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ABSTRACT

Deterministic neural networks (NNs) are increasingly being deployed in safety
critical domains, where calibrated, robust and efficient measures of uncertainty are
crucial. While it is possible to train regression networks to output the parameters
of a probability distribution by maximizing a Gaussian likelihood function, the
resulting model remains oblivious to the underlying confidence of its predictions.
In this paper, we propose a novel method for training deterministic NNs to not
only estimate the desired target but also the associated evidence in support of
that target. We accomplish this by placing evidential priors over our original
Gaussian likelihood function and training our NN to infer the hyperparameters of
our evidential distribution. We impose priors during training such that the model
is penalized when its predicted evidence is not aligned with the correct output.
Thus the model estimates not only the probabilistic mean and variance of our target
but also the underlying uncertainty associated with each of those parameters. We
observe that our evidential regression method learns well-calibrated measures of
uncertainty on various benchmarks, scales to complex computer vision tasks, and
is robust to adversarial input perturbations.

1 INTRODUCTION

Likelihood
Function

Evidential Distribution

Figure 1: Evidential distributions. Maxi-
mum likelihood optimization learns a likeli-
hood distribution given data, while evidential
distributions model higher-order probability
distribution over the likelihood parameters.

Recent advances in deep supervised learning have yielded
super human level performance and precision. While these
models empirically generalize well when placed into new
test enviornments, they are often easily fooled by adver-
sarial perturbations (Goodfellow et al., 2014), and have
difficulty understanding when their predictions should not
be trusted. Today, regression based neural networks (NNs)
are being deployed in safety critical domains of computer
vision (Godard et al., 2017) as well as in robotics and
control (Bojarski et al., 2016) where the ability to infer
model uncertainty is crucial for eventual wide-scale adop-
tion. Furthermore, precise uncertainty estimates are useful
both for human interpretation of confidence and anomaly
detection, and also for propagating these estimates to other
autonomous components of a larger, connected system.

Existing approaches to uncertainty estimation are roughly
split into two categories: (1) learning aleatoric uncertainty (uncertainty in the data) and (2) epistemic
uncertainty (uncertainty in the prediction). While representations for aleatoric uncertainty can
be learned directly from data, approaches for estimating epistemic uncertainty focus on placing
probabilistic priors over the weights and sampling to obtain a measure of variance. In practice, many
challenges arise with this approach, such as the computational expense of sampling during inference,
how to pick an appropriate weight prior, or even how to learn such a representation given your prior.

Instead, we formulate learning as an evidence acquisition process, where the model can acquire
evidence during training in support of its prediction (Sensoy et al., 2018; Malinin & Gales, 2018).
Every training example adds support to a learned higher-order, evidential distribution. Sampling
from this distribution yields instances of lower-order, likelihood functions from which the data was
drawn (cf. Fig. 1). We demonstrate that, by placing priors over our likelihood function, we can learn
a grounded representation of epistemic and aleatoric uncertainty without sampling during inference.
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In summary, this work makes the following contributions:

1. A novel and scalable method for learning representations of epistemic and aleatoric uncer-
tainty, specifically on regression problems, by placing evidential priors over the likelihood;

2. Formulation of a novel evidential regularizer for continuous regression problems, which we
show is necessary for expressing lack of a evidence on out-of-distribution examples;

3. Evaluation of learned epistemic uncertainty on benchmark regression tasks and comparison
against other state-of-the-art uncertainty estimation techniques for neural networks; and

4. Robustness evaluation against out of distribution and adversarially perturbed test data.

2 MODELLING UNCERTAINTIES FROM DATA

2.1 PRELIMINARIES

Consider the following supervised optimization problem: given a dataset, D, of N paired training
examples, (x1, y1), . . . , (xN , yN ), we aim to learn a function f , parameterized by a set of weights,
w, which approximately solves the following optimization problem:

min
w

J(w); J(w) =
1

N

N∑
i=1

Li(w), (1)

where Li(·) describes a loss function. In this work, we consider deterministic regression problems,
which commonly optimize the sum of squared errors, Li(w) = 1

2 ‖yi − f(xi;w)‖2. In doing so, the
model is encouraged to learn the average correct answer for a given input, but does not explicitly
model any underlying noise or uncertainty in the data when making its estimation.

2.2 MAXIMUM LIKELIHOOD ESTIMATION

We can also approach our optimization problem from a maximum likelihood perspective, where we
learn model parameters that maximize the likelihood of observing a particular set of training data. In
the context of deterministic regression, we assume our targets, yi, were drawn i.i.d. from a Gaussian
distribution with mean and variance parameters θ = (µ, σ2). In maximum likelihood estimation, we
aim to learn a model to infer θ = (µ, σ2) that maximize the likelihood of observing our targets, y,
given by p(yi|θ). In practice, we minimize the negative log likelihood by setting:

Li(w) = − log p(yi|µ, σ2︸ ︷︷ ︸
θ

) =
1

2
log(2πσ2) +

(yi − µ)2

2σ2
. (2)

In learning the parameters θ, this likelihood function allows us to successfully model the uncertainty
of our data, also known as the aleatoric uncertainty. However, our model remains oblivious to the
predictive model or epistemic uncertainty (Kendall & Gal, 2017).

