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Abstract

In this paper, we propose a very simple but effective VAE model (HM-VAE) that can han-
dle real-valued data with heterogeneous marginals, meaning that they have drastically dis-
tinct marginal distributions, statistical properties as well as semantics. Preliminary results
show that the HM-VAE can learn distributions with heterogeneous marginal distributions,
whereas the vanilla VAEs fails.

1. Introduction

Learning realistic generative models that are well calibrated to uncertainty, is important
for understanding the data and applications to downstream tasks. Among many models of
choice, Variational Autoencoders (VAEs) (Kingma and Welling, 2013) is a popular method
for learning representations and capturing the correlations of high-dimensional data. VAE
naturally enables uncertainty estimation in latent space, which is crucial for downstream
applications (Ma et al., 2018; Gong et al., 2019).

However, VAE suffers when it is used to model real-world data with heterogenous
marginals. Most real world data are statistically more complex than images and speech
data where VAEs are typically applied to. Take image data as example, each dimensions
of the data shares similar physical meaning (pixels), and share similar marginal distribu-
tions. We call this type of data marginally homogeneous. Many real world datasets, on
the contrary, are marginally heterogeneous. For instance, medical databases often record
lab test results of the patients. Even if all lab test variables are continuous and normalized
in the pre-processing step, they might still have drastically distinct marginal distributions
and statistical properties. We call them real-valued datasets with heterogeneous marginals.
Naively applying vanilla VAEs to this type of data would fail (Figure 2 (b)).
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Figure 1: Graphical representations of vanilla VAE and our HM-VAE. Note that in this graph, D is
the dimension of observations x, xd is the dth dimension of x

Contributions In this paper, we focus on improving VAEs for real-valued data with
heterogeneous marginals. We introduce a method called heterogeneous-marginal VAE (HM-
VAE) that explicitly decomposes intra-variable uncertainties (account for heterogeneous
variations) and inter-variable uncertainties (account for correlation). We experimentally
observe that the HM-VAEs can improve the data generation quality and generate realistic
data with nearly indistinguishable marginals compared with real data.

2. Method

We first review the basic idea of variational auto-encoders, and then introduce our method.

Variational Autoencoders Variational autoencoders (VAEs) (Kingma and Welling,
2013) is a class of probabilistic generative model where the joint distribution is defined
as p(x, z;θ) =

∏
n pθ(xn|zn)p(zn).In other words, each data x is generated from latent

variables z. Here, pθ(xn|zn) is often induced by the following generative process:

x = fθ(z) +N (0, ε), (1)

where fθ is a neural network know as the decoder, and ε is known as the homogeneous
noise level that models the aleatoric uncertainty of the model. To approximate the pos-
terior pθ(zn|xn), VAEs uses an encoder, which takes the data xn as input to produce the
variational parameters of the posterior qφ(zn|xn). The posterior statistics µ(x) and σ(x)
are parameterized by a deep neural network. Finally, the VAE model can be trained by
optimizing the following variational lower bound (ELBO): log pθ(x) ≥ Eqφ(z|x) log pθ(x,z)

qφ(z|x) .

Mixture of posteriors as prior In order to handle complicated heterogeneous data
we make the VAE prior more flexible, our model choses a mixture of Gaussians (MoGs)
as the prior distribution p(z) for latent variable. We parameterize this MoG to be an
aggregated posterior distribution (Makhzani et al., 2015; Tomczak and Welling, 2017), i.e.,
p(z) = 1

K

∑
k qφ(z|uk). When K � N and uk are inducing locations to be optimized, this

is known as the VampPrior approach (Tomczak and Welling, 2017).

Decomposing inter-variable and intra-variable uncertainties As a probabilistic
tool for modelling multivariate data, fitting of VAEs to data can be decomposed in two tasks:
i), inter-variable uncertainties: modelling the probabilistic inter-variable correlations; and
ii), intra-variable uncertainties: modelling the epistemic uncertainties of each variables,
which account for homogeneous statistics. We will separately model these inter-variable
and intra-variable uncertainties in VAEs, respectively.
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In vanilla VAEs (Eq 1 and Figure 1(a)), the representation for inter-variable and intra-
variable uncertainties are entangled: the latent variables z are assumed to be responsible
for explaining both shared correlations and private uncertainties at the same time. This
assumption is useful when VAEs are applied to data with homogeneous marginals. For
example, for image data, each dimension has the same semantics (pixels) and share similar
statistical properties. However, for data with heterogeneous marginals, vanilla VAEs often
struggle and result in a poor marginal distribution approximations (Figure 2 (b)).

Therefore, we propose to explicitly enforce the separation between shared correlation
and private uncertainties. Let z be the set of latent variables of the model. As shown in
Figure 1(b), we partite z into z = zc ∪ zu, and the new VAE model is defined as

p(x, z;θ) =
∏
n

∏
d

pθ(xn,d|zun,d, zcn)p(zn) (2)

pθ(xn,d|zun,d, zcn) = Fθu(x̃n,d, z
u
n,d) +N (0, ε) (3)

x̃n,d = fθd(z
c
n) (4)

Where xn,d is the d th dimension scalar of the n th data point. Both Fθu and fθd are
deterministic neural networks with one dimensional output. zc is shared across different
xd and is encouraged to be only responsible for modeling shared correlation. zud is private
to xd, hence is only responsible for modeling the private epistemic uncertainty of the dth
variable xd. In order to generate xn,d from pθ(xn,d|zun,d, zcn), a “homogeneous” version x̃n,d
of xn,d is first generated from fθd(z

c
n), which is just a vanilla VAE decoder. Then, together

with the private uncertainty zun,d, x̃n,d is passed to an aggregation network Fθu(shared
across dimensions), which generates the final output xn,d. We choose to parameterize
pθ(xn,d|zun,d, zcn) in this way, so that a vectorized implementation can be easily used to
speed up computation. For variational inference, we use Gaussian inference nets for both
zu and zc. We call this improved model the heterogeneous-marginal VAE (HM-VAE).

