
Under review as a conference paper at ICLR 2019

HYPER-REGULARIZATION: A FRAMEWORK OF ADAP-
TIVE CHOICE FOR THE LEARNING RATE IN GRADIENT
DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach for adaptively selecting the learning rate in gradient
descent methods. Specifically, we impose a regularization term on the learning
rate via a generalized distance, and cast the joint updating process of the param-
eter and the learning rate into a maxmin problem. Some existing schemes such
as AdaGrad (diagonal version) and WNGrad can be rederived from our approach.
Based on our approach, the updating rules for the learning rate do not rely on the
smoothness constant of optimization problems and are robust to the initial learn-
ing rate. We theoretically analyze our approach in full batch and online learning
settings, which achieves comparable performances with other first-order gradient-
based algorithms in terms of accuracy as well as convergence rate.

1 INTRODUCTION

The automatic choice of the learning rate remains crucial in improving the efficiency of gradient
descent algorithms, especially for solving nonconvex optimization problems. It is desirable to adap-
tively update the learning rate during the training process with a certain strategy. The convergence
guarantees of such a strategy in theories usually require the Lipschitz constant or smoothness con-
stant of the objective function to be explicitly known (Nesterov, 2013; Bubeck et al., 2015), which
is inaccessible in most cases, e.g., in deep neural networks.

Using the received gradient information to adjust the current learning rate is a natural approach.
In particular, the Steepest Descent uses the received gradient direction and an exact or inexact line
search to obtain proper learning rates. Another important idea is to approximate second-order meth-
ods like Newton method (Nocedal & Wright, 2006) and Quasi-Newton Methods (Liu & Nocedal,
1989). Along this idea, for example, the Barzilai-Borweinin (BB) method (Barzilai & Borwein,
1988) in classical optimization and AdaGrad (Duchi et al., 2011) in online learning have been pro-
posed.

In this paper we propose a novel framework to learn the learning rate that we call Hyper-
Regularization. More specifically, we regard the learning rate as a hyperparameter and cast its
adaptive choice with the parameter training into a joint process. We formulate this process as a
maxmin framework by imposing a regularizer on the hyperparameter. Furthermore, we demonstrate
that AdaGrad and WNGrad (Wu et al., 2018) can be derived using a streamlined scheme based on
Hyper-Regularization.

In addition to solving the saddle point problem exactly, we also provide an alternating strategy to
solve the problem approximately. We respectively give theoretical analysis for these two updating
rules in full batch setting and online learning setting. Specifically, our results of runtime bounds
in full batch setting and regret bounds in online learning setting are comparable to the best known
bound in corresponding settings and indicate our algorithms converge for any initial learning rate.

1.1 RELATED WORK

Steepest Descent uses the received gradient direction and an exact or inexact line search to obtain
proper learning rates. Although Steepest Descent uses the direction that descends most and the best
learning rate that gives the most function reduction, Steepest Descent may converge very slow for

1

Under review as a conference paper at ICLR 2019

convex quadratic functions when the Hessian matrix is ill-conditioned (see, Yuan, 2008). In practice,
some line search conditions such as Goldstein conditions or Wolfe conditions (see, Fletcher, 2013)
can be applied to compute the learning rate. In online or stochastic settings, one observes stochastic
gradients rather than exact gradients and line search methods become less effective.

The Barzilai-Borwein method (Barzilai & Borwein, 1988) which was motivated by quasi-Newton
methods presents a surprising result that it could lead to superlinear convergence in convex quadratic
problem of two variables. Although numerical results often show the Barzilai-Borwein method con-
verges superlinearly in solving nonlinear optimization problem, no superlinear convergence results
have been established even for an n-dimensional strictly convex quadratic problem with the order
n > 2 (Barzilai & Borwein, 1988; Dai, 2013). In minimizing the sum of cost functions and stochas-
tic setting, SGD-BB proposed by Tan et al. (2016) takes the average of the stochastic gradients in
one epoch as an estimation of the full gradient. But this approach can not directly be applied to
online learning settings.

In online convex optimization (Zinkevich, 2003; Shalev-Shwartz et al., 2012; Hazan et al., 2016),
AdaGrad (Duchi et al., 2011) adapts the learning rate on per parameter basis dynamically. Intuitively,
AdaGrad constructs approximation to the Hessian with diagonal of accumulated outer products of
gradients. This leads to many variants such as RMSProp (Tieleman & Hinton, 2012), AdaDelta
(Zeiler, 2012), Adam (Kingma & Ba, 2015), etc.

Additionally, Cruz (2011) analyzed Adaptive Stochastic Gradient Descent (ASGD) which is a gen-
eralization of Kesten’s accelerated stochastic approximation algorithm (Kesten et al., 1958) for the
high-dimensional case. ASGD uses a monotone decreasing function with respect to a time variable
to get learning rates. Recently, Baydin et al. (2018) proposed Hyper-Gradient Descent to learn the
global learning rate in SGD, SGD with Nesterov momentum and Adam. Hyper-Gradient Descent
can be viewed as an approximate line search method in the online learning setting and it uses the
update rule for the previous step to optimize the leaning rate in the current step. However, Hyper-
Gradient Descent has no theoretical guarantee.

It is worth mentioning that Gupta et al. (2017) proposed a framework named Unified Adaptive
Regularization from which AdaGrad and Online Newton Step (Hazan et al., 2007) can be derived.
However, Unified Adaptive Regularization gives an approach for approximating the Hessian matrix
in second order methods.

1.2 NOTATION

Before introducing our approach, we present the notation. We denote the set {x > 0 : x ∈ R} by
R++. For two vectors a, b ∈ Rd, we use a/b to denote element-wise division, a ◦ b for element-
wise product (the symbol ◦ will be omitted in the explicit context), an = (an1 , a

n
2 , . . . , a

n
d), and

a ≥ b if aj ≥ bj for all j. Let 1 be the vector of ones with an appropriate size, and diag(β) be
a diagonal matrix with the elements of the vector β on the main diagonal. In addition, we define
‖a‖A =

√
〈a, Aa〉.

Given a set X ⊆ Rd, a function f : X → R is said to satisfy f ∈ C1,1
L (X) if f is continuously

differentiable on X , and the derivative of f is Lipschitz continuous on X with constant L:

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

More general definition can be found in Nesterov (2013).

1.3 PROBLEM STATEMENT

For an online learning problem, a learner faces a sequence of convex functions {ft} with the same
domain X ⊆ Rd, receives (sub)gradient information gt ∈ ∂ft(xt) at each step t, and predicts a
point xt+1 ∈ X .

Our theoretical analysis is based on two settings: full batch setting and online learning setting. A
full batch setting (or optimization setting) is to optimize a certain function F with exact gradient at
each step, i.e., ft = F . In this setting we assume F ∈ C1,1

L but it is not necessarily convex. We
analyze the convergence of our algorithms by capping the runtime T such that the minimum value

2

Under review as a conference paper at ICLR 2019

of the norm of received gradients so far is less than a given error accuracy ε, that is,

min
t=0:T−1

‖∇F (xt)‖22 ≤ ε.

In online learning settings, our analysis follows from Duchi et al. (2011) and Kingma & Ba (2015).
We only assume that ft’s are convex and try to give an upper bound for the regret

R(T) =

T−1∑
t=0

ft(xt)− min
x∈X

T−1∑
t=0

ft(x). (1)

2 HYPER-REGULARIZATION

Following the setting in AdaGrad (Duchi et al., 2011), we consider a generalization of the standard
(sub)gradient descent as

xt+1 = Π
diag(βt)

1/2

X

(
xt − diag(βt)

−1/2gt

)
= arg min

x∈X

∥∥∥xt − diag(βt)
−1/2gt

∥∥∥2

diag(βt)1/2
. (2)

This procedure can be viewed as the minimization problem:

min
x∈X
〈gt,x− xt〉+

1

2
‖x− xt‖2diag(βt)

. (3)

To derive our hyper-regularization approach, we then formulate this minimization problem as a
saddle point problem by adding a hyper-regularizer about the difference between the new learning
rate β and an auxiliary vector ηt. Accordingly, we have

max
β∈Bt

min
x∈X

Ψt(x,β) , 〈gt,x− xt〉+
1

2

(
‖x− xt‖2diag(β) −D(β,ηt)

)
, (4)

where D(β,η) is defined as our hyper-regularizer and Bt is a subset in Rd. We solve the saddle
point problem for new predictor and new learning rate.

Our framework stems from the work of Daubechies et al. (2010), where the authors adjust the
weights of the weighted least squares problem by solving an extra objective function which added
a regularizer about the weights to origin objective function. The following subsections will explain
some details about our framework.

2.1 THE ϕ-DIVERGENCE

It is reasonable to choose a distance function to measure the difference between β and η. In this
paper, we use the ϕ-divergence1 as our hyper-regularizer.
Definition 1 (ϕ-divergence). Let ϕ: R++ → R be a differentiable strongly convex function in R++

such that ϕ(1) = ϕ′(1) = 0, where ϕ′ is the derivative function of ϕ. For such a function ϕ, the
function Dϕ: Rd++ × Rd++ → R, which is define by

Dϕ(u,v) ,
d∑
j=1

vjϕ(uj/vj),

is referred to as the ϕ-divergence.

Remark. Note that convex function ϕ with ϕ(1) = ϕ′(1) = 0 satisfies ϕ(z) ≥ 0 for all z > 0,
thus Dϕ(u,v) ≥ 0 for all u,v ∈ Rd++, with equality iff u = v.

Remark. For any convex function f , ϕ(z) = f(z) − f ′(1)(z − 1) − f(1) is a proper function for
our ϕ-divergence.

Remark. In our framework, in order to solve the problem (4) feasibly, we always assume that
limz→+∞ ϕ′(z) = +∞.

1Comparing with Bregman divergence, ϕ-divergence requires nonnegative β and ηt which is apparent for
learning rates.