In this paper, we present a novel approach for estimating the evidence in support of network predic-
tions by directly learning both the inferred aleatoric uncertainty as well as the underlying epistemic
uncertainty over its predictions. We achieve this by placing higher-order prior distributions over the
learned parameters governing the distribution from which our observations are drawn.

3 EVIDENTIAL UNCERTAINTY FOR REGRESSION

3.1 PROBLEM SETUP

We consider the problem where our observed targets, yi, are drawn i.i.d. from a Gaussian distribution
now with unknown mean and variance (µ, σ2), which we seek to probabilistically estimate. We
model this by placing a conjugate prior distribution on (µ, σ2). If we assume our observations
are drawn from a Gaussian, this leads to placing a Gaussian prior on our unknown mean and an
Inverse-Gamma prior on our unknown variance:

(y1, . . . , yN ) ∼ N (µ, σ2)

µ ∼ N (γ, σ2λ−1) σ2 ∼ Γ−1(α, β).
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Figure 2: Normal Inverse-Gamma distribution. Different realizations of our evidential distribution (A)
correspond to different levels of confidences in the parameters (e.g. µ, σ2). Sampling from a single realization
of a higher-order evidential distribution (B), yields lower-order likelihoods (C) over the data (e.g. p(y|µ, σ2)).
Darker shading indicates higher probability mass. We aim to learn a model (D) that predicts the target, y, from
an input, x, with an evidential prior imposed on our likelihood to enable uncertainty estimation.

where Γ(·) is the gamma function, m = (γ, λ, α, β), and γ ∈ R, λ > 0, α > 0, β > 0.

Our aim is to estimate a posterior distribution q(µ, σ2) = p(µ, σ2|y1, . . . , yN ). To obtain an approx-
imation for the true posterior, we assume that the estimated distribution can be factorized (Parisi,
1988) such that q(µ, σ2) = q(µ) q(σ2). Thus, our approximation takes the form of the Gaussian
conjugate prior, the Normal Inverse-Gamma (N.I.G.) distribution:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, λ, α, β︸ ︷︷ ︸
m

) =
βα
√
λ

Γ(α)
√

2πσ2

(
1

σ2

)α+1

exp

{
−2β + λ(γ − µ)2

2σ2

}
. (3)

A popular interpretation of the parameters of the conjugate prior distribution is in terms of “virtual-
observations” in support of a given property (Jordan, 2009). For example, the mean of a N.I.G.
distribution can be interpreted as being estimated from λ virtual-observations with sample mean
γ while its variance was estimated from 2α virtual-observations with sample mean γ and sum of
squared deviations 2β. Following from this interpretation, we define the total evidence, Φ, of our
evidential distributions as the sum of all inferred virtual-observations counts: (Φ = λ+ 2α).

Drawing a sample θj from the N.I.G. distribution yields a single instance of our likelihood function,
namely N (µj , σ

2
j ). Thus, the N.I.G. hyperparameters, (γ, λ, α, β), determine not only the location

but also the dispersion concentrations, or uncertainty, associated with our inferred likelihood function.
Therefore, we can interpret the N.I.G. distribution as higher-order, evidential, distribution on top of
the unknown lower-order likelihood distribution from which observations are drawn.

For example, in Fig. 2A we visualize different evidential N.I.G. distributions with varying model
parameters. We illustrate that by increasing the evidential parameters (i.e. λ, α) of this distribution,
the p.d.f. becomes tightly concentrated about its inferred likelihood function. Considering a single
parameter realization of this higher-order distribution, cf. Fig. 2B, we can subsequently sample many
lower-order realizations of our likelihood function, as shown in Fig. 2C.

In this work, we use neural networks to infer the hyperparameters of this higher-order, evidential
distribution, given an input. This approach presents several distinct advantages compared to prior
work. First, our method enables simultaneous learning of the desired regression task, along with
aleatoric and epistemic uncertainty estimation, built in, by enforcing evidential priors. Second, since
the evidential prior is a higher-order N.I.G. distribution, the maximum likelihood Gaussian can be
computed analytically from the expected values of the (µ, σ2) parameters, without the need for
sampling. Third, we can effectively estimate the epistemic or model uncertainty associated with the
network’s prediction by simply evaluating the variance of our inferred evidential distribution.

