
Under review as a conference paper at ICLR 2020

DEEP SPIKE DECODER (DSD)

Anonymous authors
Paper under double-blind review

ABSTRACT

Spike-sorting is of central importance for neuroscience research. We introduce
a novel spike-sorting method comprising a deep autoencoder trained end-to-end
with a biophysical generative model, biophysically motivated priors, and a self-
supervised loss function to training a deep autoencoder. The encoder infers the ac-
tion potential event times for each source, while the decoder parameters represent
each source’s spatiotemporal response waveform. We evaluate this approach in
the context of real and synthetic multi-channel surface electromyography (sEMG)
data, a noisy superposition of motor unit action potentials (MUAPs). Relative to
an established spike-sorting method, this autoencoder-based approach shows su-
perior recovery of source waveforms and event times. Moreover, the biophysical
nature of the loss functions facilitates interpretability and hyperparameter tuning.
Overall, these results demonstrate the efficacy and motivate further development
of self-supervised spike sorting techniques.

1 INTRODUCTION

Spike sorting focuses on analyzing electrophysiological data, detecting occurrences of action poten-
tials, and assigning them to distinct neurons. The resulting spikes-based representation is regarded
as a complete, high-resolution, noise-free, and disentangled representation of the underlying neural
activity. Spike sorting has been studied extensively for use with extracellular electrode (reviewed by
Rey et al. 2015; Carlson & Carin 2019; Hennig et al. 2019) and surface electromyography (sEMG;
Farina et al. 2004; Holobar & Zazula 2007; Negro et al. 2016). In this paper, we propose a novel
solution to the spike sorting problem that marries biophysical inductive biases and constraints with
the power of self-supervision.

Our approach uses a deep autoencoder architecture where the encoder functions as spike sorter and
the decoder implements a generative model. The entire model is trained end-to-end in a completely
self-supervised fashion by leveraging a set of loss terms that enforce biophysically-motivated pri-
ors. In this paper, the proposed approach evaluated using both real-world and realistically simulated
sEMG datasets. The results demonstrate the validity of our approach and motivate further develop-
ment of the overall paradigm of unsupervised deep spike sorting.

2 PROBLEM FORMULATION

Here, we briefly discuss the problem formulation, and generative model giving rise to the measured
sEMG signal (Merletti & Farina, 2016).

A motor neuron innervates a set of muscle fibers, and together they are referred to as a motor unit
(MU). As an MU emits a spike, denoted by the variable s, it passes through layers of connective
tissue, blood, and skin, before being picked up by the electrodes on the surface. This pattern is
referred to as the motor-unit-action-potential, (MUAP). The received sEMG signal at the electrode,
is the result of an MU spike being convolved with a kernel, given by the tissue between the m’th
MU and the e’th electrode, he,m. The result of this convolution is the MUAP-waveform, which -
since the spike is binary - is also the shape of the convolution kernel. The kernel shape is directly
and physically related to the space between the MU and the electrode.

As other spikes from the same MU are transmitted, they are also convolved with the same kernel
he,m on the way to the electrode. Therefore, the signal that the e’th electrode sees due to the m’th
MU’s spike train sm[t], is the convolution of the two entities, given by:

1



Under review as a conference paper at ICLR 2020

xe[t] =

L−1∑
l=0

he,m[l]sm[t− l] + ne[t] (1)

where ne[t] is the thermal noise at the e’th electrode. Of course, there are more than one MUs -
in fact there are M of them, so the total result of what the e’th electrode sees is a sum of all their
effects, and so we have:

xe[t] =

M−1∑
m=0

L−1∑
l=0

he,m[l]sm[t− l] + ne[t] (2)

3 METHOD

The spike sorting problem can be cast as an unsupervised representation learning problem (Good-
fellow et al., 2016; Bengio et al., 2013), where the multi-channel sEMG signal is represented as
individual MU spike trains and the corresponding MUAP spatiotemporal waveforms. Here, we
tackle this problem using a deep autoencoder where the encoder extracts spike pulse trains and the
decoder reconstructs the sEMG signal according to the biophysics of the problem. This network is
then trained using loss terms that enforce the reconstruction of the sEMG signal, the sparsity of the
spike trains, and the parsimony of the MUAPs, the uniqueness of motor units, and the refractory
period of motor neurons.

