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ABSTRACT

We link the reverse KL divergence with adversarial learning. This insight enables
learning to synthesize realistic samples in two settings: (i) Given a set of samples
from the true distribution, an adversarially learned likelihood-ratio and a new
entropy bound are used to learn a GAN model, that improves synthesized sample
quality relative to previous GAN variants. (ii) Given an unnormalized distribution,
a reference-based framework is proposed to learn to draw samples, naturally
yielding an adversarial scheme to amortize MCMC/SVGD samples. Experimental
results show the improved performance of the derived algorithms.

1 BACKGROUND ON THE REVERSE KL DIVERGENCE

Target Distribution Assume we are given a set of samples D = {xi}i=1,N , with each sample
assumed drawn iid from an unknown distribution q(x). For x ∈ X , let Sq ⊂ X represent the support
of q, implying that Sq is the smallest subset of X for which

∫
Sq q(x)dx = 1 (or

∫
Sq q(x)dx = 1− ε,

for ε→ 0+). Let Soq represent the complement set of Sq , i.e., Sq ∪ Soq = X and Sq ∩ Soq = ∅.

Model Distribution We desire a model pθ(x) that approximately allows one to draw samples
efficiently from q(x), implemented as x = fθ(z) with z ∼ p(z), where p(z) is a distribution that one
may sample from easily, and fθ(z) is a nonlinear deterministic function with parameters θ that are to
be learned. Similarly, let Spθ represent the support of pθ, with Spθ ∪ Sopθ = X and Spθ ∩ Sopθ = ∅.

The reverse KL divergence 1 between these two distributions is:

KL(pθ(x)||q(x)) = Epθ(x) log
[
pθ(x)

q(x)

]
= −h(pθ(x))− Epθ(x) log q(x) (1)

• The 1st term is the differential entropy, encouraging pθ(x) to spread over the support set as wide
as possible

• The 2nd term can be further written as: Epθ(x) log q(x) =
∫
Spθ∩Sq pθ(x) log q(x)dx +∫

Spθ∩Soq
pθ(x) log q(x)dx, where there is a strong (negative) penalty introduced by∫

Spθ∩Soq
pθ(x) log q(x)dx. Hence, it is encouraged that Spθ ∩ Soq = ∅, implying Spθ ⊆ Sq.

When Spθ ⊂ Sq , “mode-collapse” is manifested.

It can be seen that the goals of two terms in the reverse KL objective seem complementary to each
other. We advocate that minimizing KL(pθ‖q) is a promising approach to learn a model pθ(x) to
characterize q(x). Below, we discuss two distinctive setups to learn pθ(x), when only either a sample
set (in Section 2) or an unnormalized density form (in Section 3) of q(x) is available.

2 LEARNING WITH SAMPLES
Learning pθ(x) with a set of samples from q(x) is exactly the problem setup of Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014). One may consider to train a ψ-parameterized discrimi-
nator gψ(x) to estimate the likelihood-ratio log(pθ(x)/q(x)) (Kanamori et al., 2010; Mohamed &
Lakshminarayanan, 2016; Mescheder et al., 2016; Gutmann & Hyvärinen, 2010):

ψ̂ = argmaxψ[Ep(z) log σ(gψ(fθ(z))) + Eq(x) log(1− σ(gψ(x)))], (2)

1In contrast to the maximum likelihood setup KL(q(x)||pθ(x))
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where σ(x) = 1/(1 + exp(−x)), and with both expectations in (2) implemented approximately via
samples. One may show that for fixed θ, the optimal solution to (2) is gψ̂(x) = log[pθ(x)/q(x)].
Utilizing gψ̂(x) as an approximation for the likelihood-ratio, we seek to minimize KL(pθ‖q) via

θ̂ = argminθ Ep(z)gψ̂(fθ(z)) (3)
Learning proceeds by alternating between updating ψ (defining the discriminator/critic) and θ
(defining the generator/actor). We call this procedure as ALL: Adversarially Learned Likelihood-
ratio. It reveals the close connections to standard GAN training (Goodfellow et al., 2014), except two
minor differences detailed in the Supplementary Material (SM).