3.2 LEARNING THE EVIDENTIAL DISTRIBUTION

Having formalized the use of an evidential distribution to capture both aleatoric and epistemic uncer-
tainty, we next describe our approach for learning a model (c.f. Fig. 2D) to output the hyperparameters
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of this distribution. For clarity, we will structure the learning objective into two distinct parts: (1)
acquiring or maximizing model evidence in support of our observations and (2) minimizing evidence
or inflating uncertainty when the prediction is wrong. At a high level, we can think of (1) as a way of
fitting our data to the evidential model while (2) enforces a prior to inflate our uncertainty estimates.

(1) Maximizing the model fit.

From Bayesian probability theory, the “model evidence”, or marginal likelihood, is defined as the
likelihood of an observation, yi, given the evidential distribution parameters m and is computed by
marginalizing over the likelihood parameters θ:

p(yi|m) =
p(yi|θ,m)p(θ|m)

p(θ|yi,m)
=

∫
θ

p(yi|θ,m)p(θ|m) dθ. (4)

The model evidence is not, in general, straightforward to evaluate since computing it involves
integrating out the dependence on latent model parameters:

p(yi|m) =

∫ ∞
σ2=0

∫ ∞
µ=−∞

p(yi|µ, σ2)p(µ, σ2|m) dµdσ2 (5)

However, by placing a N.I.G. evidential prior on our Gaussian likelihood function an analytical
solution for the model evidence does exist. For computational reasons, we minimize the negative
logarithm of the model evidence (LNLL

i (w)). For a complete derivation please refer to Sec. 7.1,

LNLL
i (w) = − log p(yi|m) = − log

(
2

1
2+αβα

√
λ

2π(1 + λ)

(
2β +

λ(γ − yi)2

1 + λ

)− 1
2−α

)
. (6)

Instead of modeling this loss using empirical Bayes, where the objective is to maximize model
evidence, we alternatively can minimize the sum-of-squared (SOS) errors, between the evidential
prior and the data that would be sampled from the associated likelihood. Thus, we define LSOS

i (w) as

LSOS
i (w) = Eθ′∼p(θ|m)

[
Ey′∼p(y|θ′)

[
||y′ − yi||22

]]
(7)

=

∫ ∞

σ2=0

∫ ∞
µ=−∞

Ey′∼p(y|µ,σ2)

[
||y′ − yi||22

]
p(µ, σ2|m) dµdσ2 (8)

=

(
Γ(α− 1

2 )

4 Γ(α)λ
√
β

)(
2β(1 + λ) + (2α− 1)λ(yi − γ)2

)
. (9)

A step-by-step derivation is given in Sec. 7.1. In our experiments, using LSOS
i (w) resulted in greater

training stability and increased performance, compared to the LNLL
i (w) loss. Therefore, LSOS

i (w) is
used in all presented results.

(2) Minimizing evidence on errors.

In the first term of our objective above, we outlined a loss function for training a NN to output
parameters of a N.I.G. distribution to fit our observations, either by maximizing the model evidence
or minimizing the sum-of-squared errors. Now, we describe how to regularize training by applying a
lack of evidence prior (i.e., maximum uncertainty). Therefore, during training we aim to minimize
our evidence (or maximize our uncertainty) everywhere except where we have training data.

This can be done by minimizing the KL-divergence between the inferred posterior, q(θ), and a prior,
p(θ). This has been demonstrated with success in the categorical setting where the uncertainty prior
can be set to a uniform Dirichlet (Malinin & Gales, 2018; Sensoy et al., 2018). In the regression
setting, the KL-divergence between our posterior and a N.I.G. zero evidence prior (i.e., {α, λ} = 0)
is not well defined (Soch & Allefeld, 2016), please refer to Sec. 7.2 for a derivation. Furthermore,
this prior needs to be enforced specifically where there is no support from the data. Past works in
classification accomplish this by using the ground truth likelihoood classification (i.e., the one-hot
encoded labels) to remove the non-misleading evidence. However, in regression, labels are provided
as point targets (not ground truth Gaussian likelihoods). Unlike classification, it is not possible to
penalize evidence everywhere except our single point estimate, as this space is infinite and unbounded.
Thus, these previously explored approaches for evidential optimization are not directly applicable.
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To address both of these shortcomings of past works, now in the regression setting, we formulate a
novel evidence regularizer, LR

i , based on the error of the i-th prediction,

LR
i (w) = ‖yi − E[µi]‖p · Φ = ‖yi − γ‖p · (2α+ λ), (10)

where ‖x‖p represents the L-p norm of x. The value of p impacts the penalty imposed on the evidence
when a wrong prediction is made. For example, p = 2, heavily over-penalizes the evidence on larger
errors, whereas p = 1 and p = 0.5 saturate the evidence penalty for larger errors. We found that
p = 1 provided the optimal stability during training and use this value in all presented results.