3.1 MODEL ARCHITECTURE

The DSD model can be put into the following form where Equations 3 and 4 represent the encoder
and the decoder parts correspondingly. The encoder fe (.) takes in the sEMG data x ∈ RExT where
E is the number of electrodes and T is the number of timesteps, and the encoder weights we, to
infer the spike probabilities ŝ ∈ RNxT where N is the maximum number of MUs the network is
allowed learn. In this representation, individual MU spike probabilities are inferred for all MUs for
all timesteps.

ŝ = fe (x;we) (3)
x̂ = fd (ŝ;wd) (4)

The decoder fd (.) then takes in the inferred MU spike probabilities ŝ and infer the reconstructed
sEMG signal x̂ using the decoder weights wd. Since the decoder mimics the biophysical model
closely, we can recover the MUAP waveforms corresponding to each MU from the decoder weights
wd.

Here, the encoder model corresponds to the learned deep spike sorter and the decoder model corre-
sponds to the learned biophysical model. During inference time, we typically run only the learned
encoder for spike sorting purposes.

DSD Encoder The encoder function fe (.) constitutes a deep convolutional neural network (CNN)
which is tasked with solving the spike sorting problem. While traditional spike sorting approaches
first identify peaks and then cluster them into motor units, our deep spike sorter solves both problems
simultaneously in a data-driven manner.

The encoder is implemented as a segmentation network followed by a classifier head. The segmen-
tation network takes in the sEMG data x ∈ RExT and encodes it in a latent space of size (L,E, T )
where L is the dimensionality of the latent space. The classifier head then takes in this latent repre-
sentation and calculates spike scores using a linear classifier, with input size (L,E), for each motor
unit that runs through each timestep, which are then passed through a Gumbel-softmax function
(Jang et al., 2016) for spike binarization.

We have two variants of the DSD model based on the segmentation network used. In one variant, we
use a densely connected neural network architecture (i.e. DenseNets) similar to Huang et al. (2017).

2



Under review as a conference paper at ICLR 2020

The other variant utilizes skip connections between dense blocks and is based on the one hundred
layer tiramisu architecture (Jégou et al., 2017).

DSD Decoder The decoder function fd (.) is strictly a linear model that mimics the convolutive
multi-channel sEMG mixing model. This biophysical model, described in detail by Merletti &
Farina (2016), can be described as a single convolution operation where the convolutional kernels
are the spatiotemporal waveforms corresponding to each motor unit action potential (MUAP). Using
this biophysical model helps us constrain the problem such that, together with the training losses, it
coincides with the spike sorting problem. And the interpretability of it allows us to easily recover
the MUAP waveforms corresponding to each MU.

In our implementation, we used the canonical tensor decomposition trick (Kolda & Bader, 2009;
Hitchcock, 1927), alongside the spatial and the temporal dimensions to significantly reduce the
number of learned parameters while maintaining the expressive power necessary to span the space
of possible MUAP waveforms.

3.2 TRAINING LOSSES

Reconstruction Loss The reconstruction loss is given in Equation 5. It penalizes for the L4 norm
of the reconstruction error.

Lreconstruction = ‖x− x̂‖4 (5)

Sparsity Loss MU spikes can be rare events relative to typical sampling rates of sEMG devices.
We use the L1 norm of the spike probabilities to enforce this prior knowledge, as shown in Equa-
tion 6.

Lsparsity = ‖ŝ‖1 (6)

Parsimony Loss One of the main challenges in using a deep autoencoder for spike sorting is the
cardinality problem. Since we do not know the exact number of motor units, we overparameterize
the network based on an upper limit. Then, by penalizing for the proposal of new MUAP waveforms,
we are able to force the network to be parsimonious with respect to the set of MUAP proposals it
uses to explain a given sEMG signal. We use the L1-L2 norm to enforce this group sparsity as in
Bach et al. (2012).