Furthermore, the reverse KL objective in (1) has no control on the relative importance of the two
terms; we may rather minimize −λh(pθ)− Epθ log q(x), with λ ≥ 1 allowing control of how much
emphasis is placed on mitigating mode collapse. To achieve this we require a means of estimating or
bounding h(pθ) using samples from pθ(x).
Lemma 1 Let tξ(z|x) be an auxiliary encoder associated with the generative model pθ(x), for which
x = fθ(z) and z ∼ p(z). The mutual information between x and z satisfies

I(x; z) = h(pθ(x)) ≥ h(p(z)) + Ep(z) log tξ(z|fθ(z)).

The proof is provided in the SM. Since h(p(z)) is a constant wrt (θ, ξ), one may seek to maximize
Ep(z) log tξ(z|x) to increase the h(pθ). We therefore modify the learning of θ in (3)as:

θ̂ = argminθ Ep(z)[gψ̂(fθ(z)) + (1− λ) log tξ(z|fθ(z))] (4)
with λ ≥ 1, controlling the impact of the entropy regularizer. Meanwhile, tξ(z|x) is also optmized to
satisfy the cycle-consistency of z (Li et al., 2017a; Zhu et al., 2017). Hence, the learning is referred
to as ALLEN: Adversarially Learned Likelihood-ratio with ENtropy.

3 LEARNING WITH AN UNNORMALIZED DISTRIBUTION
Assume q(x) = u(x)/C, with u(x) known and C =

∫
u(x)dx unknown. Our goal is to design a

model pθ(x) to sample from q(x), based on u(x) and without access to samples from q(x). Therefore,
we seek to minimize Epθ(x) log

[pθ(x)
u(x)

]
= KL(pθ‖q)− logC with the following two methods.

3.1 A REFERENCE-BASED SAMPLING FRAMEWORK

We can re-write the reverse KL divergence with a reference distribution r(x) as:

KL(pθ(x)||u(x)) = Epθ(x)
[
log

pθ(x)

r(x)
+ log

r(x)

u(x)

]
, (5)

where r(x) should satisfy two minimum requirements: (i) a sampling mechanism to draw samples,
and (ii) a functional form to evaluate density. Therefore, by leveraging the corresponding ability,
the 1st term in the expectation can be implicitly estimated via the ALLEN in (2)(4) using the two
sample sets, and the 2nd term can be explicitly evaluated using their density forms. In practice, we
have a wide family of r(x) to choose, including Gaussian distributions, mixture of Gaussians, and
normalizing flows Rezende et al. (2015); Kingma et al. (2016) etc. From this perspective, Adversarial
Variational Bayes (AVB) (Mescheder et al., 2016) can be viewed as a special case when employing
the prior or empirical Gaussian as the reference distributions in the Bayesian setup.

3.2 ADVERSARIAL SAMPLE AMORTIZATION

The alternative approach is to directly draw samples from u(x) using Markov Chain Monte
Carlo (MCMC) (Brooks et al., 2011; Welling & Teh, 2011) or Stein Variational Gradient Descent
(SVGD) (Liu & Wang, 2016) methods. However, these methods become inefficient when we need
to apply them repeatedly on a large number of different but similar target distributions, because
one has to start the dynamics from the scratch and wait until convergence. This problem can be
addressed via sample amortization (Feng et al., 2017; Li et al., 2017b): training a model pθ(x) such as
a stochastic neural network to approximate the samples of the multiple distributions. In learning, θ is
iteratively adjusted to approach the incrementally improved samples along the dynamics, and finally
move towards the target distribution. Our reverse KL framework naturally leads to fitting samples
between the model and the dynamics via ALLEN in (2)(4), in contrast to the `2 metric in (Feng
et al., 2017). It has been shown that the adversarial schemes can match the marginal/conditional
distributions (Goodfellow et al., 2014; Li et al., 2017a). Therefore, the samples from dynamics can
approximate the target distribution at convergence, so as the samples drawn from our model pθ(x).
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4 EXPERIMENTAL RESULTS