This regularization loss imposes a penalty whenever there is an error in the prediction that scales with
the total evidence of our inferred posterior. Conversely, large amounts of predicted evidence will
not be penalized as long as the prediction is close to the target observation. We provide an ablation
analysis to quantitatively demonstrate the added value of this evidential regularizer in Sec 7.3.2.

The combined loss function employed during training consists of the two loss terms for maximizing
model evidence and regularizing evidence,

Li(w) = LSOS
i (w) + LR

i (w). (11)

3.3 EVALUATING ALEATORIC AND EPISTEMIC UNCERTAINTY

The aleatoric uncertainty, also referred to as statistical or data uncertainty, is representative of
unknowns that differ each time we run the same experiment. We evaluate the aleatoric uncertainty
from E[σ2] = β

α−1 . The epistemic, also known as the model uncertainty, describes the estimated
uncertainty in the learned model and is defined as Var[µ] = β

(α−1)λ . Note that Var[µ] = E[σ2]/λ,
which is expected as λ is one of our two evidential virtual-observation counts.

4 EXPERIMENTS

4.1 PREDICTIVE ACCURACY AND UNCERTAINTY BENCHMARKING
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Figure 3: Epistemic uncertainty estimation. Model-
ing the supportive evidence during learning enables pre-
cise prediction within the training regime and conserva-
tive uncertainty estimates where there was no training
data. Comparisons to other epistemic uncertainty esti-
mation methods are illustrated (bottom).

We first qualitatively compare the performance
of our approach against a set of benchmarks
on a one-dimensional toy regression dataset
(Fig. 3). For training and dataset details please
refer to Sec. 7.3.1. We compare deterministic
regression, as well as techniques using empiri-
cal variance of the networks’ predictions such as
MC-dropout, model-ensembles, and Bayes-by-
Backprop which underestimate the uncertainty
outside the training distribution. In contrast, ev-
idential regression estimates uncertainty appro-
priately and grows the uncertainty estimate with
increasing distance from the training data.

Additionally, we compare our approach to state-
of-the-art methods for predictive uncertainty
estimation using NNs on common real world
datasets used in (Hernández-Lobato & Adams,
2015; Lakshminarayanan et al., 2017; Gal &
Ghahramani, 2016). We evaluate our proposed evidential regression method against model-ensembles
and BBB based on root mean squared error (RMSE), and negative log-likelihood (NLL). We do not
provide results for MC-dropout since it consistently performed inferior to the other baselines. The
results in Table 1 indicate that although the loss function for evidential regression is more complex
than competing approaches, it is the top performer in RMSE and NLL in 8 out of 9 datasets.

Furthermore, we demonstrate that, on a synthetic dataset with a priori known noise, evidential models
can additionally estimate and recover the underlying aleatoric uncertainty. For more information
please refer to Sec. 7.3.3 for results and experiment details.
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RMSE NLL
Dataset Ensembles BBB Evidential Ensembles BBB Evidential
Boston 0.09 ± 4.3e-4 0.09 ± 3.7e-4 0.09 ± 1.0e-6 -0.89 ± 6.5e-2 -0.67 ± 1.5e-2 -0.87 ± 2.2e-2
Concrete 0.07 ± 4.4e-3 0.06 ± 3.3e-6 0.06 ± 7.0e-7 -1.29 ± 4.1e-2 -1.32 ± 4.3e-3 -1.31 ± 1.9e-2
Energy 0.10 ± 2.3e-4 0.10 ± 1.6e-5 0.10 ± 9.0e-7 -0.61 ± 8.9e-2 -0.60 ± 2.0e-2 -0.75 ± 1.4e-2
Kin8nm 0.07 ± 3.5e-4 0.17 ± 3.5e-4 0.08 ± 3.8e-3 -0.78 ± 1.4e-2 -0.32 ± 6.3e-3 -1.17 ± 2.6e-2
Naval 0.01 ± 1.0e-7 0.04 ± 1.2e-2 0.01 ± 3.4e-4 -2.55 ± 3.3e-2 -1.83 ± 2.4e-1 -3.17 ± 2.1e-3
Power 0.06 ± 4.0e-7 0.06 ± 2.3e-6 0.06 ± 5.3e-6 -1.29 ± 6.9e-2 -1.33 ± 2.5e-3 -1.40 ± 6.2e-3
Protein 0.17 ± 1.0e-6 0.17 ± 8.0e-4 0.17 ± 1.6e-6 -0.27 ± 6.7e-2 0.32 ± 5.9e-2 -0.29 ± 1.1e-2
Wine 0.10 ± 3.0e-4 0.10 ± 2.9e-4 0.10 ± 3.8e-5 -0.46 ± 2.5e-1 -0.89 ± 2.4e-3 -0.85 ± 6.9e-3
Yacht 0.07 ± 1.3e-3 0.07 ± 3.4e-3 0.06 ± 6.2e-5 -1.16 ± 6.3e-2 -0.74 ± 5.8e-2 -1.28 ± 9.4e-3

Table 1: Benchmark regression tests. We evaluate RMSE and negative log-likelihood (NLL) for model
ensembling (Lakshminarayanan et al., 2017), Bayes-By-Backprop (BBB) (Blundell et al., 2015) and evidential
regression. Evidential achieves top scores (bolded, within statistical significance) on 8 of the 9 datasets.