Lparsimony =
∑
g∈G

∥∥∥∥∂wg
d

∂t

∥∥∥∥
2

(7)

Equation 7 describes the parsimony loss. The partitioning for L1-L2 norm is defined such that
each partition, g ∈ G, corresponds to a tensor wg

d that describes the local spatiotemporal waveform
around a neighborhood of electrodes for a particular MU. This forces the network to minimize both
the number of MUAPs and their spatial footprints. Also note that we apply this loss not directly on
the spatiotemporal waveforms, but rather on their first derivatives with respect to time, in order to
enforce temporal smoothness.

Uniqueness Loss The uniqueness loss forces the MUAP waveform proposals to focus on explain-
ing different phenomena. It implements a joint prior on the set of MUAP waveforms and their
corresponding MU spike trains. This is done by penalizing for the joint occurrence of the temporal
similarity between MU spike trains and the spatial similarity between their MUAP waveforms.

Luniqueness =
∥∥vec

((
s̃s̃T
)
�
(
mmT

)
� (J − I)

)∥∥
1

(8)

In Equation 8, the terms s̃ and m correspond to a dilated version of the spike trains and the spa-
tial energy distribution of the MUAP waveforms. The matrices J and I correspond to an all-ones
matrix and an identity matrix respectively. The operators vec (.) and � correspond to vectorization
operation and the hadamard element-wise product.

3



Under review as a conference paper at ICLR 2020

Refractory Period Loss Refractory period of motor units describe the amount of time needed be-
tween two spikes from a single motor unit. The refractory period loss encodes this prior knowledge
by penalizing for multiple spike occurences from a single MU within its time window. It can be
implemented efficiently as in Equation 9.

Lrefractory = ‖ReLU (sumpool (s)− 1)‖1 (9)

Total Loss The total loss is a combination of the above loss items as shown in Equation 10 where
α, β, γ, and η are hyper-parameters to be tuned.

Ltotal = Lreconstruction + αLsparsity + βLparsimony + γLuniqueness + ηLrefractory (10)

4 RESULTS

4.1 EVALUATION WITH REAL-WORLD DATA

We first evaluate the DSD algorithm on real sEMG data acquired from 16 differential sensors worn
around the circumference of the arm. The sEMG data recorded is shown in Figure 1. In this case,
the human user was instructed to generate two separate activity modes, corresponding to a slight
(imperceptible) tensing of muscles, first of the index finger and then of the small finger. Because our
sEMG datasets lack simultaneously recorded intramuscular EMG to serve as ground truth signals
(Negro et al., 2016), this evaluation is limited to unsupervised analyses.

Its subsequent blind factorization by the DSD is shown in Figure 2. We can clearly see the following
facets: MUAPs are spatially localized with a clear spatial peak and fall-off. Their smoothness and
time-profiles look reasonable, as expected for differential recordings, and the MUAPs look like they
roughly factorize the data. Furthermore, their corresponding spike-trains also seem to spike at the
appropriate peak locations. Lastly, the cardinality of the spike-trains/MUAPs looks reasonable as
well, in this case parsimoniously explaining the dataset using two unique waveforms. The zoomed
in versions of both results are shown for the orange and green waveforms in Figure 3. On the right
hand side, we can see the reconstruction errors more saliently, and on the left hand side, we can see
some missed detections corresponding to what look like low amplitude spikes.

4.2 QUANTITATIVE RESULTS WITH SIMULATED DATA

To quantify the DSD performance, we generate a family of simulated datasets using real-data (see
Appendix C, similar to the hybrid ground truth approach used by Pachitariu et al. (2016) and Rossant
et al. (2016). The main goal here is to compare MUAP waveforms similarities and corresponding

Figure 1: Recorded 16-channel wrist sEMG data with twitches in index finger in the first active
section, and twitches in pinkie in the second active section.

