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Abstract

This work studies the design of safe control policies for large-scale non-linear1

systems operating in uncertain environments. In such a case, the robust control2

framework is a principled approach to safety that aims to maximize the worst-case3

performance of a system. However, the resulting optimization problem is generally4

intractable for non-linear systems with continuous states. To overcome this issue,5

we introduce two tractable methods that are based either on sampling or on a6

conservative approximation of the robust objective. The proposed approaches are7

applied to the problem of autonomous driving.8

1 Introduction9

Reinforcement Learning is a general framework that allows the optimal control of a Markov Decision10

Process (S,A, T, r) with state space S , action space A, reward function r ∈ [0, 1]S×A and unknown11

transition dynamics T (s′|s, a) ∈M(S)S×A by searching for the policy π ∈M(A)S with maximal12

expected value vTπ of the total discounted reward RTπ :13

RTπ (s)
def
=

∞∑
t=0

γtr(st, at), vTπ (s)
def
= E(RTπ (s)), (1)

where s0 = s , at ∼ π(st), st+1 ∼ T (st+1|st, at), γ ∈ [0, 1) is the discount factor and M(X)14

denotes the set of probability measures over X .15

Unfortunately, its application to real-world tasks has so far been limited by its considerable need for16

experiences. It is generally recognized (Sutton, 1990; Atkeson and Santamaria, 1997) that the most17

sample-efficient approach is the family of model-based methods which learn a nominal model T̂ of18

the environment dynamics that is leveraged for policy search:19

max
π

vT̂π (2)

One drawback of such methods is that they suffer from model bias; that is, they ignore the error20

between the learned dynamics T̂ and the real environment T . It has been shown that model bias can21

dramatically degrade the policy performances (Schneider, 1997).22

Model errors can instead be explicitly considered and expressed through an ambiguity set of all23

possible dynamics models. Such a set can be constructed from a history of observations by computing24

the confidence regions associated with the system identification process (Iyengar, 2005; Nilim and El25

Ghaoui, 2005; Dean et al., 2017; Maillard, 2017). In this work, we will consider ambiguity sets of26

parametrized deterministic dynamical systems s′ = Tθ(s, a) whose unknown parameters θ lie in a27

compact set Θ of Rp.28

In the optimal control framework, model uncertainty is handled by maximizing the expected perfor-29

mances with respect to unknown dynamics. In stark contrast, in real-world applications where failures30

may turn out very costly, the decision maker often prefers to minimize the risk of the policy, which31
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can be defined with several metrics characterizing the distribution of the policy outcome (García and32

Fernández, 2015).33

The robust control framework is a popular setting in which the risk of a policy is defined as the worst34

possible outcome realization among the ambiguity set, to guarantee a lower-bound performance of35

the robust policy when executed on the true model:36

max
π

min
T
vTπ (3)

Robust optimization has been studied in the context of finite Markov Decision Processes (MDP) with37

uncertain parameters by Iyengar (2005), Nilim and El Ghaoui (2005) and Wiesemann et al. (2013).38

They show that the main results of Dynamic Programming can be extended to their robust counterparts39

only when the dynamics ambiguity set verifies certain rectangularity properties. In the control theory40

community, the robust control problem is mainly restricted to the context of linear dynamical systems41

with bounded uncertainty in the time or frequency domain, where the objective is to guarantee42

stability (e.g. H∞-optimal control, see Basar and Bernhard, 1996) or performance (e.g. LQ optimal43

control theory, see Petersen and Tempo, 2014). The existing nonlinear robust control approaches44

such as sliding mode control (Li et al., 2017), feedback linearization, backstepping, passivation and45

input-to-states stabilization (Khalil, 2014) are usually based on canonical representations of regulated46

dynamics and admit constructive numeric realizations for systems of rather low dimensions.47

There have been few attempts of robust control of large-scale systems with both continuous states48

and non-linear dynamics, which is the focus of this paper. Our contribution is twofold. In section 2,49

we first consider a simpler case where the ambiguity set Θ and action space A are both finite and50

introduce a sampling-based planner that approximately maximizes the robust objective (3). In section51

3, we move to continuous ambiguity sets and form a conservative relaxation of the robust policy52

evaluation problem using interval predictors. In section 4, we illustrate the benefits of both techniques53

(for discrete, versus continuous Θ) on a problem of tactical decision-making for autonomous driving.54