4.2 DEPTH ESTIMATION

After establishing benchmark comparison results, in this subsection we demonstrate the scalability
of our evidential learning by extending to the complex, high-dimensional task of depth estimation.
Monocular end-to-end depth estimation is a central problem in computer vision which aims to learn a
representation of depth directly from an RGB image of the scene. This is a challenging learning task
since the output target y is very high-dimensional. For every pixel in the image, we regress over the
desired depth and simultaneously estimate the uncertainty associated to that individual pixel.

Our training data consists of over 27k RGB-to-depth pairs of indoor scenes (e.g. kitchen, bedroom,
etc.) from the NYU Depth v2 dataset (Nathan Silberman & Fergus, 2012). We train a U-Net style
NN (Ronneberger et al., 2015) for inference. The final layer of our model outputs a single H ×W
activation map in the case of deterministic regression, dropout, ensembling and BBB. Evidential
models output four final activation maps, corresponding to (γ, λ, α, β).

Table 2 summarizes the size and speed of all models. Evidential models contain significantly fewer
trainable parameters than ensembles (where the number of parameters scales linearly with the size
of the ensemble). BBB maintains a trainable mean and variance for every weight in the network,
so its size is roughly 2× larger as well. Since evidential regression models do not require sampling
in order to estimate their uncertainty, their forward-pass inference times are also significantly more
efficient. Finally, we demonstrate comparable predictive accuracy (through RMSE and NLL) to the
other models. For a more detailed breakdown of how the number of samples effects the baselines
please refer to Tab. 3. Note that the output size of the depth estimation problem presented significant
learning challenges for the BBB baseline, and it was unable to converge during training. As a result,
for the remainder of this analysis we compare against only spatial dropout and ensembles.

We evaluate these models in terms of their accuracy and their predictive uncertainty on unseen test
data. Fig. 4A-C visualizes the predicted depth, absolute error from ground truth, and predictive
uncertainty across three randomly picked test images. Ideally, a strong predictive uncertainty would
capture any errors in the prediction (i.e., roughly correspond to where the model is making errors).
Compared to dropout and ensembling, evidential uncertainty modeling captures the depth errors while
providing clear and localized predictions of confidence. In general, dropout drastically underestimates
the amount of uncertainty present, while ensembling occasionally overestimates the uncertainty.

To evaluate uncertainty calibration to the ground-truth errors, we fit receiver operating character-
istic (ROC) curves to normalized estimates of error and uncertainty. Thus, we test the network’s
ability to detect how likely it is to make an error at a given pixel using its predictive uncertainty.

# Parameters Inference Speed RMSE NLL
Absolute Relative Seconds Relative

Evidential (Ours) 7,846,776 1.00 0.003 1.00 0.024 ± 0.032 -1.128 ± 0.290
Spatial Dropout 7,846,657 1.00 0.031 11.48 0.031 ± 0.033 -1.227 ± 0.374

Ensembles 39,233,285 5.00 0.010 3.72 0.023 ± 0.027 -1.077 ± 0.298
BBB 11,772,929 1.50 0.070 25.55 - -

Table 2: Benchmark performance comparison on depth prediction. For fair performance comparison,
sampling methods were all parallelized and sampled 5 times as RMSE and NLL did not significantly improve
with greater samples. For an extended analysis with larger number of samples please refer to Table 3.
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Figure 4: Modeling uncertainty in depth estimation. Three methods for estimating epistemic (model) uncer-
tainty are evaluated in the context of monocular depth estimation. For each model, we visualize the prediction,
error to ground-truth, and estimated uncertainty for three randomly chosen examples (A-C). Ideally, the model
should predict high uncertainty whenever it does not know the answer (i.e., large error). We evaluate the
sensitivity and specificity of the predictive uncertainty in identifying likely errors with ROC curves (D).
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Figure 5: Aleatoric uncertainty in
depth. Visualizing predicted aleatoric
uncertainty in challenging reflection
and illumination scenes. Comparison
between evidential and (Kendall & Gal,
2017) show strong semantic agreement.

ROC curves take into account sensitivity and specificity of
the uncertainties towards error predictions and are stronger if
they contain greater area under their curve (AUC). Fig. 4D
demonstrates that our evidential model provides uncertainty
estimates concentrate to where the model is making the errors.

