the following:

Prior(xi, l = c) :=

∑K
j=1 g

∗
j,c(xi)

K
(10)

Posterior(xi, l = c) :=

∑K
j=1 1(fj(xi) = c)

K
(11)

We then compute all the priors and posteriors of each class label based on Eqn. (10) and (11). It is
possible that there exist more than one class labels whose posterior is larger than its prior. We define
the set containing all these label classes as

Csat = {c | Prior(xi, l = c) < Posterior(xi, l = c), c ∈ C}.
We predict the class label which has the biggest improvement from its prior to posterior:

argmaxc∈Csat

∣∣Posterior(xi, l = c)− Prior(xi, l = c)
∣∣ .

In DMTS, firstly we need to train a model that decides whether to apply the minority as the final
answer which are very similar to the binary case. The difference is that we will then choose the
minority answer as the predicted answer instead of using majority if i) it has the most votes in the
minority answers and ii) the prediction result of classifier obtained in the training phase is 1 (we
should use minority).

4.4 THEORETICAL ANALYSIS

We conduct a formal analysis about the correctness of our proposed algorithms. Not surprisingly, the
key ideas of the proofs are adapted from the proof for BTS (Prelec et al., 2017). For simplicity, we
only present the theorems for binary classification. The proofs of multiclass ones are similar to the
binary case. The details of proofs are left to the Appendix A.1.

To set up for presenting the theorems, we restate our problem: we assume that each xi can take
on any value in the discrete set {s1, ..., sm} for the simplicity of proof. In practice, conceptually
each feature vector can be represented by an assigned (large-enough) categorical number. One can
consider sk(k = 1, 2, , ,m) as a code for each feature vector. The proof based on continuous value
can be deduced similarly.

Here we have two worlds wio (o = 0 or 1) of different class labels for any xi. One world is actual, the
other one is counterfactual. If we say wi1 is the actual world for xi, it means the predicting answer of
xi in this world is 1 and y = 1 is also the ground truth label of xi. wi0 is the counterfactual world
and the predicting answer of xi in this world is 0. In this paper, we are considering infinite samples.
While finite samples is practical setting, it is important to first analyze and conclude some deductions
in the infinite sample ideal case.
Theorem 4.1. No algorithm exists for deducting the correct classification answer relying exclusively
on feature vector distribution of true class label, P (sk|yo∗), k = 1, ...,m and correctly computed
posterior distribution over all possible classification labels given feature vectors, P (yo|sk), k =
1, ...,m, o = 0, 1 for any xi. o∗ is the true class label.
Theorem 4.2. For any xi, the average estimate of the prior prediction for the correct classification
answer will be underestimated if not every classifier provides the correct classification prediction.
Therefore, the minority should be the final answer instead of the majority if the prior (estimated
prediction) is less than the posterior.

Theorem 1 indicates that exclusively posterior probabilities based methods such as majority voting
can not infer the true answer for all the time. In Theorem 2, the posterior and prior are the prediction
distribution of other classifiers for each classifier - both are provided by our proposed MTS algorithms.
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Complexity For HMTS, for example in our experiments, another 15 · (L + 1) (label classes
{0, 1, ..., L}) simple regressors will be trained to predict others’ beliefs based on 15 baseline classifiers.
So the total training time is linear in the number of label classes. After training the extra regressors,
running the algorithm only requires taking L + 1 averages (15 of the 15 · (L + 1) regressors each)
and compare with average posterior. DMTS will only need to train one additional classifier based on
15 classifiers and both the training and the running time are almost the same as the basic majority
voting algorithm. The above complexity analysis shows our methods are very practical.

5 EXPERIMENTS

In this section, we present our experimental results. Particularly we test our proposed two MTS
algorithms on 6 binary and 6 multiclass real-world classification datasets. Experimental results
show that consistently better classification accuracy can be obtained compared to always trusting the
majority voting outcomes.

5.1 DATASETS

In this section, 6 binary and 6 multiclass classification benchmark datasets (Pang & Lee, 2004) are
used to conduct the experiments. The statistical information of these datasets are described in Table 4
in Appendix A.2. In this paper, each of the datasets we used has a small size - we chose to focus
on the small data regime where the classifiers are likely to make mistakes. This is a better fit to our
setting where majority opinion can be wrong with a good chance. For the splitting of training and
testing, we used the original setting for the datasets providing training and testing files separately.
For other datasets, only one data file is given. For the testing results’ statistical significance, more
data is distributed to testing dataset and 50/50 is considered as the splitting of training and testing.