3

Under review as a conference paper at ICLR 2019

If one only requires ϕ to be convex and ϕ(1) = 0, the resulting distance function Dϕ is called a
f -divergence (Liese & Vajda, 1987; 2006). The f -divergence has been widely applied in statistical
machine learning (e.g., Nguyen et al., 2009).

Using the ϕ-divergence as our hyper-regularizer, we can rewrite the problem (4) as

max
β∈Bt

min
x∈X

Ψt(x,β) , g>t (x− xt) +
1

2
‖x− xt‖2diag(β) −

1

2
Dϕ(β,ηt), or (5)

max
β∈Bt

min
x∈X

Ψt(x,β) ,
d∑
j=1

gt,j(xj − xt,j) +
1

2

(
βj(xj − xt,j)2 − ηt,jϕ(βj/ηt,j)

)
. (6)

The form of problem (6) implies that we can solve the problem for each dimension separately, and
only a few extra calculations are required for each step.

2.2 MAX-MIN OR MIN-MAX

Consider a problem similar to (5),
min
x∈X

max
β∈Bt

Ψt(x,β). (7)

The solution of problem (5) is same as (7) in unconstrained case2, i.e. X = Rd,Bt = Rd++.
However, if we set Bt = [bt,1, Bt,1] × · · · × [bt,d, Bt,d] to constrain the range of βt+1 and suppose
X = Rd, the solution of (7) is more difficult to get from the solution of the unconstrained problem,
while the solution of (5) can be easily obtained by clipping the solution of the unconstrained problem
to required range (see Lemma 2). Thus, we choose (5) as our basic problem.

Lemma 2. Suppose that Bt = [bt,1, Bt,1] × · · · × [bt,d, Bt,d], and X = Rd. Let β∗ be
the solution of unconstrained problem maxβ(minxΨt(x,β)). Then the solution of problem
maxβ∈Bt(minxΨt(x,β)) is

βj = min{max{β∗j , bt,j}, Bt,j}, for j = 1, · · · , d.

2.3 SELECTION OF ηt

There are many ways to choose the sequence {ηt}:

• The sequence {ηt} is chosen in advance, before our methods start the job. For example,
set 1) ηt = η 1; 2) ηt = η

√
t+ 11, where η > 0 is a prespecified constant.

• ηt can be obtained from other adaptive learning rate methods such as AdaGrad.

• Set ηt = βt. In this case, the hyper-regularizer is the penalty for the change between βt+1

and βt.

The first two ways can be treated as a smoothing technique to stabilize the learning rate. We want
to ensure the learning rate sequence {βt} close to another learning rate sequence {ηt}. Although
setting ηt = βt is our main focus, we keep the sequence of {ηt} to maintain this flexibility.

2.4 ISOTROPIC HYPER-REGULARIZATION

We now show a special form of our framework that only adaptively maintains a single scalar learning
rate. We modify Hyper-regularization so that β is optimized over the set Bt ⊆ {θ1 : θ ∈ R++} of
all positive multiples of the vector 1 ∈ Rd. Let ηt = ηt1, and rewrite problem (5) as

max
β1∈Bt

min
x∈X

Ψt(x, β) = g>t (x− xt) +
β

2
‖x− xt‖22 −

1

2
ηtϕ(β/ηt). (8)

We prefer to use Isotropic Hyper-Regularization as smoothing technique in online learning settings.

2Using partial derivative, we can obtain the saddle point of Ψt and ensure this fact.

4

Under review as a conference paper at ICLR 2019

3 UPDATE RULES AND ALGORITHMS

In this section we present two update rules of our hyper-regularization framework. The first update
rule is solving the saddle point problem (5) exactly. That is,

Ψt(xt+1,βt+1) = max
β∈Bt

min
x∈X

Ψt(x,β). (9)

The following lemma and Algorithm 1 give the concrete scheme of our iterations.
Lemma 3. Considering problem (6) without constraints and solving the problem exactly, we get
new predictor xt+1 and new learning rate βt+1 such that

β2
t+1,jϕ

′(βt+1,j/ηt,j) = g2
t,j , j = 1, . . . , d, (10)

xt+1 = xt − gt/βt+1.

Algorithm 1 GD with Hyper-regularization
Input: β0 > 0, x0

1: for t = 1 to T do
2: Suffer loss ft(xt);
3: Receive subgradient gt ∈ ∂ft(xt) of ft at xt;
4: Update βt+1,j as the solution of the equation β2ϕ′(β/ηt,j) = g2

t,j , j = 1, . . . , d;
5: Update xt+1 = xt − gt/βt+1;
6: end for

Remark. Note that AdaGrad (Duchi et al., 2011) and WNGrad (Wu et al., 2018) are special cases
of Algorithm 1 with a particular choice of ϕ (detailed derivation in Appendix B).

• If ϕ(z) = z + 1
z − 2, then we can derive AdaGrad from Algorithm 1.

• If ϕ(z) = 1
z − log(1

z)− 1, then we can derive WNGrad from Algorithm 1.

3.1 ALTERNATING UPDATE RULE

However, it is sometimes difficult to solve the equation (10), especially in the case where ϕ is a
quadratic function (equation (10) will be a cubic equation in one variable for any j). In practice,
using an alternating update strategy is more recommended. Under the assumption that the optimal
value of β is close to ηt, we solve an approximate equation for βt+1

βt+1 = arg max
β∈Bt

Ψt

(
arg min
x∈X

Ψt(x,ηt),β

)
, (11)

and update the new predictor xt+1 using
xt+1 = arg min

x∈X
Ψt(x,βt+1).

Applying the alternating update rule under the same assumption in Lemma 3, we obtain the follow-
ing lemma and Algorithm 2.
Lemma 4. Considering problem (6) without constraint and following from the alternating update
rule, we get new predictor xt+1 and new learning rate βt+1 as

βt+1,j = ηt,j(ϕ
′)−1(g2

t,j/η
2
t,j), j = 1, . . . , d, (12)

xt+1 = xt − gt/βt+1.

Algorithm 2 GD with Hyper-regularization using alternating update rule
Input: β0 > 0, x0

1: for t = 1 to T do
2: Suffer loss ft(xt);
3: Receive gt ∈ ∂ft(xt) of ft at xt;
4: Update βt+1,j = ηt,j(ϕ

′)−1(g2
t,j/η

2
t,j), j = 1, . . . , d;

5: Update xt+1 = xt − gt/βt+1;
6: end for

5

Under review as a conference paper at ICLR 2019

Computing the inverse function of ϕ′ is usually easier than solving the equation (10) in practice,
especially for the widely used ϕ-divergences (more details can be found in Appendix D.1).

Remark. If ηt = βt, the following simplified alternating rule can be employed:

xt+1 = arg min
x∈X

Ψt(x,βt),

βt+1 = arg max
β∈Bt

Ψt (xt+1,β) .

We leave the corresponding algorithm 3 in Appendix C.

3.2 MONOTONICITY

Before giving more analysis, let us show monotonicity of both the two update rules. The mono-
tonicity implies that only the property of convex function ϕ on interval [1,+∞) will influence the
efficiency of our algorithms.

Lemma 5. βt+1 obtained from equation (9) or (11) satisfies βt+1 ≥ ηt.

When setting βt = ηt, we have that βt+1 ≥ βt.

4 THEORETICAL ANALYSIS

In this section we always set ηt = βt and assume that x and β are unconstrained, i.e., X = Rd
and Bt = Rd++. We first discuss the convergence rate of the two update rules in full batch setting
with assumption that the objective function F is L-smooth but not necessarily convex in Section
4.1. Next we turn to online convex learning setting and establish a theorem about the regret bounds
in Section 4.2. Our results for both the settings show that our algorithms are robust to the choice of
initial learning rates and do not rely on the Lipschitz constant or smoothness constant.

4.1 ISOTROPIC HYPER-REGULARIZATION IN FULL BATCH SETTING

Recall that we set ft = F in the full batch setting, and assume that F ∈ C1,1
L without convexity. In

this case, two update rules can be written as{
β2
t+1ϕ

′(βt+1/βt) = ‖gt‖22 ,
xt+1 = xt − 1

βt+1
gt.

(13)

{
βt+1 = βt(ϕ

′)−1(‖gt‖22 /β2
t),

xt+1 = xt − 1
βt+1

gt.
(14)

Next we show that both update rules (13) and (14) are robust to the choice of initial learning rate.

Theorem 6. Suppose that ϕ ∈ C1,1
l ([1,+∞)), ϕ is α-strongly convex, F ∈ C1,1

L (Rd), and F ∗ =
infx F (x) > −∞. For any ε ∈ (0, 1), the sequence {xt} obtained from update rules (13) or (14)
satisfies

min
j=0:T−1

‖∇F (xj)‖22 ≤ ε,

after T = O
(

1
ε

)
steps.

More detailed results of Theorem 6 for runtime can be found in Theorems 21 and 22 in Appendix I.
Theorem 6 shows that both runtime of the two update rules can be bound asO(1/ε) for any constant
L and initial learning rate β0. As a comparison, in classical convergence result ((1.2.13) in Nesterov
(2013) or Theorem 20 in Appendix), the upper bound of runtime is O(1/ε) only for a certain range
(related to L) of initial learning rates.

4.2 HYPER-REGULARIZATION IN ONLINE LEARNING SETTING

We now establish the result of convergence rate for Algorithms 1 and 2 in online convex learning,
i.e., the ft are convex. Especially, we try to bound regrets (1) by O(

√
T) for Algorithms 1 and 2.