In addition to epistemic uncertainty, we also evaluate the
aleatoric uncertainty estimates that are learned from our ev-
idential models as well. Fig. 5 compares the evidential aleatoric
uncertainty to those obtained by Gaussian likelihood optimiza-
tion in several domains with high data uncertainty (mirror reflec-
tions and poor illumination). The results between both methods
are in strong agreement, identifying mirror reflections and dark
regions without visible geometry as sources of high uncertainty.

4.3 OUT-OF DISTRIBUTION TESTING

A key use of uncertainty estimation is to understand when a
model is faced with test samples that fall out-of-distribution (OOD) or when the model’s output
cannot be trusted. In the previous subsection, we showed that our evidential uncertainties were well
calibrated with the model’s errors. In this subsection, we investigate the performance on out-of-
distribution samples. Fig. 6 illustrates predicted depth on various test input images (left) and outside
(right) of the original distribution. All images have not been seen by the model during training. We
qualitatively and quantitatively demonstrate that the epistemic uncertainty predicted by our evidential
model consistently increases on the OOD samples.

4.3.1 ROBUSTNESS TO ADVERSARIAL SAMPLES

Next, we consider the extreme case of OOD detection where the inputs are adversarially perturbed
to inflict maximum error on the model. We compute adversarial perturbations to our test set using
the fast gradient sign method (Goodfellow et al., 2014), with increasing scales, ε, of noise. Fig. 7A

Out-of-distribution Test SamplesIn-distribution Test Samples

8.31e-05 2.56e-04 2.81e-04 3.36e-04 3.74e-04 1.65e-03 5.92e-031.92e-031.38e-031.16e-03
1 3.08 3.38 4.04 4.50 13.95 16.61 23.10 71.2419.86

Input 
Image

Predicted
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Epistemic
Uncertianty

(Absolute)
(Relative)

High

Low

Far

Near

Figure 6: Out-of-distribution (OOD) data samples. Evidential models estimate and inflate epistemic uncer-
tainty on OOD data, where the prediction should not be trusted. All samples were not seen during training.
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Figure 7: Evidential robustness under adversarial noise. Increasing levels of adversarial noise (A) corrupt
the predicted depth, and our model begins to incur greater amounts of error. As adversarial noise increases,
inferred epistemic uncertainty increases (localized to where the most error occurs). Adversarially perturbed test
accuracy (B), epistemic uncertainty (C), as well as the noise to evidential error estimation (D) is also provided.

confirms that the absolute error of all methods increasing as adversarial noise is added. We also
observe a positive effect noise on our predictive uncertainty estimates in Fig. 7B. An additional
desirable property of evidential uncertainty modeling is that it presents a higher overall uncertainty
when presented with adversarial inputs compared to dropout and ensembling methods. Furthermore,
we observe this strong overall uncertainty estimation despite the model losing calibration accuracy
from the adversarial examples (Fig. 7C).

The robustness of evidential uncertainty against adversarial perturbations is visualized in greater
detail in Fig. 7D, which illustrates the predicted depth, error, and estimated pixel-wise uncertainty
as we perturb the input image with greater amounts of noise (left-to-right). Note that the predictive
uncertainty not only steadily increases as we increase the noise, but the spatial concentrations of
uncertainty throughout the image maintain tight correspondence with the error.

5 DISCUSSION AND RELATED WORK

Uncertainty estimation has a long history in neural networks, from modeling probability distribution
parameters over outputs (Bishop, 1994) to Bayesian deep learning (Kendall & Gal, 2017). Our work
builds on this foundation and presents a scalable representation for inferring the parameters of an
evidential uncertainty distribution while simultaneously learning regression tasks via MLE.

In Bayesian deep learning, priors are placed over network weights and estimated using variational
inference (Kingma et al., 2015). Dropout (Gal & Ghahramani, 2016; Molchanov et al., 2017) and
BBB (Blundell et al., 2015) rely on multiple samples to estimate predictive variance. Ensembles (Lak-
shminarayanan et al., 2017) provide a tangential approach where sampling occurs over multiple
trained instances. In contrast, we place uncertainty priors over the likelihood function and thus only
need a single forward pass to evaluate both prediction and uncertainty. Additionally, our approach of
uncertainty estimation proved to be better calibrated and capable of predicting where the model fails.

A large topic of research in Bayesian inference focuses on placing prior distributions over hierarchical
models to estimate uncertainty (Gelman et al., 2006; 2008). Our methodology falls under the
class of evidential deep learning which models higher-order distribution priors over neural network
predictions to interpret uncertainty. Prior works in this field (Sensoy et al., 2018; Malinin & Gales,
2018) have focused exclusively on modeling uncertainty in the classification domain with Dirichlet
prior distributions. Our work extends this field into the broad range of regression learning tasks (e.g.
depth estimation, forecasting, robotic control learning, etc.) and demonstrates generalizability to
out-of-distribution test samples and complex learning problems.