4



Under review as a conference paper at ICLR 2020

Figure 2: DSD-D factored sEMG data with 10 learned MUAP templates on the right, 10 corre-
sponding spike trains on the upper left, and spike firing time overlaid on the sEMG on the lower
left.

Figure 3: DSD-D factored sEMG data, zoomed-in sections of the spike trains and sEMG. On the
left shows the pinkie active section, and on the right shows the index finger active section.

5



Under review as a conference paper at ICLR 2020

Table 1: sEMG decomposition evaluation results on simulated datasets

Dataset Metric KiloSort DSD-T DSD-D
3 MUs recall 0.6667 1.0000 1.0000

dissimilarity 0.7112 0.0802 0.0937
cardinality mismatch -0.3333 0.0000 0.0000

overall avg prt 0.6240 0.7899 0.7818
overall avg prt* 0.8089 0.7570

3 MUs recall 0.6667 1.0000 1.0000
w/ high noise dissimilarity 0.6541 0.0802 0.1236

cardinality mismatch -0.3333 0.0000 0.0000
overall avg prt 0.3532 0.8063 0.7428

overall avg prt* 0.8126 0.7434
5 MUs recall 0.6000 1.0000 1.0000

dissimilarity 0.6068 0.3247 0.2255
cardinality mismatch 0.0000 0.0000 0.4000

overall avg prt 0.5955 0.4539 0.7553
overall avg prt* 0.4835 0.6210

7 MUs recall 0.1429 0.8571 1.0000
dissimilarity 0.7786 0.1484 0.2082

cardinality mismatch 0.0000 0.0000 0.1429
overall avg prt 0.6452 0.5849 0.6535

overall avg prt* 0.5868 0.6537
9 MUs recall 0.4444 0.8889 0.7778

dissimilarity 0.6012 0.1288 0.1188
cardinality mismatch -0.2222 -0.1111 -0.1111

overall avg prt 0.4625 0.6112 0.5492
overall avg prt* 0.6174 0.5412

* indicates results on validation datasets for DSD

spike-train timing accuracies against this ground truth. Those are encoded in the following four
metrics below:

1. cardinality mismatch: The normalized cardinality difference between inferred and
ground-truth MUAPs.

2. recall: The percentage of MUAPs successfully associated to ground-truth MUAPs.
3. dissimilarity: The reconstruction accuracy of the associated MUAPs.
4. overall avg prt: The timing accuracies of the inferred spike trains.

See Appendix B for a detailed description of these metrics and how they’re calculated.

We evaluate two DSD variants, DSD-T, and DSD-D, against each other and also against the estab-
lished spike sorting algorithm KiloSort11 (Pachitariu et al., 2016). DSD-T uses the tiramisu encoder
and is trained with reconstruction, sparsity, parsimony, and refractory losses. Similarly, DSD-D uses
simply replaces replaces the refractory loss with the uniqueness loss, and has the DenseNet encoder
front end.

The DSD-T models were trained with a batch size of 32, using the Adam optimizer (Kingma & Ba,
2014) with an initial learning rate of 0.001, and the Gumbel-Softmax exponential temperature decay
for every 32000 batches from max temperature, 1.5 to min temperature, 0.05. Dropouts were added
in the tiramisu dense blocks, zeroing out channels with probability 0.3 during training. The DSD-
D models were trained with a batch size of 16, using the Adam optimizer with an initial learning
rate of 0.0006, and the Gumbel-Softmax inverse time constant of 0.0001 decreasing temperature
every 1024 batches. Dropouts were added to the output of dense layers, zeroing out channels with
probability 0.01 during training. Both were run using the Pytorch 1.0 framework (Paszke et al.,
2017).