2 Sampling-based planning55

If the true dynamics model Tθ were known and the action-space A finite, sampling-based algorithms56

could be used to perform approximate optimal planning. In order to generalize to the robust setting,57

we need to make the following assumption about the structure of the ambiguity set:58

Assumption 1 (Structure). The ambiguity set Θ and the action space A are discrete and finite:59

A = {ak}k∈[1,K] and Θ = {θm}m∈[1,M ] (4)
We slightly abuse notation and denote Tm = Tθm .60

Such a structure of the ambiguity set typically stems directly from expert knowledge of the problem61

at hand. In general, it is nonrectangular, which implies that the Robust Bellman Equation does not62

hold (Wiesemann et al., 2013). This prevents us from building on planners that implicitly use this63

property and generate trajectories step-by-step by picking promising successor states, such as MCTS64

(Coulom, 2006) or UCT (Kocsis and Szepesvári, 2006). Instead, we turn to algorithms that perform65

optimistic sampling of entire sequences of actions and work directly at the leaves of the expanded66

tree (see, e.g. Bubeck and Munos, 2010). More precisely, we build on the work of Hren and Munos67

(2008) on optimistic planning for deterministic dynamics, which we extend to the robust setting.68

We use similar notations and consider the infinite look-ahead tree T composed of all reachable states.69

Each node corresponds to a joint state {sm,t}m∈[1,M ] associated with the different dynamics Tm.70

The root starts at the current state, and all nodes have K children, each corresponding to an action71

ak ∈ A and associated with the successor joint state {sm,t+1 = Tm(sm,t, ak)}m∈[1,M ]. We use the72

standard notations over alphabets to refer to nodes in T as action sequences. Thus, a finite word73

i ∈ A∗ of length d represents the node obtained following the action sequence (i0, · · · , id) from74

the root. Sequences i ∈ A∗ and j ∈ A∗ can be concatenated as ij ∈ A∗, the set of suffixes of i is75

iA∞ = {j ∈ A∞ : ∃h ∈ A∞ such that j = ih}, and the empty sequence is ∅.76

The sample complexity is expressed in terms of number n of expanded nodes. It is related to the77

number of calls to dynamics models: when a node i is expanded, all successor states are computed78

for all K actions and M dynamics. At an iteration n, we denote Tn the tree of already expanded79

nodes, and Ln the set of its leaves.80

Definition Fix a dynamics model m ∈ [1,M ]. Hren and Munos (2008) define for any node i ∈ T81

of depth d the optimal value vmi , its lower bound u-value umi and upper-bound b-value bmi . These82

variables depend on the dynamics m and will therefore be referred to with a superscript m notation.83

We extend these dynamics-dependent variables to the robust setting, using superscript r in notations.84
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Figure 1: The computation of robust b-values
in Algorithm 1. The simulation of trajectories
for every dynamics model Tm is represented as
stacked versions of the expanded tree Tn.

Figure 2: A few trajectories are sampled from an
initial state s0 following a policy π with various
dynamics parameters θm (in black). The union of
reachability sets is shown in green, and its interval
hull in red.

• The robust value vri of a path i ∈ A∗ as the restriction of (3) to policies that start with the85

action sequence i:86 vri
def
= max

π∈iA∞
min

m∈[1,M ]
RTmπ (5)

By definition, the robust value of (3) is recovered at the root vr∅ = vr.87

Moreover, for i ∈ Tn \ Ln we have88

vri = max
π∈iA∞

min
m∈[1,M ]

RTmπ = max
a∈A

max
π∈iaA∞

min
m∈[1,M ]

RTmπ = max
a∈A

vria (6)

• The robust u-value uri of a leaf node i ∈ Ln is the worst-case discounted sum of rewards89

rt = r(sm,t, it) from the root to i. It is then backed-up to the rest of the tree:90

uri (n)
def
=

{
minm∈[1,M ]

∑d−1
t=0 γ

trt if i ∈ Ln ;
maxa∈A u

r
ia(n) if i ∈ Tn \ Ln

(7)

• Likewise, the robust b-value bri is defined at leaf nodes and backed-up to the rest of the tree:91

bri (n)
def
=

{
uri (n) + γd

1−γ if i ∈ Ln ;
maxa∈A b

r
ia(n) if i ∈ Tn \ Ln

(8)

An illustration of the computation of the robust b-values is presented in Figure 1.92

Remark 1 (On the ordering of min and max). In the definition of uri (n) it is essential that the93

minimum among the models is only taken at the end of trajectories, in the same way as for the robust94

objective (3) in which the worst-case dynamics is only determined after the policy has been fully95

specified. Assume that uri (n) is instead naively defined as:96

uri (n) = min
m∈[1,M ]

umi (n),

This would not recover the robust policy, as we show in Figure 3 with a simple counter-example.