Related work A closely related work is the Heterogeneous-Incomplete VAE (HI-VAE)
(Nazabal et al., 2018). In HI-VAE, the term “heterogeneous” has different meanings. HI-
VAE mainly focus on data with variables that might have different types (continuous, dis-
crete, categorical, ordinal, etc). If all the variables have continuous marginals (which is
the case in our paper) and are pre-normalized, HI-VAE degrades into vanilla VAE with a
mixture of Gaussian prior (which forms the baseline in our experiments).

3. Experiment

3.1. Data and Settings

We apply our proposed method (HM-VAE) on a dataset with heterogeneous marginals called
Bank Marketing Data Set (Moro et al., 2014). The Bank dataset is a real world dataset
related to marketing campaigns of banking institutions. We only focus on the subset of 13
continuous variables since dealing with mixed type is out of the scope of this work. Figure
2 (a) shows the pair-wise plots for 3 of the variables from this dataset. Note that in the
Bank dataset, the marginal distributions are drastically different from each other, each have
different properties and number of modes.
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(a) Real data (b) Vanilla VAE (c) HM-VAE

Figure 2: This figure visualizes the pair plots of three variables selected from the data. (a): real
data; (b): vanilla VAE with VampPrior; (c): HM-VAE. Diagonal plots shows the marginal
histograms (accompanied by kernel density estimates) of each variable. The upper-triangular part
shows sample scatter plots of each variable pair. The lower-triangular part shows heat maps of
high-probability regions. Note that vanilla VAEs struggle and result in mismatch in marginal dis-
tributions, while HM-VAE does not have this issue.

We train a HM-VAE and vanilla VAE (equipped with VampPrior) on training set, and
quantitatively compare their performance on test set using a 90%-10% split. Note that the
Heterogeneous-Incomplete VAE (Nazabal et al., 2018) degrades to our baseline under this
setting. With the same decoder structure (two layers, 50-100 structure). All models are
trained with the Adam optimizer with a learning rate of 0.001. All data are pre-normalized
and we set aleatoric noise levels to be ε = 0.02.

3.2. Results

As an example, we first visualize the data generation quality of each model. Due to limited
space, Figure 2 only visualizes the pair plots of three variables selected from the data. Full
plots on the complete dataset can be found in Appendix A. In each subfigure of Figure
2 (a)-(c), diagonal plots shows the marginal histograms (accompanied by kernel density
estimates) of each variable. The upper-triangular part shows sample scatter plots of each
variable pair. The lower-triangular part shows heat maps of high-probability regions.

Note that the second variable, which corresponds to the “duration” feature of the
dataset, is a very important variable that has a heavy tail. The vanilla VAE (Figure 2) is
able to identify the high-probability regions, but fails to mimic this heavy tail behaviour
of the variable. On the other hand, HM-VAE (Figure 2) is able to exactly reproduce the
heavy tail behaviour. It can also generate marginals/second order correlations that are
nearly indistinguishable from the real data.

To evaluate the data generation quality quantitatively, we compute the MMD distance
(Gretton et al., 2012) between real and generated samples. As shown in Table 2, we both
compute the MMD distance on the full data, and on the marginal distribution of each
variable, respectively. Based on these results, HM-VAE can consistently generate more
realistic samples, both jointly and marginally.
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Variable Full #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

VAE 1.2e-2 9.9e-4 7.9e-3 7.3e-2 1.9e-1 9.9e-1 4.0e-1 2.4e-1 3.2e-1 1.1e+0 9.4e-1 9.0e-1 6.8e-1 1.4e+0
HM-VAE 5e-3 1.1e-3 1.7e-3 2.9e-4 3.0e-4 2.9e-4 9.3e-4 1.3e-3 1.3e-3 9.9e-4 7.4e-4 2.3e-3 1.5e-3 1.7e-4

Table 1: MMD estimation (real vs generated) on Bank data

Table 2: The MMD on the full data (real vs generated), as well as on the marginal distribution of
each variables are computed, respectively.

4. Conclusion

In this paper, we focused on improving VAEs for real-valued data that has heterogeneous
marginal distributions. We propose the heterogeneous-marginal VAE (HM-VAE), a method
that explicitly decomposes intra-variable uncertainties and inter-variable uncertainties. We
experimentally observe that the HM-VAEs can generate realistic data with nearly indistin-
guishable marginals when compared with real data.
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Appendix A. Full Pair plots

Figure 3: pair plots of all variables from the real Bank dataset. Diagonal plots shows the marginal
histograms (accompanied by kernel density estimates) of each variable. The upper-triangular part
shows sample scatter plots of each variable pair. The lower-triangular part shows heat maps of
high-probability regions.
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Figure 4: pair plots of all variables generated by HM-VAE. Diagonal plots shows the marginal
histograms (accompanied by kernel density estimates) of each variable. The upper-triangular part
shows sample scatter plots of each variable pair. The lower-triangular part shows heat maps of
high-probability regions.
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Figure 5: pair plots of all variables generated by vanilla VAE with VampPrior. Diagonal plots shows
the marginal histograms (accompanied by kernel density estimates) of each variable. The upper-
triangular part shows sample scatter plots of each variable pair. The lower-triangular part shows
heat maps of high-probability regions.
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