8
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6 CONCLUSION

In this paper, we develop a novel method for training deterministic NNs that both estimates a
desired target and evaluates the evidence in support of the target to generate robust metrics of model
uncertainty. We formalize this in terms of learning evidential distributions, and achieve stable training
by penalizing our model for prediction errors that scale with the available evidence. Our approach for
evidential regression is validated on a benchmark regression task. We further demonstrate that this
method robustly scales to a key task in computer vision, depth estimation, and that the predictive
uncertainty increases with increasing out-of-distribution adversarial perturbation. This framework
for evidential representation learning provides a means to achieve the precise uncertainty metrics
required for robust neural network deployment in safety-critical domains.
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7 APPENDIX

7.1 MODEL EVIDENCE DERIVATIONS

For convenience, define τ = 1/σ2 be the precision of a Gaussian distribution. The change of
variables transforms the Normal Inverse-Gamma distribution p(µ, σ2|γ, λ, α, β) to the equivalent
Normal Gamma distribution p(µ, τ |γ, λ, α, β), parameterized by precision τ ∈ (0,∞) instead of
variance σ2,

p(µ, τ |γ, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(µ−γ)2
2 . (12)

7.1.1 TYPE II MAXIMUM LIKELIHOOD LOSS

Marginalizing out µ and τ gives the result of equation 5,

p(yi|m) =

∫
τ

∫
µ

p(yi|µ, τ) p(µ, τ |γ, λ, α, β) dµdτ (13)

=

∫ ∞
τ=0

∫ ∞
µ=−∞

[√
τ

2π
e−

τ
2 (yi−µ)

2

] [
βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτe−

λτ(µ−γ)2
2

]
dµdτ (14)

=

∫ ∞
τ=0

(βτ)α

Γ(α)

√
λ

2πτ(1 + λ)
e−βτe−

τλ(γ−yi)
2

2(1−λ) dτ (15)

= 2
1
2+αβα

√
λ

2π(1 + λ)

(
2β +

λ(γ − yi)2

1 + λ

)− 1
2−α

. (16)

For computational reasons it is common to instead minimize the negative logarithm of the model
evidence.

LNLL
i (w) = − log p(yi|m) = − log

(
2

1
2+αβα

√
λ

2π(1 + λ)

(
2β +

λ(γ − yi)2

1 + λ

)− 1
2−α

)
(17)
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7.1.2 SUM OF SQUARES LOSS

Similarly, we can marignalize out µ and σ2 to receive the result of equation 8,

LSOS
i (w) =

∫
σ2

∫
µ

Ey∼p(y|µ,σ2)

[
||yi − y||22

]
p(µ, σ2|γ, λ, α, β) dµdσ2 (18)

=

∫
σ2

∫
µ

∫
y

||yi − y||22 p(y|µ, σ2) p(µ, σ2|γ, λ, α, β) dy dµdσ2 (19)

=

∫ ∞
σ2=0

∫ ∞
µ=−∞

∫ ∞
y=−∞

||yi − y||22

[√
1

2πσ2
e−

(y−µ)2

2σ2

]
[

βα
√
λ

Γ(α)
√

2π

(
1

σ2

)α+ 3
2

e−
β

σ2 e−
λ(µ−γ)2

2σ2

]
dy dµdσ2 (20)

=

∫ ∞
σ2=0

∫ ∞
µ=−∞

[
(yi − µ)2 + σ2

] [ βα
√
λ

Γ(α)
√

2π

(
1

σ2

)α+ 3
2

e−
β

σ2 e−
λ(µ−γ)2

2σ2

]
dµdσ2

(21)

=

∫ ∞
σ2=0

βα

λΓ(α)
exp

(
−β/σ2

)
σ−2(α+1)

(
σ2(1 + λ) + λ(yi − γ)2

)
dσ2 (22)

=

(
Γ(α− 1

2 )

4 Γ(α)λ
√
β

)(
2β(1 + λ) + (2α− 1)λ(yi − γ)2

)
(23)

7.2 KL-DIVERGENCE OF THE NORMAL INVERSE-GAMMA

The KL-divergence between two Normal Inverse-Gamma functions is given by (Soch & Allefeld,
2016):

KL(p(µ, σ2|γ1, λ1, α1, β1)||p(µ, σ2|γ2, λ2, α2, β2) (24)

=
1

2

α1

β1
(µ1 − µ2)2λ2 +

1

2

λ2
λ1
− 1

2
+ α2 log

(
β1
β2

)
− log

(
Γ(α1)

Γ(α2)

)
(25)

+ (α1 − α2)Ψ(α1)− (β1 − β2)
α1

β1
(26)

Γ(·) is the Gamma function and Ψ(·) is the Digamma function. The evidence is defined by (2α+ λ).
For zero evidence, both α = 0 and λ = 0. To compute the KL divergence between one N.I.G
distribution and another with zero evidence we can set either {α2, λ2} = 0 (i.e., forward-KL) in
which case, Γ(0) is not well defined, or {α1, λ1} = 0 (i.e. reverse-KL) which causes a divide-by-zero
error of λ1. In either approach, the KL-divergence between an arbitrary N.I.G and one with zero
evidence can not be evaluated.