0 1 1/2 1/2

1/21

1

1 1/2 1/2

1/21

1

0 1/2 1/2

1/21

1

00
1/2 1/2

1/20

1/2

00

Figure 3: From left to right: two simple models and corresponding u-values with optimal sequences
in blue; the naive version of the robust values returns sub-optimal paths in red; our robust u-value
properly recovers the robust policy in green.
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Algorithm 1: Deterministic Robust Optimistic Planning
1 Initialize T to a root and expand it. Set n = 1.
2 while Numerical resource available do
3 Compute the robust u-values uri (n) and robust b-values bri (n).
4 Expand argmaxi∈Ln b

r
i (n).

5 n = n + 1
6 return argmaxa∈A u

r
a(n)

From these definitions we introduce Algorithm 1, and analyse its sample-efficiency in Theorem 1.98

Lemma 1 (Robust values ordering). The robust values, u-values and b-values exhibit similar proper-99

ties as the optimal values, u-values and b-values, that is: for all 0 < t < n and i ∈ Tn,100

uri (t) ≤ uri (n) ≤ vri ≤ bri (n) ≤ bri (t) (9)

101

Proof. This result stems directly from the definitions, see more details in Appendix A.1. �102

The simple regret of the action a returned by Algorithm 1 after n rounds is defined as:103

Rn = vr − vra (10)

We will say thatRn = O(ε) for some ε > 0 if there exist ρ > 0 and n0 > 0 such thatRn ≤ ρε for104

all n ≥ n0. A node i ∈ T is said to be ε-optimal, in a robust sense, if and only if vri ≥ vr − ε for105

some ε > 0. The proportion of ε-optimal nodes at depth d is then defined as pd(ε) = |i ∈ Ad s.t i is106

ε-optimal|/Kd. Further we will assume that for the graph T the following hypothesis is satisfied:107

Assumption 2 (Proportion of near-optimal nodes). There exist β ∈ [0, logK
log 1/γ ], c > 0 and d0 > 0108

such that pd(ε) ≤ cεβ for all ε > 0 and d ≥ d0.109

Theorem 1 (Regret bound). Let κ = Kγβ ∈ [1,K]. Then the simple regret of Algorithm 1 is:110

If κ > 1, Rn = O
(
n−

log 1/γ
log κ

)
(11)

If κ = 1, Rn = O

(
γ

(1−γ)β
c n

)
(12)

Proof. We use the properties shown in Lemma 1 and derive a robust counterpart of the proof of Hren111

and Munos (2008), which we only modify slightly. See more details in Appendix A.2 �112

3 Interval predictors113

In this section, we assume that the ambiguity set Θ is continuous and bounded.114

In the robust objective (3), the min operator only requires us to describe the set of states that can be115

reached with non-zero probability.116

Definition The reachability set S at time t is the set of all states that can be reached by starting117

from initial state s0 ∈ S and following a policy π ∈ AS along the transition dynamics Tθ ∈ SS×A.118

S(t, s0, π)
def
= {st : ∃θ ∈ Θ s.t. sk+1 = Tθ(sk, ak), ak = π(sk), k = 0, · · · , t− 1} (13)

119 This set can still have a complex shape. We approximate it by an overset easier to represent and120

manipulate: its interval hull.121

Definition The interval hull of S, denoted �S = [s, s] is the smallest interval containing it:122

s(t, s0, π)
def
= minS(t, s0, π) s(t, s0, π)

def
= maxS(t, s0, π) (14)

The max and min operators are applied element-wise. This set is illustrated in Figure 2.123

State intervals �S have been used to describe the evolution of uncertain systems and derive feedback124

laws that achieve closed-loop stability in the presence of bounded disturbances (Stinga and Bunciu,125

2012; Efimov and Raïssi, 2016; Dinh and Ito, 2017).126

The main techniques of interval simulation have been listed and described in a survey by Puig et al.127