6

Under review as a conference paper at ICLR 2019

Theorem 7. Suppose that ϕ ∈ C1,1
l ([1,+∞)), and ϕ is α-strongly convex. Assume that ‖gt‖∞ ≤

G, and ‖xt − x∗‖∞ ≤ D∞. Then the sequence {xt} obtained from Algorithm 1 satisfies

2R(T) ≤ (α+D2
∞)
√

2lβ2
0 + 4G2

αβ0

d∑
j=1

‖g0:T−1,j‖2 + β0‖x0 − x∗‖22,

and the sequence {xt} obtained from Algorithm 2 (or 3) satisfies

2R(T) ≤
(

1 +
D2
∞
α

)
max

{√
2l,

2G

β0

} d∑
j=1

‖g0:T−1,j‖2 + β0‖x0 − x∗‖22.

Note that under the assumption in Theorem 7,
∑d
j=1 ‖g0:T−1,j‖2 ≤ dG

√
T , hence R(T) =

O(
√
T). Our result is comparable to the best known bound for convex online learning problem

(see Hazan et al., 2016; Duchi et al., 2011; Kingma & Ba, 2015).

5 EXPERIMENTS

In this paper our principal focus has been to develop a new approach for adaptive choice of the
learning rate in first-order gradient-type methods. However, this new approach also brings some
insights into the resulting algorithms. Thus, it is interesting to conduct empirical analysis of the
learning algorithms with different choice methods for the learning rate.

5.1 THE SET-UP

To derive a learning algorithm from the Hyper-Regularization framework, we have to first give the
ϕ divergences (Pardo, 2005). Specifically, the algorithms from our framework in the following
experiments are derived from the following four ϕ divergences (full implementations are displayed
in the Appendix D.1):

• ϕ(t) = t log t− t+ 1 from KL-divergence inducing KL algorithm.
• ϕ(t) = − log t+ t− 1 from Reverse KL-divergence inducing RKL algorithm.

• ϕ(t) = (
√
t− 1)2 from Hellinger distance inducing Hellinger algorithm.

• ϕ(t) = (t− 1)2 from χ2 distance inducing χ2 algorithm.

As mentioned in Section 3, even with a fixed ϕ divergence, the generated algorithm still varies with
different update rules. For simplicity, different update rules were compared in advance to select the
specific one for any ϕ divergence in the following experiments.

To maintain stable performance, the technique of growth clipping is applied to all algorithms in our
framework. Actually, growth clipping fulfills the constraints placed on the increasing speed of βt
by Bt in Lemma 2. Specifically, βt+1 in our experiments falls in [βt, 2βt]. Detailed observations
on how the βt of our algorithms increases are left in Appendix D.3.

Experiments involve the four algorithms generated above as well as other first-order gradient-based
algorithms including SGD (with no learning rate decay), SGD-BB, and Hyper-Gradient Descent
algorithms. These algorithms are evaluated on tasks of image classification with a logistic classifier
on the databases of MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky & Hinton, 2009). Initial
learning rate (in the usual sense, i.e., 1/β0) varies from 10−3 to 101 for the test of convergence
performance of these algorithms. Experiments are run using Tensorflow (Abadi et al., 2016), on a
machine with Intel Xeon E5-2680 v4 CPU, 128 GB RAM, and NVIDIA Titan Xp GPU.

5.2 UPDATE RULE SELECTION

Taking the RKL algorithm as an example, we refer to algorithms deduced from Algorithm 1, 2, and
3 as RKL1, RKL2, and RKL3. We train a two-layer neural network with a hidden layer of 500 units
on the MNIST database. Experiments are in online learning setting with a batch size of 128, and `2
regularization is applied with a coefficient of 10−4.

7

Under review as a conference paper at ICLR 2019

10 3 10 2 10 1 100 101

Initial Learning Rate

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

n
Lo

ss
10 3 10 2 10 1 100 101

Initial Learning Rate

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

RKL1
RKL2
RKL3

10 20 30 40 50
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
Lo

ss

RKL1 (10 0.5)
RKL2 (10 0.5)
RKL3 (10 0.5)

10 20 30 40 50
Epoch

0.9650
0.9675
0.9700
0.9725
0.9750
0.9775
0.9800
0.9825
0.9850

Te
st

 A
cc

ur
ac

y

Figure 1: Convergence performances of RKL1, RKL2, and RKL3 on the database of MNIST in
online learning setting, up: performances at different initial learning rates, and down: the whole
training process with the given initial learning rate in the bracket for each algorithm.

Figure 1 demonstrates the training loss and test accuracy of these algorithms with various initial
learning rates. After fixing the learning rate with the least training loss, we compare their perfor-
mances throughout the training process. Sharing comparable performances at small initial learning
rate with RKL3, RKL1 and RKL2 perform better at relatively large learning rate.

Generally speaking, Algorithm 1 often suffers a higher computation complexity than Algorithm 2
for the difficulty of getting an analytical solution. Detailed observations are left in Appendix D.1.
Therefore, we apply the second update rule to our algorithms without explicit notifications.

5.3 FULL BATCH SETTING AND ONLINE LEARNING SETTING

We investigate our algorithms in the full batch setting on the MNIST database where algorithms
receive the exact gradients of the objective loss function each iteration. 3

10 3 10 2 10 1 100 101

Initial Learning Rate

0.5

1.0

1.5

2.0

2.5

Tr
ai

n
Lo

ss

RKL
Hellinger
Phi
SGD
SGD-BB
Hyper-Gradient
KL

10 20 30 40 50
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Lo

ss

RKL (100.5)
Hellinger (100.75)
Phi (100.25)
SGD (100)
SGD-BB (100)
Hyper-Gradient (100.25)
KL (100.5)

Figure 2: Convergence performances of algorithms on MNIST in the full batch setting. left: the
train loss of the last training epoch at different initial learning rates, right: the whole training process
with the given initial learning rate in the bracket for each algorithm.

In terms of online learning setting, we train a VGG Net (Simonyan & Zisserman, 2014) with batch
normalization on the CIFAR-10 database with a batch size of 128, and an `2 regularization coeffi-
cient of 10−4. We as well perform data augmentation as He et al. (2016) to improve the training.

Figure 2 and Figure 3 show the convergence performances on both settings, respectively. Achieving
general comparable performances with other first-order gradient-based algorithms, our algorithms
outperform most of other algorithms at risky large initial learning rate. Even at the fixed initial
learning rate with the least training loss, the performances of our algorithms still achieve the same
training performances with others.

3Since it is a pure optimization problem, testing performance is out of our main consideration.

8

Under review as a conference paper at ICLR 2019

10 3 10 2 10 1 100 101

Initial Learning Rate
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
Lo

ss
10 3 10 2 10 1 100 101

Initial Learning Rate
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Te
st

 A
cc

ur
ac

y

RKL
Hellinger

2

SGD-BB
Hyper-Gradient
KL
SGD

20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5
Tr

ai
n

Lo
ss

RKL (10 1.25)
Hellinger (10 1.25)

2 (10 1.0)
SGD (10 1.25)
SGD-BB (10 1.25)
Hyper-Gradient (10 0.25)
KL (10 1.25)

20 40 60 80 100
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Figure 3: Convergence performances of algorithms on CIFAR-10 in the online learning setting, left:
the train loss of the last training epoch at different initial learning rates, right: the whole training
process with the given initial learning rate in the bracket for each algorithm.

6 DISCUSSION

As a supplement, we point out that logarithmic regret bounds under assumption ft is strongly con-
vex, like Hazan et al. (2007); Mukkamala & Hein (2017), can be established with a different class
of distance function. We leave the details in Appendix H.

In this paper, we propose a novel framework distinct from previous main approaches like line search
and approximate second-order methods. It worth noting that Hyper-Regularization can generates
efficient algorithms for optimization problems with regularization terms shown above and we expect
new ideas of more efficient terms in the future.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-
scale machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA journal of
numerical analysis, 8(1):141–148, 1988.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. On-
line learning rate adaptation with hypergradient descent. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=BkrsAzWAb.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

Pedro Cruz. Almost sure convergence and asymptotical normality of a generalization of kesten’s
stochastic approximation algorithm for multidimensional case. arXiv preprint arXiv:1105.5231,
2011.

Yu-Hong Dai. A new analysis on the barzilai-borwein gradient method. Journal of the operations
Research Society of China, 1(2):187–198, 2013.

Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C Sinan Güntürk. Iteratively
reweighted least squares minimization for sparse recovery. Communications on Pure and Ap-
plied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 63(1):
1–38, 2010.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

9

https://openreview.net/forum?id=BkrsAzWAb

Under review as a conference paper at ICLR 2019

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Harry Kesten et al. Accelerated stochastic approximation. The Annals of Mathematical Statistics,
29(1):41–59, 1958.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs [On-
line]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

F Liese and I Vajda. Convex statistical distances. 1987.

Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information theory.
IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of RMSProp and Adagrad with log-
arithmic regret bounds. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 2545–2553, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR. URL http://proceedings.mlr.press/v70/mukkamala17a.html.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

XuanLong Nguyen, Martin J Wainwright, Michael I Jordan, et al. On surrogate loss functions and
f-divergences. The Annals of Statistics, 37(2):876–904, 2009.

Jorge Nocedal and Stephen J Wright. Numerical optimization 2nd, 2006.

Leandro Pardo. Statistical inference based on divergence measures. Chapman and Hall/CRC, 2005.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-borwein step size for stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 685–693, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

10

http://proceedings.mlr.press/v70/mukkamala17a.html

Under review as a conference paper at ICLR 2019

X. Wu, R. Ward, and L. Bottou. WNGrad: Learn the Learning Rate in Gradient Descent. ArXiv
e-prints, March 2018.

Ya-xiang Yuan. Step-sizes for the gradient method. AMS IP Studies in Advanced Mathematics, 42
(2):785, 2008.

M. D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. ArXiv e-prints, December 2012.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936,
2003.

11

Under review as a conference paper at ICLR 2019

A SOLUTION EXISTENCE

Note that the function h(β) = β2ϕ′(β/ηt,j) is an increasing continuous function and
limz→+∞ ϕ′(z) = +∞ ϕ′(1) = 0, so [0,+∞) is a subset of the range of h(β) and the solu-
tion of (10) exists.
For the same reason, the solution of (12) exists.