7.3 BENCHMARK REGRESSION TASK EVALUATIONS

7.3.1 EPISTEMIC UNCERTAINTY ESTIMATION

The training set consists of training examples drawn from y = sin(3x)/(3x) + ε, where ε ∼
N (0, 0.02) in the region −3 ≤ x ≤ 3, whereas the test data is unbounded. All models consisted
of 100 neurons with 3 hidden layers and were trained to convergence. The data presented in
Fig. 3 illustrates the estimated epistemic uncertainty and predicted mean accross the entire test set,
−3 ≤ x ≤ 3.

7.3.2 IMPACT OF THE EVIDENTIAL REGULARIZER

In the following experiment, we demonstrate the importance of augmenting the training objective
with our evidential regularizer LR as introduced in Sec. 3.2. Fig. 8 provides quantitative results on
training the same regression problem presented in 7.3.1 with and without this evidential regularization
term. This term introduces an “uncertain” prior into our learning process so out-of-distribution (OOD)
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samples exhibit high epistemic uncertainty. Without the use of this novel loss term, the learned
epistemic uncertainty is unreliable on OOD data.
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Figure 8: Evidential regularizer. The use of our novel LR loss during training helps minimize evidence
(maximize uncertainty) on out-of-distribution data, thus enabling OOD uncertainty robustness for regression
prediction problems.

7.3.3 ALEATORIC UNCERTAINTY ESTIMATION

The training set consists of training examples drawn from y = sin(3x)/(3x) + ε(x), where ε(x) ∼
N (0, s(x)), and s(x) = 1

20 cos(3.3x) + 0.1. We evaluate against (Kendall & Gal, 2017) which
presents an algorithm for heteroscedastic aleatoric uncertainty estimation by inferring the mean and
variance of a Gaussian likelihood function. As presented in the paper, training is done by minimizing
the negative log-likelihood of the data given the inferred likelihood parameters. Both our network
and the baseline Gaussian NLL network consisted of 100 neurons with 3 hidden layers and were
trained to convergence.
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Figure 9: Aleatoric uncertainty estimation. Comparing the ability to learn the heteroscedastic aleatoric
uncertainty in a synthetic dataset. Evidential modelling is able to match the performance of Gaussian likelihood
optimization (Kendall & Gal, 2017).

7.4 ADDITIONAL DEPTH ESTIMATION PERFORMANCE RESULTS

N # Parameters Inference Speed RMSE NLL
Absolute Relative Seconds Relative

Evidential (Ours) - 7,846,776 1.00 0.003 1.00 0.024 ± 0.032 -1.128 ± 0.290
Spatial Dropout 2 7,846,657 1.00 0.028 10.20 0.033 ± 0.037 -0.564 ± 0.231
Spatial Dropout 5 7,846,657 1.00 0.031 11.48 0.031 ± 0.033 -1.227 ± 0.374
Spatial Dropout 10 7,846,657 1.00 0.037 13.69 0.035 ± 0.042 -1.139 ± 0.379
Spatial Dropout 25 7,846,657 1.00 0.065 23.99 0.032 ± 0.035 -1.137 ± 0.327
Spatial Dropout 50 7,846,657 1.00 0.107 39.36 0.032 ± 0.036 -1.110 ± 0.381

Ensembles 2 15,693,314 2.00 0.005 1.94 0.026 ± 0.032 -1.080 ± 3.334
Ensembles 5 39,233,285 5.00 0.010 3.72 0.023 ± 0.027 -1.077 ± 0.298
Ensembles 10 78,466,570 10.00 0.019 6.82 0.025 ± 0.038 -0.980 ± 0.298
Ensembles 25 196,166,425 25.00 0.045 16.45 0.022 ± 0.029 -1.000 ± 0.259
Ensembles 50 392,332,850 50.00 0.112 41.26 0.022 ± 0.031 -0.996 ± 0.275

BBB 2 11,772,929 1.50 0.064 23.58 - -
BBB 5 11,772,929 1.50 0.070 25.55 - -
BBB 10 11,772,929 1.50 0.088 32.25 - -
BBB 25 11,772,929 1.50 0.144 53.09 - -
BBB 50 11,772,929 1.50 0.284 104.33 - -

Table 3: Depth estimation performance. Comparison of different epistemic uncertainty estimation algorithms
and predictive performance on an unseen test set. Dropout, ensembles, and Bayes-by-Backprop were sampled N
times on parallel threads. The evidential method outperforms all other algorithms in terms of space (#Parameters)
and inference speed while maintaining competetive RMSE and NLL.
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