(2005), in which they are sorted into two categories. Region-based methods use the estimate of �S128
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Algorithm 2: Interval-based Robust Control
1 Algorithm robust_control(s0)
2 Initialize a set Π of policies
3 while resources available do
4 evaluate() each policy π ∈ Π at current state s0

5 Update Π by policy search
6 end
7 return argmaxπ∈Π v̂

r(π)
1 Procedure evaluate(π, s0)
2 Compute the state interval �S(t, s0, π) on a horizon t ∈ [0, H]
3 Minimize r over the intervals �S(t, s0, π) for all t ∈ [0, H]

4 return v̂r(π)

at previous timestep t− 1 to bootstrap the current estimate at time t. They are based on application129

of the theory of positive systems, which are frequently computationally efficient. However, the130

positive inclusion dynamics of a system may lead to overestimations of the true �S and even unstable131

behaviour. Trajectory-based methods estimate �S by taking the max and min in (14) over sampled132

trajectories for θ ∈ Θ. These methods produce subset estimates of the true �S, do not suffer from133

the wrapping effect, but are often more computationally costly.134

In this work, we leverage them to derive a proxy for the robust objective (3).135

Definition Let us denote the robust objective of equation (3) as vr(π)
def
= minθ∈Θ v

Tθ
π .136

We define the surrogate objective v̂r on a finite horizon H > 0 as:137

v̂r(π)
def
=

H∑
t=0

γt min
s∈�S(t,s0,π)

r(s, π(s)) (15)

138 Property 1 (Lower bound). The surrogate objective v̂r is a lower bound of the true objective vr:139

∀π, v̂r(π) ≤ vr(π) (16)
Proof. By bounding the collected rewards by their minimum over �S(t). See Appendix A.3 �140

The robust objective error vr − v̂r stems from two terms: the interval approximation of the reachable141

set and the loss of time-dependency between the states within a single trajectory. If both these142

approximations are tight enough, maximizing the lower bound v̂r will increase the true objective143

vr, which is the idea behind Algorithm 2. It is classically structured as an alternation of a Policy144

Evaluation step , during which the surrogate objective v̂r(π) is evaluated for a set of policies Π, and145

a Policy Search step which aims to steer the set of policies Π towards regions where the surrogate146

objective is maximal. The main Policy Search algorithms are listed in a survey by Deisenroth147

(2011). In this case, derivative-free methods such as evolutionary strategies (e.g. CMAES) would be148

more appropriate than policy gradient methods, since v̂r cannot be easily differentiated. Planning149

algorithms can also be used to exploit the dynamics and structure of the surrogate objective.150

4 Experiments151

Most autonomous driving architectures perform sequentially the prediction of other drivers’ trajec-152

tories and the planning of a collision-free path for the ego-vehicle. As a consequence, they fail153

to account for interactions between the traffic participants and the ego-vehicle, leading to overly154

conservative decisions and a lack of negotiation abilities (Trautman and Krause, 2010). In this155

work, we perform both tasks jointly to anticipate the effect of our own decisions on the dynamics156

of the nearby traffic. But human decisions are not fully predictable and cannot be reduced to a157

single deterministic model. To avoid model bias, we provide a whole ambiguity set of reasonable158

closed-loop behavioural models for other vehicles, and plan robustly with respect to this ambiguity.159

We introduce a new environment for simulated highway driving and tactical decision-making.1160

Vehicle motion is described by the Kinematic Bicycle Model (see, e.g. Polack et al., 2017). They161

follow a lane keeping lateral behaviour, and a longitudinal behaviour inspired by the Intelligent Driver162

Model (Treiber et al., 2000) which balances reaching a desired velocity and respecting a safe time163

1Source code is available at https://github.com/eleurent/highway-env
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(a) The possible trajectories (blue) for fixed behaviours
and varying destinations

(b) The possible trajectories (green-red gradient) for
fixed destination and varying behaviours

Figure 4: The highway-env environment. The ego-vehicle (green) is approaching a roundabout with
flowing traffic (yellow).