B SPECIAL CASES OF ALGORITHM 1

In this section, We will point out that Adagrad (Duchi et al., 2011) and WNGrad (Wu et al., 2018)
are special cases of Algorithm 1.
If we set ϕ(z) = z + 1

z − 2, then the new learning rate βt+1 can be obtained by

β2
t+1,j

(
1−

β2
t,j

β2
t+1,j

)
= g2

t,j , j = 1, · · · , d,

that implies,

β2
t+1 = β2

t + g2
t ,

and we drive AdaGrad from Hyper-Regularization.

Similarly, we can get WNGrad by setting ϕ(z) = 1
z − log 1

z − 1. In fact, βt+1 employs update

β2
t+1,j

(
βt,j(βt+1,j − βt,j)

β2
t+1,j

)
= g2

t,j , j = 1, · · · , d,

on the other words,

βt+1 = βt +
g2
t

βt
,

i.e., the update rule of WNGrad.

C SIMPLIFIED ALTERNATING UPDATE RULE

Algorithm 3 GD with Hyper-regularization using simplified alternating update rule and ηt = βt
Input: β0 > 0, x0

1: for t = 1 to T do
2: Suffer loss ft(xt);
3: Receive gt ∈ ∂ft(xt) of ft at xt;
4: Update xt+1 = xt − gt/βt;
5: Update βt+1,j = βt,j(ϕ

′)−1(g2
t,j/β

2
t,j), j = 1, . . . , d;

6: end for

The weakness of the simplified alternating update rule is that we get the new predictor xt+1 by
βt which is unrelated to current gradient gt. The regret bound of Algorithm 3 has been shown in
Theorem 7.

D SUPPLEMENTARY FOR NUMERICAL EXPERIMENTS

Full versions of Hellinger, KL, RKL, and χ2 algorithms through Algorithm 1, 2, and 3 are listed
below. Apparently, it is of great complexity to compute an analytical solution for βt+1 for the
equations marked red.

12

Under review as a conference paper at ICLR 2019

D.1 FULL VERSIONS OF GENERATED ALGORITHMS

KL1

{
β2
t+1 log(βt+1/βt) = g2

t

xt+1 = xt − gt/βt+1

KL2

{
βt+1 = βt exp(g2

t /β
2
t)

xt+1 = xt − gt/βt+1

KL3

{
xt+1 = xt − gt/βt
βt+1 = βt exp(g2

t /β
2
t)

RKL1

{
βt+1 = 1

2

(
βt +

√
β2
t + 4g2

t

)
xt+1 = xt − gt/βt+1

RKL2

{
βt+1 = β3

t /(β
2
t − g2

t)

xt+1 = xt − gt/βt+1

RKL3

{
xt+1 = xt − gt/βt
βt+1 = β3

t /(β
2
t − g2

t)

H1

{
β2
t+1(1−

√
βt/βt+1) = g2

t

xt+1 = xt − gt/βt+1

H2

{
βt+1 = β5

t /(β
2
t − g2

t)2

xt+1 = xt − gt/βt+1

H3

{
xt+1 = xt − gt/βt
βt+1 = β5

t /(β
2
t − g2

t)2

χ2
1

{
2β2

t+1(βt+1/βt− 1) = g2
t

xt+1 = xt − gt/βt+1

χ2
2

{
βt+1 = βt

(
1 + g2

t /(2β
2
t)
)

xt+1 = xt − gt/βt+1

χ2
3

{
xt+1 = xt − gt/βt
βt+1 = βt

(
1 + g2

t /(2β
2
t)
)

D.2 VERSION COMPARISON ON OTHER ALGORITHMS

Figure 4, 5 and 6 shows the results of comparison between versions of KL, Hellinger, and χ2 algo-
rithms on the base of MNIST in the online learning setting.

10 3 10 2 10 1 100 101

Initial Learning Rate

0.1

0.2

0.3

0.4

0.5

Tr
ai

n
Lo

ss

10 3 10 2 10 1 100 101

Initial Learning Rate
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

KL2
KL3

10 20 30 40 50
Epoch

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Tr
ai

n
Lo

ss

KL2 (10 0.5)
KL3 (10 0.5)

10 20 30 40 50
Epoch

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

Te
st

 A
cc

ur
ac

y

Figure 4: Convergence performances of KL2 and KL3 on the database of MNIST in online learning
setting, up:at different initial learning rates, and down:the whole training process with the given
initial learning rate in the bracket.

13

Under review as a conference paper at ICLR 2019

10 3 10 2 10 1 100 101

Initial Learning Rate

0.1

0.2

0.3

0.4

0.5

Tr
ai

n
Lo

ss
10 3 10 2 10 1 100 101

Initial Learning Rate
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

Te
st

 A
cc

ur
ac

y

H2
H3

10 20 30 40 50
Epoch

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Tr
ai

n
Lo

ss

H2 (10 0.5)
H3 (10 0.5)

10 20 30 40 50
Epoch

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

Te
st

 A
cc

ur
ac

y

Figure 5: Convergence performances of H2 and H3 on the database of MNIST in online learning
setting, up:at different initial learning rates, and down:the whole training process with the given
initial learning rate in the bracket.

10 3 10 2 10 1 100 101

Initial Learning Rate

0.1

0.2

0.3

0.4

0.5

Tr
ai

n
Lo

ss

10 3 10 2 10 1 100 101

Initial Learning Rate
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

2
2
2
3

10 20 30 40 50
Epoch

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Tr
ai

n
Lo

ss

2
2 (10 0.25)
2
3 (10 0.5)

10 20 30 40 50
Epoch

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

Te
st

 A
cc

ur
ac

y

Figure 6: Convergence performances of χ2
2 and χ2

3 on the database of MNIST in online learning
setting, up:at different initial learning rates, and down:the whole training process with the given
initial learning rate in the bracket.

D.3 FIGURES ON βt INCREASING PROCESS

All the following experiments are based on the MNIST database in online learning setting with a
batch size of 128. For simplicity, all initial β0s are fixed to be 10−0.5. Considering the sparse feature
of parameters in this task, figure 7 only observe the changing process of the maximum of βt.

14

Under review as a conference paper at ICLR 2019

0 5000 10000 15000 20000
Train Step

3.20

3.25

3.30

3.35

3.40

M
ax

im
um

t

RKL1
RKL2
RKL3

0 5000 10000 15000 20000
Train Step

3.15

3.20

3.25

3.30

3.35

3.40

M
ax

im
um

t

KL2
KL3

0 5000 10000 15000 20000
Train Step

3.2

3.3

3.4

3.5

3.6

M
ax

im
um

t

H2
H3

0 5000 10000 15000 20000
Train Step

3.16

3.18

3.20

3.22

3.24

3.26

M
ax

im
um

t

2
2
2
3

Figure 7: The values of the maximum βt at each training step for various algorithms.

E PROOF OF LEMMA 2

Proof. First, it is trivial to get

Ψt,x(β) ,minxΨt(x,β) = Ψt

(
xt −

gt
β
,β

)
= − 1

2
‖gt‖2diag(β)−1 −

1

2
Dϕ(β,ηt)

= − 1

2

d∑
j=1

(
g2
t,j

βj
+ ηt,jϕ

(
βj
ηt,j

))
.

The partial derivative of Ψt,x(β) with respect to βj is

∂Ψt,x(β)

∂βj
=

1

2

(
g2
t,j

β2
j

− ϕ′
(
βj
ηt,j

))
.

Note that ϕ is a convex function, so ϕ′ is a non-decreasing function, and ∂Ψt,x(β)
∂βj

is a non-increasing
function. Recall that β∗ be the solution of unconstrained problem maxβ(minxΨt(x,β)), hence,
β∗j is a zero of function ∂Ψt,x(β)

∂βj
.

Moreover, if β∗j > Bt,j , we have ∂Ψt,x(β)
∂βj

≥ 0. Thus, Ψt,x(β) with respect to βj is a non-
decreasing function, and arg maxβj Ψt,x(β) = Bt,j . For a similar reason, if β∗j < bt,j , then
arg maxβj Ψt,x(β) = bt,j . In conclusion,

arg max
βj∈[bt,j ,Bt,j]

Ψt,x(β) = min{max{β∗j , bt,j}, Bt,j}, for j = 1, · · · , d.

F PROOF OF LEMMA 5

In this section, we denote that Ψt,x(β) = minx∈X Ψt(x, β).

Lemma 8. βt+1 obtained from equation (9) satisfies βt+1 ≥ ηt.

15

Under review as a conference paper at ICLR 2019

Proof. Recall that ϕ(1) = ϕ′(1) = 0, so ϕ(x) ≥ 0 for all x and Dϕ(β, ηt) = ηtϕ(β/ηt) ≥ 0. If
β < ηt, then for all x ∈ X

Ψt(x, β) = g>t (x− xt) +
β

2
‖x− xt‖22 −

1

2
Dϕ(β, ηt)

< g>t (x− xt) +
ηt
2
‖x− xt‖22

= Ψt(x, ηt).

Hence, minx∈X Ψt(x, β) < minx∈X Ψt(x, ηt), i.e., Ψt,x(β) < Ψt,x(ηt).
It means βt+1 = arg maxβ∈B Ψt,x(β) ≥ ηt.

Lemma 9. βt+1 obtained from equation (11) satisfies βt+1 ≥ ηt.

Proof. Let y = arg minxΨ(x,ηt). If β < ηt, then

Ψt(y, β) = g>t (y − xt) +
β

2
‖y − xt‖22 −

1

2
Dϕ(β, ηt)

< g>t (y − xt) +
ηt
2
‖y − xt‖22

= Ψt(y, ηt).

Hence βt+1 = arg maxβ∈B Ψt(y, β) ≥ ηt.