1KiloSort1 github repo: https://github.com/cortex-lab/KiloSort

6



Under review as a conference paper at ICLR 2020

Figure 4: 3 MUAPs with high noise dataset. DSD-T results of inferred MUAP templates and spike
trains (red) and ground-truth (black)
Note: The shifted MU-1 template doesn’t affect the template score, but causes an offset in the corresponding
spike train, which affects the overall avg prt score

For those experiments, the cardinality range of a dataset’s underlying MUAPs are known, and sets
of hyperparameters for both KS-1 and DSD-X were tuned accordingly. This was done so as to
assess: i) How easy and meaningful hyperparameter tunings is for both algorithm families, and ii)
to assess how well their performance is even if cardinality ranges are known ahead of time. Table 1
summarizes those results.

A visualization of the results corresponding to the second row of the Table 1 is shown in Figures 4
and 5. Qualitatively, we can see that the DSD’s recovered MUAPs and their corresponding spike-
trains are much more aligned with those of the ground truth. (Note the temporal shift of one of
the MUAP’s signatures) This does not affect MUAP scoring, as this temporal shift is accounted
for in the shifted-Farina-distance (see Appendix B). This does cause a corresponding misalignment
of the spike-train however, and this can manifest as a penalization in the overall avg prt score, as
it won’t be until a larger window is considered before which the offset spike is accounted for. The
kilosort result appears to have MUAPs that are much more oversegmented overall, and one is missing
altogether. The corresponding spike-trains also have have one that is also missing.

In general, we can see that the DSD results seem to be much more performant across the board with
respect to KiloSort, (at least on those short 30 second datasets). The DSD appears able to recover
a good amount of the underlying MUAP waveform shapes faithfully, and this appears to be fairly
consistent across all datasets. In regards to the spike-train timing accuracies, the DSD family appears
to also perform very well relative to KiloSort, although as the number of active MUAPs increase,
both the KiloSort and DSD families appear to show a beginning trend towards becoming more or
less similar in performance. On the dataset with 7 MUAPs for example, the DSD-D is just above
KiloSort in performance on spike-train accuracies, and KiloSort beats out DSD-T.

As DSD-T and DSD-D were trained on different architectures and loss parameters, we can also
gain insights into what good combinations are useful for which cases. Of important note, was
the ease at which we were able to tune the hyperparameters of DSD in this context, owing to the
interpretability of the loss terms. For example, avoiding MUAP shape splittings was readily tunable
via the Luniqueness loss, (which this loss was specifically designed for). Similarly, tuning for excessive
spike-trains was facilitated by increasing the L1. We view this interpretability of the DSD’s loss
functions as an advantage that comes ”for free”, since the DNN architecture incorporates biophysical
constraints from the ground up.

All training sets were 30 seconds in length. The training time for KiloSort took 2 seconds, and ran
on a Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. KiloSort does not have a concept of inference
time, as it runs directly on a dataset and can immediately recover spike-trains and the corresponding
MUAP waveforms. For the DSD, the training time could very anywhere from 10 minutes to 1 hour,
depending on the number of epochs utilized. Training the DSD took place on one nVidia GeForce
GTX 1070 GPU. Inference time of the DSD, which also took place on the GPU, was < 1 ms.

7



Under review as a conference paper at ICLR 2020

Figure 5: 3 MUAPs with high noise dataset. KiloSort results of inferred MUAP templates and spike
trains (red) and ground-truth (black)

5 CONCLUSION

We present a novel self-supervised learning algorithm for spike sorting of multichannel sEMG data.
This model marries the power of deep end-to-end neural-networks with the inductive biases of bio-
physical models. The architectural novelty is forcing the deep net to reconstruct sEMG through
the bottleneck of the biophysical model that created it in the first place, while the loss novelties
are around the explainability and interpretability of them vis-a-vis the biophysics. The architec-
ture therefore forces the net to learn the appropriate generative latent variables - the spike-trains, and
their corresponding MUAP waveforms, and the loss terms provide clear physical meaning for tuning
the model. The algorithm is elegantly self-supervised, and requires no training labels whatsoever.
The model once trained, can then be applied as is to similar data sets to provide spike-extraction.
Relative to an established spike-sorting method, this autoencoder-based approach shows superior
recovery of source waveforms and event times at various degrees of superposition, (at least on short
duration data sets).