Table 1: Performances of robust planners on two ambiguous environments.
Ambiguity set Agent Worst-case return Mean return ± std

True model Oracle 9.83 10.84± 0.16

Discrete Nominal 2.09 8.85± 3.53
Algorithm 1 8.99 10.78± 0.34

Continuous Nominal 1.99 9.95± 2.38
Algorithm 2 7.88 10.73± 0.61

gap. The lane-change decisions are determined by the MOBIL model (Kesting et al., 2007): they164

must increase the vehicles accelerations while satisfying safe braking decelerations. The behaviour165

parameters θ of each traffic participant are sampled uniformly from a set Θ.166

The ego-vehicle can be controlled with a finite set of tactical decisions A = {no-op, right-lane,167

left-lane, faster, slower} implemented by low-lever controllers. It is rewarded for driving fast168

along a planned route while avoiding collisions. More information on the environment modelling is169

provided in the appendices.170

We carry out two experiments2: First, the behavioural parameters of traffic participants are fixed but171

their planned routes are unknown: we enumerate every direction they can take at their next intersection172

(see Figure 4a) and plan robustly with respect to this finite ambiguity set using Algorithm 1. Second,173

we assume on the contrary that the agents’ planned routes are known but not their behavioral174

parameters (see Figure 4b). We plan robustly with respect to this continuous ambiguity set using175

Algorithm 2. Crucially, the state intervals prediction is conditioned on the planned policy π.176

In both experiments, we compare the performance of the robust planner to an oracle model that has177

perfect knowledge of the systems dynamics, and to a nominal planner that plans optimistically with178

respect to a dynamics model sampled uniformly from the ambiguity set. Statistics are collected from179

100 episodes with random environment initialization. Results are presented in Table 1.180

5 Conclusion181

This paper has presented two methods for approximately solving the robust control problem. In182

the simpler case of finite ambiguity set and action space, we use optimistic planning and provide183

an upper bound for the simple regret. A direct consequence is that we recover the robust policy as184

the computational budget increases. In the general case, we use interval prediction to efficiently185

solve a conservative approximation of the robust objective while providing a lower bound for the186

performance of a policy when applied to the unknown true model. However, this method is lossy and187

does not enjoy asymptotic consistency. Both algorithms are flexible, allowing to handle a variety of188

parametrized dynamical systems, and practical, with a focus on computational efficiency. The two189

methods are also orthogonal, which means they can be combined to deal with complex ambiguity190

sets that display both continuous and discrete features, such as disjoint unions of connected sets.191

2Video and source code are available at https://eleurent.github.io/robust-control/
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Supplementary material240

A Detailed proofs241

A.1 Lemma 1242

Proof. By definition, when starting with sequence i, the value umi (n) represents the minimum admissible243

reward, while bmi (n) corresponds to the best admissible reward achievable with respect to the the possible244

continuations of i. Thus, for all i ∈ A∗, umi (n) and uri (n) are non-decreasing functions of n and bmi (n) and245

bri (n) are a non-increasing functions of n, while vmi and vri do not depend on n.246

Moreover, since the reward function r is assumed to have values in [0, 1], the sum of discounted rewards from a247

node of depth d is at most γd + γd+1 + · · · = γd

1−γ . As a consequence, for all n ≥ 0 , i ∈ Ln of depth d, and248

any sequence of rewards (rt)t∈N obtained from following a path in iA∞ with any dynamics m ∈ [1,M ]:249

d−1∑
t=0

γtrt ≤
d−1∑
t=0

γtrt +

∞∑
t=d

γtrt ≤
d−1∑
t=0

γtrt +
γd

1− γ
That is equivalent to:250

umi (n) ≤
∞∑
t=0

γtrt ≤ bmi (n)

Hence,251

min
m∈[1,M ]

umi (n) ≤ min
m∈[1,M ]

∞∑
t=0

γtrt ≤ min
m∈[1,M ]

bmi (n) (17)

And as the left-hand and right-hand sides of (17) are independent of the particular path that was followed in252

iA∞, it also holds for the robust path:253

min
m∈[1,M ]

umi (n) ≤ max
π∈iA∞

min
m∈[1,M ]

∞∑
t=0

γtrt ≤ min
m∈[1,M ]

bmi (n)

that is,254

uri (n) ≤ vri ≤ bri (n) (18)

Finally, (18) is extended to the rest of Tn by recursive application of (6), (7) and (8). �255

A.2 Theorem 1256

Proof. Hren and Munos (2008) first show in Theorem 2 that the simple regret of their optimistic planner is257

bounded by γdn

1−γ where dn is the depth of Tn. This properties relies on the fact that the returned action belongs258

to the deepest explored branch, which we can show likewise by contradiction using Lemma 1. This yields259

directly that a = i0 where i is some node of maximal depth dn expanded at round t ≤ n, which by Algorithm 1260

verifies bra(t) = bri (t) = maxx∈A b
r
x(t) and:261

vr − vra = vra∗ − vra ≤ bra∗(t)− vra ≤ bra(t)− ura(t) = bri (t)− uri (t) =
γdn

1− γ (19)