G CONVERGENCE RATES IN ONLINE LEARNING SETTING

Recall the define of regret

R(T) =

T−1∑
t=0

(ft(xt)− ft(x∗)), (15)

where x∗ = arg minx∈X
∑T−1
t=0 ft(x). We show our hyper-regularizer method with three update

rules (Algorithm 1, 2 and 3) have O(
√
T) regret bounds.

Lemma 10 (Lemma 4 in Adagrad). Consider an arbitrary real-valued sequence {ai} and its vector
representation a1:i = (a1, · · · , ai)>. Then

T∑
t=1

a2
t

‖a1:t‖2
≤ 2‖a1:T ‖2 (16)

holds.

Proof. Let us use induction on T to prove inequality (10). For T = 1, the inequality trivially holds.
Assume the bound (16) holds true for T − 1, in which case

T∑
t=1

a2
t

‖a1:t‖2
≤ 2‖a1:T−1‖2 +

a2
T

‖a1:T ‖2
.

We denote bT =
∑T
t=1 a

2
t and have

2‖a1:T−1‖2 +
a2
T

‖a1:T ‖2
= 2
√
bT − a2

T +
a2
T√
bT

≤ 2

√
bT − a2

T +
a4
T

4bT
+

a2
T√
bT

= 2
√
bT .

16

Under review as a conference paper at ICLR 2019

Lemma 11. Suppose the sequence {xt} and sequence {βt} satisfy xt+1 = xt − gt/βt+1. Then
the regret satisfies

2R(T) ≤
T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

‖xt − x∗‖2diag(βt+1−βt) + ‖x0 − x∗‖2diag(β0)

Proof. Note that

xt+1 = xt − diag(βt+1)−1gt,

and

‖xt+1 − x∗‖2diag(βt+1)

= ‖xt − x∗ − diag(βt+1)−1gt‖2diag(βt+1)

= ‖xt − x∗‖2diag(βt+1) + ‖gt‖2diag(βt+1)−1 − 2g>t (xt − x∗),

i.e.,

2g>t (xt − x∗) = ‖gt‖2diag(βt+1)−1 +
(
‖xt − x∗‖2diag(βt+1) − ‖xt+1 − x∗‖2diag(βt+1)

)
. (17)

Hence

2R(T) = 2

T−1∑
t=0

(ft(xt)− ft(x∗))

≤ 2

T−1∑
t=0

g>t (xt − x∗)

=

T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

(
‖xt − x∗‖2diag(βt+1) − ‖xt+1 − x∗‖2diag(βt+1)

)
≤
T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

‖xt − x∗‖2diag(βt+1−βt) + ‖x0 − x∗‖2diag(β0).

Lemma 12. Suppose an increasing function ψ satisfies ψ(1) = 0 and ψ(x) ≤ l(x − 1). Consider
a real valued sequence {gt}t=0:T−1 and a positive sequence {βt}t=0:T which satisfies |gt| ≤ G,

β2
t+1ψ

(
βt+1

βt

)
= g2

t , t = 0, · · · , T − 1, β0 ≥ 0. We can bound βT as

βt ≥ c

√√√√β2
0 +

2

l

t−1∑
i=0

g2
i , t = 1, · · · , T (18)

where c =
√

β2
0

β2
0+2G2/l

. Moreover, we have

T−1∑
t=0

g2
t

βt+1
≤
√

2lβ2
0 + 4G2

β0

√√√√T−1∑
t=0

g2
t . (19)

Remark. We point out that

• βt+1 ≥ βt (If βt+1 < βt, then β2
t+1ψ(βt+1/βt) < 0 ≤ g2

t),

• βt+1 is unique with respect to βt due to the fact that the function ψ̂(β) = β2ψ(β/βt) is
strictly increasing.

17

Under review as a conference paper at ICLR 2019

Proof. Assume that βt ≥ c
√
β2

0 + 2
l

∑t−1
i=0 g

2
i , where c > 0 is a variable coefficient.

Let us find out a specific c such that βt+1 ≥ c
√
β2

0 + 2
l

∑t
i=0 g

2
i .

Note that

g2
t = β2

t+1ψ

(
βt+1

βt

)
≤ lβ2

t+1

(
βt+1

βt
− 1

)
. (20)

Define a cubic polynomial

h(β) =
l

βt
β3 − lβ2 − g2

t ,

and h is an increasing function when β ≥ βt.

If h
(
c
√
β2

0 + 2
l

∑t
i=0 g

2
i

)
≤ 0, according to h(βt+1) ≥ 0, then βt+1 ≥ c

√
β2

0 + 2
l

∑t
i=0 g

2
i .

Denote b = β2
0 + 2

l

∑t−1
i=0 g

2
i . So we just need to choose c such that

h

c
√√√√β2

0 +
2

l

t∑
i=0

g2
i

 ≤ lc2(b+ 2g2
t /l)

(√
b+ 2g2

t /l√
b

− 1

)
− g2

t ≤ 0,

where the first inequality holds for the assumption βt ≥ c
√
β2

0 + 2
l

∑t−1
i=0 g

2
i , or

c2√
b
(b+ 2g2

t /l)
2g2
t /l√

b+ 2g2
t /l +

√
b
≤ g2

t /l,

or
2c2√
b

(b+ 2g2
t /l) ≤

√
b+ 2g2

t /l +
√
b.

Thus, c just need to satisfy

c2 ≤ b

b+ 2g2
t /l

.

According to b ≥ β2
0 , g2

t ≤ G2, hence
b

b+ 2g2
t /l
≥ β2

0

β2
0 + 2G2/l

.

So if we choose c =
√

β2
0

β2
0+2G2/l

, then β1 > β0 > cβ0, hence

βt ≥ c

√√√√β2
0 +

2

l

t−1∑
i=0

g2
i , t = 1, · · · , T.

Moreover, following from Lemma 10, we have

T−1∑
t=0

g2
t

βt+1
≤
T−1∑
t=0

g2
t

c
√

2/l
√∑t

i=0 g
2
i

≤
√

2l

c

√√√√T−1∑
t=0

g2
t .

Lemma 13. Suppose an increasing function ψ satisfies ψ(1) = 0 and ψ(x) ≤ l(x − 1). Consider
a real valued sequence {gt}t=0:T−1 and a positive sequence {βt}t=0:T which satisfies |gt| ≤ G,

β2
t ψ
(
βt+1

βt

)
= g2

t , t = 0, · · · , T − 1, β0 ≥ 0. We can bound βT as

βt ≥

√√√√β2
0 +

2

l

t−1∑
i=0

g2
i , t = 1, · · · , T. (21)

Moreover, we have

T−1∑
t=0

g2
t

βt
≤ max

{√
2l,

2G

β0

}√√√√T−1∑
t=0

g2
t . (22)

18

Under review as a conference paper at ICLR 2019

Proof. Same as inequality (20), we have

lβ2
t

(
βt+1

βt
− 1

)
≥ g2

t ,

hence

β2
t+1 =

(
βt +

g2
t

lβt

)2

≥ β2
t +

2

l
g2
t ≥ β2

0 +
2

l

t∑
i=0

g2
t ≥ min

{
1,
lβ2

0

2G2

}
2

l

t+1∑
i=0

g2
i , .

Furthermore, following from Lemma 10, we have

T−1∑
t=0

g2
t

βt
≤

√
l/2

min{1, lβ2
0/(2G

2)}

T−1∑
t=0

g2
t√∑t
i=0 g

2
i

≤ max

{√
2l,

2G

β0

}√√√√T−1∑
t=0

g2
t .

Theorem 14. Suppose that ϕ ∈ C1,1
l ([1,+∞)), and ϕ is α-strongly convex. Assume that ‖gt‖∞ ≤

G, and ‖xt − x∗‖∞ ≤ D∞. Then the sequence {xt} obtained from Algorithm 1 satisfies

2R(T) ≤ (α+D2
∞)
√

2lβ2
0 + 4G2

αβ0

d∑
j=1

‖g0:T−1,j‖2 + β0‖x0 − x∗‖22,

Proof. Following from Lemma 11,

2R(T) ≤
T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

‖xt − x∗‖2diag(βt+1−βt) + ‖x0 − x∗‖2diag(β0)

≤
T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

‖xt − x∗‖2∞‖βt+1 − βt‖1 + ‖x0 − x∗‖2diag(β0)

≤
T−1∑
t=0

d∑
j=1

g2
t,j

βt+1,j
+ max

0≤t<T
‖xt − x∗‖2∞

T−1∑
t=0

d∑
j=1

(βt+1,j − βt,j) + ‖x0 − x∗‖2diag(β0).

Recall ϕ is a α-strongly convex function, so,

g2
t,j = β2

t+1,jϕ
′
(
βt+1,j

βt,j

)
≥ αβt+1,jβt,j

(
βt+1,j

βt,j
− 1

)
,

and
T−1∑
t=0

(βt+1,j − βt,j) ≤
1

α

T−1∑
t=0

g2
t,j

βt+1,j
. (23)

The function ψ = ϕ′ satisfies ψ(1) = 0 and ψ(x) ≤ l(x − 1) according to the smoothness of ϕ.
Following from Lemma 12, we have

T−1∑
t=0

g2
t,j

βt+1,j
≤

√
2lβ2

0,j + 4G2

β0,j

√√√√T−1∑
i=0

g2
t,j =

√
2lβ2

0,j + 4G2

β0,j
‖g0:T−1,j‖2. (24)

Combining inequality (23) and (24), we have

2R(T) ≤
(

1 +
max0≤t<T ‖xt − x∗‖2∞

α

) d∑
j=1

T−1∑
t=0

g2
t,j

βt+1,j
+ ‖x0 − x∗‖2diag(β0)

≤ (1 +
D2
∞
α

)

d∑
j=1

√
2lβ2

0,j + 4G2

β0,j
‖g0:T−1,j‖2 + ‖x0 − x∗‖2diag(β0)

=
(α+D2

∞)
√

2lβ2
0 + 4G2

αβ0

d∑
j=1

‖g0:T−1,j‖2 + β0‖x0 − x∗‖22.