4.1 LEARNING WITH SAMPLES

We first study the capability of different models in terms of mode coverage/separation. Following the
design in (Metz et al., 2017; Nguyen et al., 2017), we consider a synthetic dataset of samples drawn
from a 2D mixture of 8 Gaussian distributions. The ALL is first compared with the original GAN
and three state-of-the-art GAN variants: Spectral Normalization (SN)-GAN (Miyato et al., 2018),
Unrolled-GAN (Metz et al., 2017) and D2GAN (Nguyen et al., 2017). For all variants, we also study
their entropy-regularized versions of all methods, by simply adding the entropy bound (λ= 2 by
default) proposed in (4), when training the generator.

Figure 1: Comparison of different GAN variants. The GAN
models and corresponding entropy-regularized variants are
visualized in the same color; in each case, the left result is
unregularized, and the right employs entropy regularization.
The black dots indicate the means of the distributions.

Twenty runs were conducted for each al-
gorithm. Since we know the true distribu-
tion in this case, we employ the symmet-
ric KL divergence as a metric to quanti-
tatively compare the quality of generated
data. In Fig. 1 we report the distribution
of divergence values for all runs. The ALL
variant improve over the original GAN, be-
cause the former may ease the gradient-
vanishing issue of the latter (Arjovsky &
Bottou, 2017; Pu et al., 2018). We add
the entropy regularizer to each variant, and
visualize their results as violin plots with
black edges (the color for each variant re-
mains for comparison). The largely decreased divergence mean and reduced variance show that the
entropy regularizer yields significantly more consistent and reliable solutions, across all methods.

4.2 LEARNING WITH AN UNNORMALIZED DISTRIBUTION

To provide insight into the differences of the representation power between various sam-
pling/amortization methods, we consider two unnormalized 2D densities p(z) ∝ exp[−U(z)].
Fig. 2 shows several analyses: (i) The first pair compare the methods related to AVB (Mescheder
et al., 2016), here considering two forms of reference distributions, including empirical Gaussian
and based on normalizing flows (NF); By comparing plots in Fig. 2(b) and (c), we see a substantial
improvement in the approximation quality based on use of a flexible reference distribution (here NF).
(ii) The second pair of results consider two methods for amortizing the output of SVGD; Previous
method employed the `2 distance (Feng et al., 2017). We propose the adversarial scheme described in
Sec.3.2 to amortize the samples. The comparison of methods for amortizing based on SVGD samples
is presented in plots Fig. 2(d) and (e). (iii) Similarly, the final pair of results examine two methods for
amortizing samples from an Langevin-based MCMC sampler, shown in Fig. 2(f) and (g). We observe
that ALLEN accurately approximates the entire distributions, while the `2-based methods tend to
collapse to the mean of the distribution; this is because the optimum of an `2 objective is the mean.

(a) (b) (c) (d) (e) (f) (g)
Figure 2: Comparison on learning with unnormalized distributions.

Learning to sample from unnormalized distributions is quite useful in many interesting applications.
We show the results for Variational Autoencoders (Kingma & Welling, 2014) in SM, and point out
future works, including Bayes by HyperNet (Pawlowski et al., 2017) and Soft Q-learning (Haarnoja
et al., 2017) etc.
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A FROM THE ORIGINAL GAN TO ALLEN

We describe the differences between original GAN and ALLEN as the following:

Discriminator In the original GAN (Goodfellow et al., 2014), one may consider to train a ψ-
parameterized discriminator gψ(x):

ψ̂ = argmaxψ[Eq(x) log σ(gψ(x)) + Ep(z) log(1− σ(gψ(fθ(z))))], (6)

where σ(x) = 1/(1 + exp(−x)). This is similar to (2) in the main paper, except that the two
expectation terms are switched.