Secondly, they bound the depth dn of Tn with respect to n. To that end, they show that the expanded nodes262

always belong to the sub-tree T∞ of all the nodes of depth d that are γd

1−γ -optimal. Indeed, if a node i of263

depth d is expanded at round n, then bri (n) ≥ brj (n) for all j ∈ Ln by Algorithm 1, thus the max-backups264

of (8) up to the root yield bri (n) = br∅(n). Moreover, by Lemma 1 we have that br∅(n) ≥ vr∅ = vr and so265

vri ≥ uri (n) = bri (n)− γd

1−γ ≥ v
r − γd

1−γ , thus i ∈ T∞.266

Then from Assumption 2 and the definition of β applied to nodes in T∞, there exists d0 and c such that the267

number nd of nodes of depth d ≥ d0 in T∞ is bounded by c
(
γd

1−γ

)β
Kd. As a consequence,268

n =
∑dn
d=0 nd = n0 +

∑dn
d=d0+1 nd

≤ n0 +
∑dn
d=d0+1 c

(
γd

1−γ

)β
Kd

= n0 + c′
∑dn
d=d0+1 κ

d

where c′ = c
(1−γ)β

.269

8



• If κ > 1, then n ≤ n0 + c′κd0+1 κdn−d0−1
κ−1

and thus dn ≥ d0 + logκ
(n−n0)(κ−1)

c′κd0+1 . We conclude270

from (19) thatRn ≤ γdn

1−γ = 1
1−γ

(
(n−n0)(κ−1)

c′κd0+1

) log γ
log κ

= O

(
n
− log 1/γ

log κ

)
.271

• If κ = 1, then n ≤ n0 + c′(dn − d0), hence from (19) we haveRn = O
(
γnc
′
)

.272

�273

A.3 Property 1274

Proof. For any θ ∈ Θ, t ∈ [0, H] and any trajectory (s0, · · · , st) sampled from π and Tθ ,275

st ∈ S(t, s0, π) ⊂ �S(t, s0, π)

Hence,276

RTθπ =

∞∑
t=0

γtr(st, at) ≥
H∑
t=0

γtr(st, at) ≥
H∑
t=0

min
s∈�S(t,s0,π)

γtr(s, π(s)) = v̂r(π)

And finally,277

vr(π) = min
θ∈Θ

vTθπ = min
θ∈Θ

E(RTθπ ) ≥ v̂r(π)

�278

B Environment dynamics279

B.1 Kinematics280

The vehicles kinematics are represented by the Kinematic Bicycle Model:281

ẋ = v cos(ψ), (20)
ẏ = v sin(ψ), (21)
v̇ = a, (22)

ψ̇ =
v

l
tan(β), (23)

where (x, y) is the vehicle position, v its forward velocity and ψ its heading, l is the vehicle half-length, a is the282

acceleration command and β is the slip angle at the center of gravity, used as a steering command.283

Each vehicle i is represented by its kinematics Xi = [xi, yi, vi, ψi]. The joint state is represented by s =284

{X1, · · · , XN}285

B.2 Longitudinal control286

The acceleration control is assumed to be linearly parametrized:287

a = θTa φa(s, i), (24)

where θa is an uncertain weight vector, and φa(s, i) is a feature vector that depends on the joint state s and288

considered vehicle i.289

It is composed of:290

• a target velocity seeking term,291

• a braking term to adjust velocity w.r.t. the front vehicle ,292

• a braking term to respect a safe distance w.r.t. the front vehicle.293
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Denoting fi the front vehicle preceding vehicle i, φa is defined by294

φa(s, i) =

 v0 − vi
n(vfi − vi)

n(xfi − xi − (d0 + viT ))

 (25)

where n is the negative part function n(x) = min(x, 0) and v0, d0 and T respectively denote the speed limit,295

jam distance and time gap given by traffic rules.296

We observe that this model exhibits similar qualitative behaviours to the IDM’s.297

B.3 Lateral control298

A non-linear lane-keeping controller is implemented as follows: a lane L with lateral position yL and heading299