The DSD framework opens up a plethora of exciting avenues for the application of self-supervision
to complex signals such as sEMG. More broadly however, it showcases an exciting and concrete
methodology for incorporating physics-based priors hand in hand with the power of end-to-end
deep learning.

REFERENCES

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with
sparsity-inducing penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106, 2012.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

David Carlson and Lawrence Carin. Continuing progress of spike sorting in the era of big data.
Current opinion in neurobiology, 55:90–96, 2019.

Dario Farina, Roberto Merletti, and Roger M Enoka. The extraction of neural strategies from the
surface emg. Journal of applied physiology, 96(4):1486–1495, 2004.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Matthias H Hennig, Cole Hurwitz, and Martino Sorbaro. Scaling spike detection and sorting for
next-generation electrophysiology. In In Vitro Neuronal Networks, pp. 171–184. Springer, 2019.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Ales Holobar and Damjan Zazula. Multichannel blind source separation using convolution kernel
compensation. IEEE Transactions on Signal Processing, 55(9):4487–4496, 2007.

8



Under review as a conference paper at ICLR 2020

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio. The one
hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Roberto Merletti and Dario Farina. Surface electromyography: physiology, engineering, and appli-
cations. John Wiley & Sons, 2016.

Francesco Negro, Silvia Muceli, Anna Margherita Castronovo, Ales Holobar, and Dario Farina.
Multi-channel intramuscular and surface emg decomposition by convolutive blind source separa-
tion. Journal of neural engineering, 13(2):026027, 2016.

Marius Pachitariu, Nicholas Steinmetz, Shabnam Kadir, Matteo Carandini, and Kenneth D Harris.
Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels.
BioRxiv, pp. 061481, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Hernan Gonzalo Rey, Carlos Pedreira, and Rodrigo Quian Quiroga. Past, present and future of spike
sorting techniques. Brain research bulletin, 119:106–117, 2015.

Cyrille Rossant, Shabnam N Kadir, Dan FM Goodman, John Schulman, Maximilian LD Hunter,
Aman B Saleem, Andres Grosmark, Mariano Belluscio, George H Denfield, Alexander S Ecker,
et al. Spike sorting for large, dense electrode arrays. Nature neuroscience, 19(4):634, 2016.

9



Under review as a conference paper at ICLR 2020

A GUMBEL-SOFTMAX BINARIZATION OF SPIKE PULSE TRAINS

The spike probabilities predicted by the DSD encoder are binarized using the Gumbel-softmax cat-
egorization trick in order to avoid partial spikes. This operation is given in Equation 11.

P (zi) =
e
log(P (yi))+gi

τ∑C
j=1 e

log(P (yj))+gj
τ

(11)

It is similar to the standard softmax operation with two new terms are added: the temperature τ
parameter and a draw from a Gumbel distribution g ∼ G(0, 1). The Gumbel draw can be computed
by g = −log(−log(u)) where u ∼ U(0, 1) is a draw from a uniform distribution.

During training time, as the temperature term τ is reduced, the distribution of spike probabilities
begins to approximate a one-hot vector, forcing the DNN to make spike v.s. non-spike decisions.
During inference time, we drop the stochastic element altogether and round the resulting probabili-
ties.

B EVALUATION FRAMEWORK

The evaluation framework evaluates the correctness of MUAP waveforms and Spike Trains recov-
ered by spike decomposition algorithms. It does so by comparing ground truth and recovered MUAP
waveforms, and also comparing ground truth and recovered spike trains.

B.1 EVALUATING MUAP WAVEFORM RECOVERY

MUAP Waveform recovery is evaluated by first associating each ground truth MUAP waveform to
a recovered MUAP waveform and then computing metrics, as described in the following sections.