5.2 EXPERIMENTAL SETUP AND RESULTS

Table 1: Overall accuracy and the number of increased correct predictions in the “high disagreement”
cases of Uniformly-weighted Majority Voting, HMTS, and DMTS on the 6 binary classification
datasets. The “high disagreement” means that the difference between the number of predicting 0 and
1 is small. We have 15 classifiers and the instance will be considered as having “high disagreement” if
the vote number of majority class is 8 or 9. In HMTS, the numbers of “high disagreement” instances
we consider in 6 datasets are 51, 52, 37, 149, 43, 45. As for DMTS, the numbers are 30, 64, 37, 76,
13, 38. The results having the highest accuracy for each dataset are highlighted.

Datasets Breast cancer Hill Valley Movie Review Spambase Australian German
Majority 92.96% 80.86% 80.10% 73.57% 81.74% 76.00%
HMTS 96.13% (+8/51) 81.69% (+5/52) 80.85% (+5/37) 76.87% (+48/149) 83.44% (+6/43) 77.20% (+6/45)
DMTS 94.01% (+4/30) 81.03% (+1/64) 80.60% (+5/37) 77.35% (+70/76) 82.94% (+4/13) 76.20% (+1/38)

In our binary classification experiments, we consider 5 commonly used binary classification al-
gorithms which are Perceptron (Rosenblatt, 1958), Logistic Regression (LR) (Peng et al., 2002),
Random Forest (RF), Support Vector Machine (SVM) (Chang & Lin, 2011), and MLP. In order
to test the usefulness of our methods, we experiment with a noisy environment - we flipped the
true class label with three noisy rates to construct three binary classifiers for each of the 5 methods
which have mediocre performance on the test datasets. We wanted to diversify our classifiers by
introducing different noisy rates (varying the data distribution). Our experiments used 0.06, 0.08, and
0.1 (probability of flipping the label) for each family of classifier. We also tried other values such as
0.1, 0.2, and 0.3, and we reached similar conclusions. In total, 15 different classifiers are obtained as
the baseline classifiers.

The experimental results on the 6 binary classification datasets are reported in Table 1. From these
results, we observe that Heuristics Machine Truth Serum (HMTS) tends to have more robust and
better performances than Discriminative Machine Truth Serum (DMTS) in most datasets, especially
in the small-size datasets. These can be explained by the fact DMTS itself is a MLP classifier which
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needs a larger size of data to get good results. That HMTS can improve the classification accuracy in
the small size of dataset is particularly useful in some fields such as healthcare in which collecting
data is very time-consuming and expensive. As for the running time, DMTS is faster than HMTS as
HMTS needs to compute the peer prediction results of all the 15 classifiers and DMTS only predicts
once.

Table 2: Overall accuracy and the number of increased correct predictions in the “high disagreement”
cases of Uniformly-weighted Majority voting, HMTS, and DMTS on the 6 multi-class classification
datasets. We have 15 classifiers and the instance will be considered as having “high disagreement”
if the vote number of majority class is less or equals to 6 for the 3-class and 4-class datasets. The
threshold number is 5 for 6-class and 3 for 10-class datasets. In HMTS, the numbers of “high
disagreement” instances we consider in 6 datasets are 61, 54, 27, 65, 15, 157. As for DMTS, the
numbers are 48, 45, 25, 81, 25, 40. The results having the highest accuracy for each dataset are
highlighted.

Datasets Abalone Waveform Wall-Following Statlog Optical Pen-Based
# of class 3 3 4 6 10 10
Majority 51.25% 85.04% 90.22% 86.70% 97.50% 95.08%
HMTS 51.45% (+4/61) 85.48% (+11/54) 90.26% (+1/27) 87.10% (+8/65) 97.61% (+2/15) 95.57% (+17/157)
DMTS 51.40% (+3/48) 85.60% (+14/45) 90.59% (+10/25) 86.75% (+1/81) 97.66% (+3/25) 95.51% (+15/40)

We also tested our extension to multi-class classification problems. Experimental results on 6 multi-
class classification datasets are reported in Table 2. We observe that HMTS and DMTS obtained
similarly good performance in the accuracy metric because the size of multi-class classification
datasets is larger and the MLP of DMTS can perform better than the binary case.