ψL is tracked by performing300

1. Position control301

vycmd = Kpy (yL − y) (26)
2. Lateral velocity to heading conversion302

ψref = ψL + sin−1
(vycmd

v

)
(27)

3. Heading control303

ψcmd = Kpψ (ψref − ψ) (28)
4. Heading rate to steering angle conversion304

β = tan−1(
l

v
ψcmd) (29)

Finally,305

β = tan−1(
l

v
Kpψ (ψL + sin−1

(
Kpy

yL − y
v

)
− ψ)) (30)

This non-linear controller presented in subsection can be linearised around its equilibrium (y, ψ) = (yL, ψL).306

l

v
tanβ = Kpψ (ψL + sin−1

(
Kpy

yL − y
v

)
− ψ) (31)

' l

v
(Kpψ (ψL +

(
Kpy

yL − y
v

)
− ψ)) (32)

= θTb φb (33)

with307

θb =
[
Kpψ KpyKpψ

]T (34)

and308

φb =

[
ψL − ψ

1
v

(yL − y)

]
(35)

B.4 Discrete behaviour309

The MOBIL model (Kesting et al., 2007), which stands for Minimizing Overall Braking Induced by Lane310

Changes, is a discrete lateral decision model that formulates a criterion for lane changes in terms of safe braking311

decelerations and increased overall accelerations according to a longitudinal model.312

It states that a lane change should be performed if and only if:313

1. It does not impose an unsafe braking on the target lane following vehicle:314

v̇rear ≥ −bsafe (36)

2. It enables the vehicle and (with a politeness factor p) its following vehicles on both current and target315

lanes to increase their overall acceleration:316

∆v̇ + p(∆v̇rear, current + ∆v̇rear, target) ≥ amin (37)

This model describes changes in the target lane L.317
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C Interval Predictor318

In this section, we design an interval predictor for our system.319

C.1 Notations320

For any real variable z, we denote an interval containing z as �z = [z, z], such that z ≤ z ≤ z. As elements of321

R2, they can be scaled and offset by scalars. This definition is extended element-wise to vector variables.322

Then, we define several operators over intervals �a = [a, a] and �b = [b, b]323

• The product operator ×324

�a×�b = [p(a)p(b)− p(a)n(b)− n(a)p(b) + n(a)n(b), (38)

p(a)p(b)− p(a)n(b)− n(a)p(b) + n(a)n(b)] (39)

where p(·) and n(·) are the projections onto R+ and R−, respectively.325

• The difference operator −326

�a−�b = [a− b, a− b] (40)

• The cosine and sine operators327

cos(�z) = [−1 if z ≤ π ≤ z else min(cos(z), cos(z)), (41)
1 if z ≤ 0 ≤ z else max(cos(z), cos(z))] (42)

sin(�z) = [−1 if z ≤ −π
2
≤ z else min(sin(z), sin(z)), (43)

1 if z ≤ +
π

2
≤ z else max(sin(z), sin(z))] (44)

• The inverse operator / over a positive interval �z > 0328

1/�z = [1/z, 1/z] (45)

• Any other function f is assumed increasing on the interval �z and is applied coefficient-wise329

f(�z) = [f(z), f(z)] (46)

We start with an initial estimate of the intervals over state variables xI , yI , vI and ψI . Typically, we use330

zero-width intervals centred on the current state observation. Likewise, any variable z used in place of an interval331

corresponds to the zero-width interval [z, z].332

C.2 Intervals for features333

We use (25) and (35) respectively to derive intervals for the features φa and φb from the intervals over the states.334

We index the front vehicle intervals with the subscript f335

�φa =

 v0 −�v
n(�vf −�v)

n(�xf −�x− (d0 + T�v))

 (47)

and336

�φb =

[
(1 / �v)× (yL −�y)

ψL −�ψ

]
(48)

C.3 Intervals for controls337

The controls intervals are derived from (24) and (33)338

�a = �θTa ×�φa (49)

�

(
l

v
tanβ

)
= �θTb ×�φb (50)
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C.4 Intervals for velocity and heading339

The velocity interval is derived from (22) and the heading interval from (23)340

�v̇ = �a (51)

�ψ̇ = �

(
l

v
tanβ

)
(52)

C.5 Intervals for positions341

Likewise, the positions interval are derived from the kinematics (20) and (21)342

�ẋ = �v × cos(�ψ) (53)
�ẏ = �v × sin(�ψ) (54)
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