B.1.1 MUAP WAVEFORM ASSOCIATION

Each ground truth MUAP waveform is associated to the best matching recovered MUAP waveform.
Given the Normalized shifted Farina distance (sfd) metric, as in Merletti & Farina (2016), between
pairs of ground truth and recovered MUAP waveforms, matches are found using the Hungarian
algorithm (Kuhn, 1955).

sfd is computed as follows:

normalize(mu) =
mu− µ
‖mu‖2

(12)

energy(mu) = ‖mu‖22 (13)

sfd(mu1, mu2) =
2 ∗ energy(m̂u1− m̂u2 aligned)

energy(m̂u1) + energy(m̂u2 aligned)
(14)

where µ is the per channel mean of the corresponding MUAP, mu1 and mu2 are normalized as
above to yield m̂u1 and m̂u2, m̂u2 is temporally aligned to m̂u1 to yield m̂u2 aligned such that their
correlation is maximum.

B.1.2 RECALL

Recall is computed as the fraction of MUAP waveforms recovered correctly. A value of 1 is the best
score and a value of 0 is the worst.

recall =
Ncorrect recoveries

Ngt muaps
(15)

Here, Ncorrect recoveries is computed as number of instances where sfd between a ground truth and it’s
associated MUAP waveform is below a threshold. (default: 0.9). Ngt muaps is the number of motor
units in the ground truth.

10



Under review as a conference paper at ICLR 2020

B.1.3 CARDINALITY MISMATCH

Cardinality mismatch is computed as the difference in number of recovered and ground truth MUAP
waveforms normalized by the number of ground truth waveforms.

cardinality mismatch =
Nrecovered muaps −Ngt muaps

Ngt muaps
(16)

This measure reflects scenarios where the algorithm failed to recover the exact number of ground
truth MUAP waveforms. A value of 0 is the best score. A value < 0 indicates that we failed
to recover some MUAP waveforms, and a value > 0 indicates that we recovered more MUAP
waveforms than ground truth.

B.1.4 DISSIMILARITY

For all correct recoveries the dissimilarity is computed as the average sfd distance between ground
truth MUAP waveforms and it’s associated MUAP waveforms.

dissimilarity =

∑Ncorrect recoveries
i=1 sfd (gt mui, associated mui)

Ncorrect recoveries
(17)

This measure indicates how accurately recovered MUAP waveforms were reconstructed. A value of
0 is the best score, anything higher is progressively worse.

B.2 EVALUATING SPIKE TRAIN RECOVERY

Spike Train recovery is evaluated by first associating each ground truth Spike Train to a recovered
Spike Train and then computing metrics, as described in the following sections.

B.2.1 SPIKE TRAIN ASSOCIATION

Each ground truth spike train needs to be associated to the best matching recovered spike train.
Ground truth spike trains are binary. The recovered spike-trains are probabilities.

Let us assume that there were no alignment issues between ground truth and recovered spike trains.
In such a case, one could simply measure the L1 distance between ground truth and recovered spike
trains, and come up with the best association.

Realistically however, alignment issues between spike trains can exist, even though they may have
the same inherent firing pattern.

Therefore we modify the association measure, to incorporate mis-alignments. We do this in the
following way: The L1 measure is first applied to all samples across ground truth and recovered
spike trains, except for all regions around ground truth spikes.

Those regions, are defined by +/- 20 samples around any given ground truth spike. Within this
region, we simply pick the max spike probability from the recovered spike train, and use this value,
we ignore all other values within the region.

For every region, we now have a list of ground truth spikes and a list of max probability values
corresponding to the ground truth spikes. We simply compute the L1 measure of the two lists and
sum it to the L1 measure computed above. This is the associated spikes distance (asd).

Given the asd metric between pairs of ground truth and recovered spike trains, matching spike trains
are found using the Hungarian algorithm (Kuhn, 1955).

B.2.2 OVERALL AVERAGE PRECISION-RECALL-TOLERANCE

Each ground truth spike train needs to be evaluated against the best matching recovered spike train.
Ground truth spike trains are binary. The recovered spike-trains are probabilities.