19

Under review as a conference paper at ICLR 2019

Theorem 15. Suppose that ϕ ∈ C1,1
l ([1,+∞)), and ϕ is α-strongly convex. Assume that ‖gt‖∞ ≤

G, and ‖xt − x∗‖∞ ≤ D∞. Then the sequence {xt} obtained from Algorithm 2 (or 3) satisfies

2R(T) ≤
(

1 +
D2
∞
α

)
max

{√
2l,

2G

β0

} d∑
j=1

‖g0:T−1,j‖2 + β0‖x0 − x∗‖22.

Proof. Similar to the proof of Theorem 14, for Algorithm 2, we have

2R(T) ≤
T−1∑
t=0

d∑
j=1

g2
t,j

βt+1,j
+ max

0≤t<T
‖xt − x∗‖2∞

T−1∑
t=0

d∑
j=1

(βt+1,j − βt,j) + ‖x0 − x∗‖2diag(β0)

≤
T−1∑
t=0

d∑
j=1

g2
t,j

βt,j
+ max

0≤t<T
‖xt − x∗‖2∞

T−1∑
t=0

d∑
j=1

(βt+1,j − βt,j) + ‖x0 − x∗‖2diag(β0).

With same reason, for Algorithm 3, we have

2R(T) ≤
T−1∑
t=0

‖gt‖2diag(βt)−1 +

T−1∑
t=0

(
‖xt − x∗‖2diag(βt)

− ‖xt+1 − x∗‖2diag(βt)

)
≤
T−1∑
t=0

‖gt‖2diag(βt)−1 +

T−1∑
t=1

‖xt − x∗‖2diag(βt−βt−1) + ‖x0 − x∗‖2diag(β0)

≤
T−1∑
t=0

d∑
j=1

g2
t,j

βt,j
+ max

0≤t<T
‖xt − x∗‖2∞

T−1∑
t=1

d∑
j=1

(βt,j − βt−1,j) + ‖x0 − x∗‖2diag(β0),

Note that for both algorithms

g2
t,j = β2

t,jϕ
′
(
βt+1,j

βt,j

)
≥ αβ2

t,j

(
βt+1,j

βt,j
− 1

)
,

holds, so
T−1∑
t=1

(βt,j − βt−1,j) ≤
T−1∑
t=0

(βt+1,j − βt,j) ≤
1

α

T−1∑
t=0

g2
t,j

βt,j
,

Thus, following from Lemma 13, for both Algorithm 2 and 3, we have

2R(T) ≤ (1 +
D2
∞
α

)

d∑
j=1

T−1∑
t=0

g2
t,j

βt,j
+ β0‖x0 − x∗‖22

≤ (1 +
D2
∞
α

)

d∑
j=1

max

{√
2l,

2G

β0

}
‖g0:T−1,j‖2 + β0‖x0 − x∗‖22.

H LOGARITHMIC BOUNDS

In this section, we will use a different class of ‘distance’ function for problem 4, and establish
logarithmic regret bounds under assumption ft is strongly convex. Our analysis and proof follow
from Hazan et al. (2007); Mukkamala & Hein (2017).

First, we define µ-strongly convexity.
Definition 16 (Definition 2.1 in (Mukkamala & Hein, 2017)). Let X ⊆ Rd be a convex set. We say
that a function f : X → R is µ-strongly convex, if there exists µ ∈ Rd with µj > 0 for j = 1, · · · , d
such that for all x,y ∈ X ,

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
1

2
‖y − x‖2diag(µ).

Let ξ = minj=1:d µj , then this function is ξ-strongly convex (in the usual sense), that is

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
ξ

2
‖y − x‖22.

20

Under review as a conference paper at ICLR 2019

The modification SC-Hyper-Regularization of Hyper-Regularization which we propose in the fol-
lowing uses a family of distance function D : Rd++ × Rd++ → R formulated as

D(u,v) =

d∑
j=1

ϕ(uj/vj), (25)

where ϕ is convex function with ϕ(1) = ϕ′(1) = 0 like we used in ϕ-divergence.
Remark. Same as ϕ-divergence, D(u,v) ≥ 0 for any u,v ∈ Rd++.

Different from Algorithm 1 and 2, we add a hyper-parameter λ > 0 like AdaGrad to SC-Hyper-
Gradient. Rewrite problem (5) as

max
β∈Bt

min
x∈X

Ψt(x,β) , g>t (x− xt) +
1

2
‖x− xt‖2diag(β) −

λ

2

d∑
j=1

ϕ(βj/βt,j), (26)

and corresponding two algorithms as

Algorithm 4 GD with SC-Hyper-regularization
Input: β0 > 0, x0

1: for t = 1 to T do
2: Suffer loss ft(xt);
3: Receive gt ∈ ∂ft(xt) of ft at xt;
4: Update βt+1,j as the solution of the equation λ(β2/βt,j)ϕ

′(β/βt,j) = g2
t,j , j = 1, · · · , d;

5: Update xt+1 = xt − gt/βt+1;
6: end for

Algorithm 5 GD with SC-Hyper-regularization using alternating update rule
Input: β0 > 0, x0

1: for t = 1 to T do
2: Suffer loss ft(xt);
3: Receive gt ∈ ∂ft(xt) of ft at xt;
4: Update βt+1,j = βt,j(ϕ

′)−1(g2
t,j/(λβt,j)), j = 1, . . . , d;

5: Update xt+1 = xt − gt/βt+1;
6: end for

Remark. Same as Lemma 5, the monotonicity of Algorithm 4 and 5 also holds.

Theorem 17. Suppose that ft is µ-strongly convex for all t, ϕ ∈ C1,1
l ([1,+∞)), and ϕ is α-

strongly convex. Assume that ‖gt‖∞ ≤ G, and λ ≥ G2/(αminj=1:d µj). Then the sequence {xt}
obtained from Algorithm 4 satisfies

2R(T) ≤ l
(

1 +
G2

λlβ0

)2 d∑
j=1

ln

(
1 +
‖g0:T−1,j‖22

λlβ0

)
+ β0‖x0 − x∗‖22,

and the sequence {xt} obtained from Algorithm 5 satisfies

2R(T) ≤ l
d∑
j=1

ln

(
1 +
‖g0:T−1,j‖22

λlβ0

)
+ β0‖x0 − x∗‖22,

Remark. Under assumption in Theorem 17, we have ‖g0:T−1,j‖22 ≤ G
2T , so R(T) = O(ln(T)).

To prove Theorem 17, we first prove following lemma.
Lemma 18. For an arbitrary real-valued sequence {ai} and a positive real number b,

T∑
t=1

a2
t

b+
∑t
i=1 a

2
i

≤ ln

(
1 +

∑T
t=1 a

2
t

b

)
. (27)

21

Under review as a conference paper at ICLR 2019

Proof. Let b0 = b, bt = b+
∑t
i=1 a

2
i , t ≥ 1, then

T∑
t=1

a2
t

b+
∑t
i=1 a

2
i

=

T∑
t=1

bt − bt−1

bt
=

T∑
t=1

∫ bt

bt−1

1

bt
dx

≤
T∑
t=1

∫ bt

bt−1

1

x
dx =

∫ bT

b

1

x
dx = ln

(
1 +

∑T
t=1 a

2
t

b

)
.

Like Lemma 12 and 13, similar lemma holds for Algorithm 4 and 5.
Lemma 19. Suppose an increasing function ψ satisfies ψ(1) = 0 and ψ(x) ≤ l(x − 1). Consider
a real valued sequence {gt}t=0:T−1 and a positive sequence {βt}t=0:T which satisfies |gt| ≤ G,
β0 > 0.
If (β2

t+1/βt)ψ(βt+1/βt) = g2
t , t = 0, · · · , T − 1, then we have

βt ≥
(

β0

β0 +G2/l

)2
(
β0 +

1

l

t−1∑
i=0

g2
i

)
, t = 1, · · · , T (28)

and
T−1∑
t=0

g2
t

βt+1
≤ l
(
β0 +G2/l

β0

)2

ln

(
1 +

∑T−1
t=0 g2

t

lβ0

)
. (29)

Meanwhile, if βtψ(βt+1/βt) = g2
t , t = 0, · · · , T − 1, then we have

βt ≥ β0 +
1

l

t−1∑
i=0

g2
i , t = 1, · · · , T (30)

and
T−1∑
t=0

g2
t

βt+1
≤ l ln

(
1 +

∑T−1
t=0 g2

t

lβ0

)
. (31)

Proof. Using same methods in proof of Lemma 12 and 13, the conclusion can be deduced from
Lemma 18 easily.

proof of Theorem 17. Like Lemma 11, in strongly convex case, we have

2R(T) = 2
T−1∑
t=0

ft(xt)− ft(x∗)

≤ 2

T−1∑
t=0

〈gt,xt − x∗〉 −
T−1∑
t=0

‖xt − x∗‖2diag(µ)

=

T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

(
‖xt − x∗‖2diag(βt+1) − ‖xt+1 − x∗‖2diag(βt+1)

)
−
T−1∑
t=0

‖xt − x∗‖2diag(µ)

≤
T−1∑
t=0

‖gt‖2diag(βt+1)−1 +

T−1∑
t=0

‖xt − x∗‖2diag(βt+1−βt−µ) + ‖x0 − x∗‖2diag(β0).

Note that in Algorithm 4,

βt+1,j − βt,j = βt,j(βt+1,j/βt,j − 1)

≤ βt,j
α
ϕ′
(
βt+1,j

βt,j

)
=

β2
t,j

β2
t+1,j

g2
t,j

λα
≤ G2

λα

22

Under review as a conference paper at ICLR 2019

holds, and in Algorithm 5, same conclusion holds:
βt+1,j − βt,j = βt,j(βt+1,j/βt,j − 1)

≤ βt,j
α
ϕ′
(
βt+1,j

βt,j

)
=
g2
t,j

λα
≤ G2

λα
.