Generator To train the generator, original GAN minimizes:

θ̂ = argminθ Ep(z) log(1− σ(gψ(fθ(z)))), (7)

or the alternative “log D trick”:

θ̂ = argminθ Ep(z) − log(σ(gψ(fθ(z)))). (8)

(7) and (8) are similar to (3) in the main text, but different in the presence of the sigmoid function.
According to Arjovsky & Bottou (2017), optimization of (7) and (8) lead to gradient vanishing or
unstable issues.

Entropy Bound After carefully implementing the two above small differences, the major difference
of ALLEN is the use of cycle-consistency to bound the entropy, as implemented in (4).

B PROOF OF THE ENTROPY BOUND IN LEMMA 1

Consider random variables (x, z) under the joint distribution pθ(x, z) = p(z)pθ(x|z), where
pθ(x|z) = δ(x−fθ(z)). The mutual information between x and z satisfies I(x; z) = h(x)−h(x|z) =
h(z) − h(z|x). Since pθ(x|z) is a deterministic function of z, h(x|z) = 0. We therefore have
h(x) = h(z)− h(z|x), where h(z) = −

∫
p(z) log p(z)dz is a constant wrt θ. For general distribu-

tion tξ(z|x),

h(z|x) = −Epθ(x,z) log pθ(z|x) (9)

=− Epθ(x,z) log tξ(z|x)− Epθ(x)KL(pθ(z|x)‖tξ(z|x))
≤− Epθ(x,z) log tξ(z|x) (10)

We consequently have

h(x) = −Epθ(x) log pθ(x)dx
= h(z)− h(z|x) ≥ h(z) + Epθ(x,z) log tξ(z|x) (11)

Therefore, entropy is upper bounded by the negative likelihood or cycle-consistency loss; minimizing
the cycle-consistency loss maximizes the entropy or mutual information. �

C RESULTS ON VARIATIONAL AUTOENCODERS

We consider sampling the posterior distribution of the latent code in VAE (Kingma & Welling, 2014).
The prior is N (0, I). To illustrate the difference, we trained the VAE on a synthetic dataset similar to
Fig. 5 in (Mescheder et al., 2016). This example contains 10 data points, each a 10D one-hot vector,
with non-zero element at the different positions, and the latent space is 2D.

We visualize the resulting division of the latent space in Fig. 3, where each color corresponds to
the conditioning observation in the x-space: qφ(z) =

∫
qφ(z|x)q(x)dx. Ideally, the entire dot cloud

should look like a standard normal distribution, and each individual component should be well
separated. The standard VAE learns the mixtures of Gaussian, due to the variational assumption.
The standard AVB can be viewed as employing the prior as the reference, which can learn more
complex distribution for each component. However, the boundary is not well separated. When
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(c) Empirical Normal (d) Learned Normal(b) Prior(a) VAE

(g) MCMC-A (h) MCMC-(f) SVGD-(e) SVGD-A `2 `2

Figure 3: Comparison of latent spaces; the colors mean conditioning on different observations. From our
reference-based framework, (b)-(d) chooses different references. (e)-(f) are results of amortizing SVGD/MCMC
using ALL and `2, respectively.

choosing more flexible empirical Gaussian references, we see substantial improvement. We propose
to use the learned normal-parameterized encoder in standard VAE as the reference, and the results are
visualized in Fig. 3(d). It learns both the correct overall shape and a clear boundaries. Interestingly,
the empirical normal proposed in the adaptive constrast technique (Mescheder et al., 2016) seems
to provide visually similar latent distributions. When comparing the amortizing SVGD/MCMC
methods, ALLEN performs better at maintaining the distributions, while the `2 method collapses to
the mode of each distribution.
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