11



Under review as a conference paper at ICLR 2020

Let us assume there were no alignment issues between ground truth and recovered spike trains. In
such a case, one could measure algorithm performance by computing a precision-recall curve for a
ground truth and its associated spike train.

The average precision (ap) score computed from the precision-recall curve above could be used to
measure recovery performance for a single spike train.

However, alignment issues between spike trains can exist. Therefore we modify the evaluation
measure, to incorporate mis-alignments.

Let us consider regions, defined by +/- samples tolerance window around a ground truth spike, we
detect the max spike probability from the recovered spike train in these regions. We temporally align
the max spike probability with the ground truth spike in that region. All the other values within this
region are left as is.

We now have aligned spike trains, for which we can calculate a single precision-recall curve and its
average precision score.

We can repeat this process for a range of tolerance window values, to obtain a bank of precision
recall curves and a list of average precision scores. This accommodates a range of mis-alignment
errors.

We can average all the average precision scores to obtain the precision-recall-tolerance (prt) score
for one spike train. This score measures the accuracy of spike train recovery.

Overall average precision-recall-tolerance is simply the average of all prt scores for all spike trains.
This is a measure of how accurately we can recover all the spike trains from sEMG data. A value of
1 is the best score and a value of 0 is the worst.

average prt =
∑Ngt sts

i=1 prt(gt sti, associated sti)
Ngt sts

(18)

prt(st1, st2) =
∑10ms

win=0 ap(st1, st2,win)
20

(19)

We pick a maximum tolerance window (win) of 10ms around a ground truth spike to represent half
the minimum interval between consecutive spikes firing from the same motor unit in the forearm.
We increment win sizes by 0.5ms.

12



Under review as a conference paper at ICLR 2020

C SIMULATED DATASET GENERATION

The simulated datasets are 30 seconds long, 60,000 samples in length, with 16 channels in width.
They are generated using the extracted MUAP templates and spike trains from real-world sEMG
datasets. It is a human involved extraction process to ensure the quality of the spike trains and
MUAP templates. After we have a bank of MUAP templates and spike trains, we select several ones
we want to use in a dataset. The dataset generation process is convolution of the MUAP templates
with the spike trains and then adding Gaussian noise. In this way, the simulated datasets closly
resemble the real-world sEMG datasets, but with the ground-truth spike trains and MU templates for
quantitative evaluation. We generate these datasets with different number of MUs and superposition
in order to vary the spike sorting difficulty level and thus test the algorithms thoroughly.

Figure 6: Simulated dataset with ground-truth MUAP templates and spike trains

More specifically, there are 5 simulated datasets we use in the evaluation. The 3 MU dataset has
3 MU templates with one channel offset which is the most simple and non-trivial case. The 3 MU
with high noise dataset has the same MUs as the 3 MU dataset except the noise power is increased
by 4 times, which is to test the performance on lower SNR datasets. The 5 MU dataset has 3
MU templates on the same channel and 2 MU templates on another channel, which is to test the
capability of addressing the spatial superposition problem. The 7 MU dataset has 5 MU templates
with one channel offset, and 2 MU templates on the same channel. The 9 MU dataset has 5 MU
templates with one channel offset and 4 MU templates on the same channel. The last two datasets
are the stress-test cases by increasing the amount of MUs and spatial superpostion. Figure 6 shows
the example of 3 MU simulated dataset on the right, the MUAP templates used on the upper left,
and the spike trains used on the lower left.

13


	Introduction
	Problem Formulation
	Method
	Model Architecture
	Training Losses

	Results
	Evaluation with Real-World Data
	Quantitative Results with Simulated Data

	Conclusion
	Gumbel-Softmax Binarization of Spike Pulse Trains
	Evaluation Framework
	Evaluating MUAP Waveform Recovery
	MUAP Waveform Association
	Recall
	Cardinality Mismatch
	Dissimilarity

	Evaluating Spike Train Recovery
	Spike Train Association
	Overall Average Precision-Recall-Tolerance


	Simulated Dataset Generation