Hence, if λ ≥ maxj=1:d
G2

αµj
, then βt+1 − βt ≤ µ, and

T−1∑
t=0

‖xt − x∗‖2diag(βt+1−βt−µ) ≤ 0.

On the other hand,
T−1∑
t=0

‖gt‖2diag(βt+1)−1 =

d∑
j=1

T−1∑
t=0

g2
t,j

βt+1,j
,

following from Lemma 19, we have
T−1∑
t=0

‖gt‖2diag(βt+1)−1 ≤ l
(

1 +
G2

λlβ0

)2 d∑
j=1

ln

(
1 +
‖g0:T−1,j‖22

λlβ0

)
in Algorithm 4,

T−1∑
t=0

‖gt‖2diag(βt+1)−1 ≤ l
d∑
j=1

ln

(
1 +
‖g0:T−1,j‖22

λlβ0

)
in Algorithm 5.

I CONVERGENCE RATES IN FULL BATCH SETTING

In this section, we will discuss the convergence of our methods in full batch settings.

We first review a classical result on the convergence rate for gradient descent with fixed learning
rate.
Theorem 20. Suppose that F ∈ C1,1

L (Rd) and F ∗ = infxF (x) > −∞. Consider gradient descent
with constant step size, xt+1 = xt − ∇F (xt)

b . If b > L
2 , then

min
0≤t≤T−1

‖∇F (xt)‖22 ≤ ε

after at most a number of steps

T =
2b2(F (x0)− F ∗)

ε(2b− L)
= O

(
1

ε

)
Proof. Following from the fact that F is L-smooth, we have

F (xt+1) ≤F (xt) +∇F (xt)
>(xt+1 − xt) +

L

2
‖xt+1 − xt‖22

=F (xt)−
1

b
‖∇F (xt)‖22 +

L

2b2
‖∇F (xt)‖22

=F (xt)−
1

b

(
1− L

2b

)
‖∇F (xt)‖22 . (32)

When b > L
2 , 1− L

2b > 0. So
T−1∑
t=0

‖∇F (xt)‖22 ≤
2b2

2b− L
(F (x0)− F (xT)) ≤ 2b2

2b− L
(F (x0)− F ∗),

and

min
0≤t≤T−1

‖∇F (xt)‖22 ≤
1

T

T−1∑
t=0

‖∇F (xt)‖22 ≤
2b2

T (2b− L)
(F (x0)− F ∗) ≤ ε.

23

Under review as a conference paper at ICLR 2019

Remark. If we choose b ≤ L
2 , then convergence of gradient descent with constant learning rate is

not guaranteed at all.

Like Algorithm 3, another update rule is worth considering in full batch setting:{
xt+1 = xt − 1

βt
gt,

βt+1 = βt(ϕ
′)−1(‖gt‖22 /β2

t)
(33)

Next we will show that both update rules (13) and (14) are robust to the choice of initial learning
rate. Our proof is followed from the proof of Theorem 2.3 in WNGrad (Wu et al., 2018). Note that
in update rule (13), βt+1 satisfies

β2
t+1ϕ

′(βt+1/βt) = ‖gt‖22 ,

while in update rule (14) and (33), βt+1 satisfies

β2
t ϕ
′(βt+1/βt) = ‖gt‖22 .

Theorem 21 (Convergence rate of update rule (13)). Suppose that ϕ ∈ C1,1
l ([1,+∞)), ϕ is α-

strongly convex, and F ∈ C1,1
L (Rd), F ∗ = infx F (x) > −∞. For any ε ∈ (0, 1), the sequence

{xt} obtained from update rule (13) satisfies

min
j=0:T−1

‖∇F (xj)‖22 ≤ ε,

after T steps, where

T =


1 +

⌈
2(β0+2(F (x0)−F∗)/α)(F (x0)−F∗)

ε

⌉
if β0 ≥ L or β1 ≥ L,

1 +

⌈
log(Lβ0

)

log(ε
lL2 +1)

⌉
+

⌈(
L+(1+ 2

α)
(
F (x0)−F∗+ lL(L−β0)

2β0

))2

ε

⌉
otherwise.

Theorem 22 (Convergence rate of update rule (14)). Suppose that ϕ ∈ C1,1
l ([1,+∞)), ϕ is α-

strongly convex, and F ∈ C1,1
L (Rd), F ∗ = infx F (x) > −∞. For any ε ∈ (0, 1), the sequence

{xt} obtained from update rule (14) satisfies

min
j=0:T−1

‖∇F (xj)‖22 ≤ ε

after T steps, where

T =


1 +

⌈
2(β0+‖g0‖22/(αβ0)+2(F (x0)−F∗)/α)(F (x0)−F∗)

ε

⌉
if β0 ≥ L or β1 ≥ L,

1 +

⌈
log(Lβ0

)

log(ε
lL2 +1)

⌉
+

⌈(
L+ 2l

αβ0
L2+ 2l

α L+(1+ 8
α)

(
F (x0)−F∗+ lL(L−β0)

2β0

))2

ε

⌉
otherwise.

Theorem 23 (Convergence rate of update rule (33)). Suppose that ϕ ∈ C1,1
l ([1,+∞)), ϕ is α-

strongly convex, and F ∈ C1,1
L (Rd), F ∗ = infx F (x) > −∞. For any ε ∈ (0, 1), the sequence

{xt} obtained from update rule (33) satisfies

min
j=0:T−1

‖∇F (xj)‖22 ≤ ε

after T steps, where

T =



1 +
⌈

2(β0+2(F (x0)−F∗)/α)(F (x0)−F∗)
ε

⌉
if β0 ≥ L,

2 +


(
β0+

‖g0‖
2
2

αβ0
+(1+ 2

α)
(
F (x0)−F∗+ lL‖g0‖

2
2

2αβ20

))2

ε

 if β0 < L, β1 ≥ L,

1 +

⌈
log(Lβ0

)

log(ε
lL2 +1)

⌉
+

⌈(
(1+ 2l

α)L+ 2lL2

αβ0
+(1+ 2

α)
(
F (x0)−F∗+ lL

2β0

(
(1+ 2l

α)L+ 2lL2

αβ0
−β0

)))2

ε

⌉
otherwise.

We begin our proof by following lemma.

24

Under review as a conference paper at ICLR 2019

Lemma 24. Suppose ϕ ∈ C1,1
l (R++). Fix ε ∈ (0, 1]. In both update rules (13) and (14), after

T =

⌈
log(Lβ0

)

log(ε
lL2 +1)

⌉
+ 1 steps, either mint=0:T−1 ‖gt‖22 ≤ ε, or βT ≥ L holds.

Proof. Assume that βT < L and mint=0:T−1 ‖gt‖22 > ε. Recall that the sequence {βt} is an
increasing sequence. Hence, βt < L for 0 ≤ t ≤ T .
So, for all 0 ≤ t ≤ T − 1,

ϕ′
(
βt+1

βt

)
=
‖gt‖22
β2
t+1

>
ε

L2
(in Algorithm 1),

ϕ′
(
βt+1

βt

)
=
‖gt‖22
β2
t

>
ε

L2
(in Algorithm 2).

Note that ϕ is a l-smooth convex function, and βt+1/βt ≥ 1. So

ϕ′
(
βt+1

βt

)
≤ l
(
βt+1

βt
− 1

)
, (34)

then
βt+1

βt
>

ε

lL2
+ 1.

In this case,

L > βT = β0

(ε

lL2
+ 1
)T

holds but it is impossible according to the setting of T in the lemma.

We first prove Theorem 21 using following lemma.

Lemma 25. In update rule (13), suppose F ∈ C1,1
L (Rd), ϕ ∈ C1,1

l (R++), and ϕ is α-strongly
convex function. Denote F ∗ = infx F (x) > −∞. Let t0 ≥ 1 be the first index such that βt0 ≥ L.
Then for all t ≥ t0,

βt ≤ βt0−1 +
2

α
(F (xt0−1)− F ∗), (35)

and moreover,

F (xt0−1)− F ∗ ≤ F (x0)− F ∗ +
Ll

2β0
(βt0−1 − β0) (36)

Proof. Same as equation (32),

F (xt+1) ≤ F (xt)−
1

βt+1

(
1− L

2βt+1

)
‖gt‖22 .

For t ≥ t0 − 1, βt+1 ≥ L, so

F (xt+1) ≤ F (xt)−
1

2βt+1
‖gt‖22 .

Hence, for all k ≥ 0,

F (xt0+k) ≤ F (xt0−1)− 1

2

k∑
i=0

‖gt0+i−1‖22
βt0+i

, (37)

i.e.,
k∑
i=0

‖gt0+i−1‖22
βt0+i

≤ 2(F (xt0−1)− F ∗). (38)

25

Under review as a conference paper at ICLR 2019

Note that ϕ is α-strongly convex and β2
t+1ϕ

′(βt+1/βt) = ‖gt‖22. So

‖gt‖22
βt+1

= βt+1ϕ
′
(
βt+1

βt

)
≥ αβt

(
βt+1

βt
− 1

)
,

and

βt+1 − βt ≤
1

α

‖gt‖22
βt+1

. (39)

Combining equation (38) and equation (39), we have

βt0+k ≤ βt0−1 +
1

α

k∑
i=0

‖gt0+i−1‖22
βt0+i

≤ βt0−1 +
2

α
(F (xt0−1)− F ∗).

We remain to give an a upper bound for F (xt0−1) in the case t0 > 1. Using equation (32) again,
we get

F (xt0−1)− F (x0) ≤
t0−2∑
i=0

− 1

βi+1

(
1− L

2βi+1

)
‖gi‖22 ≤

L

2

t0−2∑
i=0

‖gi‖22
β2
i+1

=
L

2

t0−2∑
i=0

ϕ′
(
βi+1

βi

)
≤ Ll

2

t0−2∑
i=0

(
βi+1

βi
− 1

)

≤ Ll

2

t0−2∑
i=0

(
βi+1 − βi

β0

)
=

Ll

2β0
(βt0−1 − β0).