Table 3: Comparison between popular ensemble and our proposed approaches

Methods Adaboost Random
Forest

Weighted
Majority Stacking HMTS DMTS

Breast Cancer 94.37% 94.37% 94.01% 94.72% 96.13% 94.01%
Hill Valley 62.05% 57.93% 53.30% 62.38% 81.69% 81.03%

Movie Review 75.10% 77.20% 81.60% 70.30% 80.85% 80.60%
Spambase 74.74% 74.65% 74.17% 75.91% 76.87% 77.35%
Australian 82.03% 84.06% 84.06% 85.22% 83.44% 82.94%
German 72.20% 74.80% 73.80% 77.20% 77.20% 76.20%
Abalone 48.70% 54.25% 55.35% 54.55% 51.45% 51.40%

Waveform 81.80% 82.60% 85.36% 84.00% 85.48% 85.60%
Wall-Following 99.00% 95.22% 95.37% 89.07% 90.26% 90.59%

Statlog 85.85% 86.15% 86.85% 82.70% 87.10% 86.75%
Optical 93.99% 94.88% 92.21% 95.83% 97.61% 97.66%

Pen-Based 94.97% 95.45% 90.59% 95.43% 95.57% 95.51%

Finally, we compare between several popular ensemble algorithms and our proposed approaches.
We list the testing accuracy for Adaboost with 15 decision tree base estimators, Random Forest
with 15 decision trees, Weighted Majority(Germain et al., 2015), Stacking with the same setting
of 15 classifiers utilized in our two MTS algorithms and Logistic Regression or SVM as meta
classifier, HMTS, and DMTS for all 12 datasets in Table 3. As shown in the table, HMTS and DMTS
outperform Adaboost, Random Forest, Weighted Majority, and Stacking in 8 datasets and are very
close to the best in 3 datasets. An outlier dataset is Wall-Following and we found that decision tree
based methods can get perfect performance on it. Compared to other weighted methods, we’d like to
note that our aggregation operates on each single task separately - this means that our method will
be more robust when the difficulty levels of tasks differ drastically in the dataset. None of the other
weighted methods (with fixed and learned weights) has this feature. We also find that our method is
robust to a smaller number of classifiers, in contrast to, say Adaboosting.
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6 DISCUSSION AND CONCLUDING REMARKS

This paper proposes two machine learning aided methods HMTS and DMTS to detect when the
minority should be the final answer instead of majority. Our experiments over 6 binary and 6
multiclass real-world datasets show that better classification performance can be obtained compared
to always trusting the majority voting. Our proposed methods also outperform popular ensemble
algorithms on three randomly selected datasets and can be generically applied as a subroutine in
ensemble methods to replace majority voting. For future work, we plan to try more types of classifiers,
especially the recent deep learning models, to train the belief models for baseline classifiers and apply
our methods to more real-world datasets.
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A APPENDIX

A.1 PROOF OF THEOREMS IN SECTION 4.4

In this part, we provided the detailed proof of two theorems which are the analytical evidences for
the correctness of our proposed approaches. For simplicity, we only show the proof details of binary
classification. The proof of multiclass classification is similar to the binary case. This proof is largely
adapted from (Prelec et al., 2017). Nonetheless we reproduce the details for completeness.
Theorem A.1. No algorithm exists for inferring the correct classification answer relying exclusively
on feature vector distribution of true class label, P (sk|yo∗), k = 1, ...,m and correctly computed
posterior distribution over all possible classification labels given feature vectors, P (yo|sk), k =
1, ...,m, o = 0, 1 for any xi. o∗ is the true class label.

Proof. In this proof, for any arbitrarily selected class label, we can construct a world model in which
this selected class label is predicted as the answer and it is also the ground truth class label. And this
world model can also generate feature vector distribution of true class label and correctly computed
posterior distribution over all possible classification labels given feature vectors.

Based on the description of theorem, P (sk|yo∗), k = 1, ...,m and P (yo|sk), k = 1, ...,m, o = 0, 1
are known. But we don’t know which class label is the correct answer yo∗ . We can arbitrarily selected
any class label yo as the ground truth class label. In the following part, a corresponding world model
Q(sk, yo) which can generate the known P (sk|yo∗) and P (yo|sk) will be constructed.

Because the known parts don’t constrain the prior over the feature vector - these priors can model
differences in the baseline classifiers. In particular, we can set the prior to:

Q(sk) =
P (sk|yo∗)
P (yo|sk)

(∑
r

P (sr|yo∗)
P (yo|sr)

)−1
, k = 1, ...,m

Because posteriors in the constructed world model must equal to known posteriors: Q(yo|sk) =
P (yo|sk), for k = 1, ...,m, o = 0, 1. So we can get the joint distribution of answer yo and the feature
vector sk in the constructed world model:

Q(yo, sk) = Q(yo|sk)Q(sk) = P (sk|yo∗)
(∑

r

P (sr|yo∗)
P (yo|sr)

)−1
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Then we can get the marginal distribution yo in the constructed world by summing over k:

Q(yo) =
∑
k

P (sk|yo∗)
(∑

r

P (sr|yo∗)
P (yo|sr)

)−1
=

(∑
r

P (sr|yo∗)
P (yo|sr)

)−1
After getting the marginal distributions Q(sk), Q(yo), and the matching posteriors, Q(yo|sk) =
P (yo|sk), for k = 1, ...,m, the feature vector distribution of true class label in the constructed world,
Q(sk|yo) can be calculated by:

Q(sk|yo) =
Q(yo|sk)Q(sk)

Q(yo)
= P (sk|yo∗)

Because yo was arbitrarily chosen, this theorem is proved.