In the above, the second inequality follows from the assumed l-smoothness of ϕ, and the last in-
equality follows from βt ≥ β0 for all t ≥ 0.

proof of Theorem 21. If t0 = 1, by equation (37), for all t ≥ 1, we have

F (xt) ≤ F (x0)− 1

2

t−1∑
i=0

‖gi‖22
βi+1

≤ F (x0)− 1

2

t−1∑
i=0

‖gi‖22
β0 + 2

α (F (x0)− F ∗)
.

Then after T = 1 +
⌈

2(β0+2(F (x0)−F∗)/α)(F (x0)−F∗)
ε

⌉
steps,

min
t=0:T−1

‖gt‖22 ≤
1

T

T−1∑
t=0

‖gt‖22

≤ 2

T
(F (x0)− F ∗)(β0 +

2

α
(F (x0)− F ∗)) ≤ ε.

Otherwise, if t0 > 1, we have βt0−1 < L. Then for all t ≥ t0,

βt ≤ L+
2

α

(
F (x0)− F ∗ +

lL(L− β0)

2β0

)
(40)

Denote the right hand of equation (40) as βmax. Using equation (37) again, for we have

F (xt0+M) ≤ F (xt0−1)− 1

2

M∑
i=0

‖gt0+i−1‖22
βt0+i

≤ F (xt0−1)− 1

2βmax

M∑
i=0

‖gt0+i−1‖22 .

26

Under review as a conference paper at ICLR 2019

Hence,

min
t=0:t0+M−1

‖gt‖22 ≤ min
t=t0−1:t0+M−1

‖gt‖22

≤ 1

M + 1

M∑
i=0

‖gt0+i−1‖22

≤ 1

M + 1
2βmax(F (xt0−1)− F ∗)

≤ 2βmax
M + 1

(
F (x0)− F ∗ +

lL(L− β0)

2β0

)
.

At last, with recalling the conclusion of Lemma 24, after

T =

⌈
log(Lβ0

)

log(ε
lL2 + 1)

⌉
+

⌈
2βmax
ε

(
F (x0)− F ∗ +

lL(L− β0)

2β0

)⌉
+ 1

steps, we have mint=0:T−1 ‖gt‖22 ≤ ε.

Next we prove Theorem 22.

Lemma 26. In update rule (14), suppose F ∈ C1,1
L (Rd), ϕ ∈ C1,1

l (R++), and ϕ is α-strongly
convex function. Denote F ∗ = infx F (x). Let t0 ≥ 1 be the first index such that βt0 ≥ L. Then for
all t ≥ t0,

βt ≤ βt0 +
8

α
(F (xt0−1)− F ∗), (41)

and moreover,

F (xt0−1)− F ∗ ≤ F (x0)− F ∗ +
Ll

2β0
(βt0−1 − β0), (42)

βt0 ≤

{
β0 +

‖g0‖22
αβ0

if t0 = 1,

L+ 2l
αβ0

L2 + 2l
αL if t0 ≥ 2,

(43)

Proof. Same as the proof of Lemma 25, we first get for all k ≥ 0,
k∑
i=0

‖gt0+i−1‖22
βt0+i

≤ 2(F (xt0−1)− F ∗).

Note that in update rule (14), β2
t ϕ
′ (βt+1/βt) = ‖gt‖22. So

βt0+k+1 = βt0+k + βt0+k

(
βt0+k+1

βt0+k
− 1

)
≤ βt0+k +

βt0+k

α
ϕ′
(
βt0+k+1

βt0+k

)
= βt0+k +

1

α

‖gt0+k‖22
βt0+k

≤ βt0+k +
2

α

‖gt0+k − gt0+k−1‖22 + ‖gt0+k−1‖22
βt0+k

≤ βt0+k +
2

α

L2 ‖xt0+k − xt0+k−1‖22 + ‖gt0+k−1‖22
βt0+k

≤ βt0+k +
2

α

L2 ‖gt0+k−1‖22
β3
t0+k

+
2

α

‖gt0+k−1‖22
βt0+k

≤ βt0+k +
4

α

‖gt0+k−1‖22
βt0+k

≤ βt0 +
4

α

k∑
i=0

‖gt0+i−1‖22
βt0+i

≤ βt0 +
8

α
(F (xt0−1)− F ∗).

27

Under review as a conference paper at ICLR 2019

If t0 = 1, then

βt0 ≤ β0 +
‖g0‖22
αβ0

,

and if t0 ≥ 2, then

βt0 ≤ βt0−1 +
‖gt0−1‖22
αβt0−1

= βt0−1 +
2L2

α

‖gt0−2‖22
β3
t0−1

+
2

α

‖gt0−2‖22
βt0−2

≤ βt0−1 +
2L2

α

l(βt0−1 − βt0−2)βt0−2

β3
t0−1

+
2

α
l(βt0−1 − βt0−2)

≤ L+
2l

αβ0
L2 +

2l

α
L.

At last, for t0 > 0, we have

F (xt0−1)− F (x0) ≤
t0−2∑
i=0

− 1

βi+1

(
1− L

2βi+1

)
‖gi‖22

≤ L

2

t0−2∑
i=0

‖gi‖22
β2
i+1

≤ L

2

t0−2∑
i=0

‖gi‖22
β2
i

=
L

2

t0−2∑
i=0

ϕ′
(
βi+1

βi

)
≤ Ll

2

t0−2∑
i=0

(
βi+1

βi
− 1

)

≤ Ll

2

t0−2∑
i=0

(
βi+1 − βi

β0

)
=

Ll

2β0
(βt0−1 − β0).

proof of Theorem 22. The proof is completely similar to the proof of Theorem 21.

Next, we prove Theorem 23.

Lemma 27. In update rule (33), suppose F ∈ C1,1
L (Rd), ϕ ∈ C1,1

l (R++), and ϕ is α-strongly
convex function. Denote F ∗ = infx F (x). Let t0 ≥ 0 be the first index such that βt0 ≥ L. Then for
all t ≥ t0,

βt ≤ βt0 +
2

α
(F (xt0)− F ∗), (44)

and moreover,

F (xt0)− F ∗ ≤ F (x0)− F ∗ +
Ll

2β0
(βt0 − β0), (45)

βt0 ≤

{
β0 +

‖g0‖22
αβ0

, if t0 ≥ 1,(
1 + 2l

α

)
L+ 2l

αβ0
L2, if t0 ≥ 2.

(46)

Proof. Same as the proof of Lemma 25, we first get

F (xt0+k+1) ≤ F (xt0+k)− 1

βt0+k

(
1− L

2βt0+k

)
‖gt0+k‖22

≤ F (xt0+k)− 1

2βt0+k
‖gt0+k‖22

≤ F (xt0)− 1

2

k∑
i=0

‖gt0+i‖22
βt0+i

,

28

Under review as a conference paper at ICLR 2019

and
k∑
i=0

‖gt0+i‖22
βt0+i

≤ 2(F (xt0)− F ∗).

Note that in Algorithm 2, β2
t ϕ
′ (βt+1/βt) = ‖gt‖22. So

βt0+k+1 = βt0+k + βt0+k

(
βt0+k+1

βt0+k
− 1

)
≤ βt0+k +

βt0+k

α
ϕ′
(
βt0+k+1

βt0+k

)
= βt0+k +

1

α

‖gt0+k‖22
βt0+k

≤ βt0 +
1

α

k∑
i=0

‖gt0+i‖22
βt0+i

≤ βt0 +
2

α
(F (xt0)− F ∗).

At last, for t0 > 0, we have

F (xt0)− F (x0) ≤ L

2

t0−1∑
i=0

‖gi‖22
β2
i

=
L

2

t0−1∑
i=0

ϕ′
(
βi+1

βi

)
≤ Ll

2β0
(βt0 − β0).

Recall that

αβt(βt+1 − βt) ≤ ‖gt‖22 ≤ lβt(βt+1 − βt).
So if t0 = 1,

βt0 ≤ β0 +
‖g0‖22
αβ0

.

And if t0 ≥ 2, we have

βt0 ≤ βt0−1 +
‖gt0−1‖22
αβt0−1

≤ βt0−1 + 2
‖gt0−1 − gt0−2‖22 + ‖gt0−2‖22

αβt0−1

≤ βt0−1 +
2L2

α

‖xt0−1 − xt0−2‖22
βt0−1

+
2

α

‖gt0−2‖22
βt0−2

= βt0−1 +
2L2

α

‖gt0−2‖22
β2
t0−2βt0−1

+
2

α

‖gt0−2‖22
βt0−2

≤ βt0−1 +
2L2

α

l(βt0−1 − βt0−2)

βt0−2βt0−1
+

2

α
l(βt0−1 − βt0−2)

≤ L+
2l

αβ0
L2 +

2l

α
L.

proof of Theorem 23. The proof is completely similar to the proof of Theorem 21.

29

	Introduction
	related work
	Notation
	Problem Statement

	Hyper-Regularization
	The -divergence
	max-min or min-max
	Selection of
	Isotropic Hyper-Regularization

	Update Rules and Algorithms
	Alternating Update Rule
	Monotonicity

	Theoretical Analysis
	Isotropic Hyper-Regularization in full batch setting
	Hyper-Regularization in Online Learning Setting

	Experiments
	The Set-up
	Update Rule Selection
	Full Batch Setting and Online Learning Setting

	Discussion
	Solution Existence
	Special Cases of Algorithm 1
	Simplified Alternating Update Rule
	Supplementary for Numerical Experiments
	Full Versions of Generated Algorithms
	Version Comparison on Other Algorithms
	Figures on Increasing Process

	Proof of Lemma 2
	Proof of Lemma 5
	Convergence rates in online learning setting
	Logarithmic Bounds
	Convergence rates in Full batch Setting