Theorem 1 shows that any algorithm relying exclusively on feature vector distribution of true class
label and correctly computed posterior distribution over all possible classification labels given feature
vectors (e.g. majority voting) can not deduct the correct classification answer.

In the following part, we are considering the extra information which is the estimation of other
classifiers’ prediction results. We use P (vo|sk) to represent the how many percentage of classifiers
will predict yo given sk. We also define world classification function W (sk) = P (wo|sk). Two
thresholds c0 and c1 = 1− c0 are given to make the final classification result. The classification rule
is as follows:

W (sk) =

{
w0 if P (w0|sk) > c0;
w1 if P (w1|sk) > c1.

Theorem A.2. For any xi, the average estimate of the prior prediction for the correct classification
answer will be underestimated if not every classifier provides the correct classification prediction .

Proof. We first prove that the actual percentage of correctly predicted classifiers for the true answer
in the actual world exceeds counterfactual world’s percentage for the true answer, P (vo∗ |wo∗) >
P (vo∗ |wk), k 6= o∗.

By the definition of W (sk), we can get P (wo∗ |vo∗) > co∗ , P (wo∗ |vk) < co∗ . Then we have
P (wo∗ |vo∗)P (vk) > P (wo∗ |vk)P (vk). So

P (wo∗ |vo∗) > P (wo∗ |vo∗)P (vo∗) + P (wo∗ |vk)P (vk) = P (wo∗) (12)

According to Bayesian rule, we have the following deduction:
P (vo∗ |wo∗)

P (vo∗ |wk)
=

P (wo∗ |vo∗)P (wk)

P (wk|vo∗)P (wo∗)
=

P (wo∗ |vo∗)
1− P (wo∗ |vo∗)

1− P (wo∗)

P (wo∗)
(13)

Based on (12), (13) is greater than one. So P (vo∗ |wo∗) > P (vo∗ |wk), k 6= o∗ is proved.

The estimate of classification prediction given the feature value sj can be computed by marginalizing
the actual and counterfactual worlds, P (vo∗ |sj) = P (vo∗ |wo∗)P (wo∗ |sj) + P (vo∗ |wk)P (wk|sj).
And we proved that P (vo∗ |wo∗) > P (vo∗ |wk), k 6= o∗. Therefore, P (vo∗ |sj) ≤ P (vo∗ |wo∗). It
will be the strict inequality unless P (wo∗ |sj) = 1. Because some feature vectors will lead to strict
inequality, the average estimate of the prior prediction will be strictly underestimated. This theorem
is proved.

A.2 DATASETS

In this section, the detailed information of 6 binary and 6 multiclass classification datasets are
described in Table 4. ‘#’ of Inst. stands for the number of instances. ‘#’ of Attr. stands for the number
of attributes. ‘%’ of Maj stands for the percentage of majority class.

A.3 ALGORITHM 2 IN SECTION 4.2

In this part, we provided the detailed algorithm description for DMTS in Algorithm 2.

11



Under review as a conference paper at ICLR 2020

Table 4: Statistics of 6 binary and 6 multiclass classification datasets

Data set Breast cancer Movie Review German Australian Hill Valley Spambase
# of Inst. 569 1000 1000 690 606 4601
# of Attr. 30 77 24 14 100 57
% of Maj. 62.7% 50% 70.0% 67.8% 50.7% 60.6%

Data set Abalone Waveform Wall-Following Stalog landsat Optimal Pen-Based
# of Inst. 4177 5000 5456 4435 3823 7494
# of Attr. 8 21 24 36 62 16
% of Maj. 34.6% 33.9% 40.4% 24.2% 10.2% 10.4%

Algorithm 2 Discriminative Machine Truth Serum (Binary classification)
Require:

1: Input:
2: D = {(x1, y1), ..., (xN , yN )}: training data
3: T = {(x1, y1), ..., (xT , yT )}: testing data

Procedure:
4: for i = 1 to N do
5: Compute ŷi according to Eqn.(8)
6: end for
7: Train DMTS classifier f on the dataset {xi, ŷi}Ni=1
8: for t = 1 to T do
9: Compute the classification result yt := f(xt)

10: if yt = 0 then
11: Stay with the majority answer.
12: else if yt = 1 then
13: Predict with the minority answer.
14: end if
15: end for
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